Properties

Label 378.2.z.a.41.11
Level $378$
Weight $2$
Character 378.41
Analytic conductor $3.018$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(41,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([17, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.41");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.z (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(24\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.11
Character \(\chi\) \(=\) 378.41
Dual form 378.2.z.a.83.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.984808 + 0.173648i) q^{2} +(1.56441 + 0.743380i) q^{3} +(0.939693 - 0.342020i) q^{4} +(0.941136 + 0.789707i) q^{5} +(-1.66973 - 0.460429i) q^{6} +(2.22826 + 1.42648i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(1.89477 + 2.32590i) q^{9} +O(q^{10})\) \(q+(-0.984808 + 0.173648i) q^{2} +(1.56441 + 0.743380i) q^{3} +(0.939693 - 0.342020i) q^{4} +(0.941136 + 0.789707i) q^{5} +(-1.66973 - 0.460429i) q^{6} +(2.22826 + 1.42648i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(1.89477 + 2.32590i) q^{9} +(-1.06397 - 0.614283i) q^{10} +(-1.50712 - 1.79612i) q^{11} +(1.72432 + 0.163488i) q^{12} +(-0.429778 - 0.0757815i) q^{13} +(-2.44212 - 1.01787i) q^{14} +(0.885273 + 1.93505i) q^{15} +(0.766044 - 0.642788i) q^{16} +(-1.74272 + 3.01848i) q^{17} +(-2.26988 - 1.96155i) q^{18} +(1.97392 - 1.13964i) q^{19} +(1.15447 + 0.420194i) q^{20} +(2.42551 + 3.88805i) q^{21} +(1.79612 + 1.50712i) q^{22} +(-1.85030 - 5.08367i) q^{23} +(-1.72651 + 0.138421i) q^{24} +(-0.606141 - 3.43760i) q^{25} +0.436408 q^{26} +(1.23518 + 5.04721i) q^{27} +(2.58177 + 0.578340i) q^{28} +(-2.08501 + 0.367644i) q^{29} +(-1.20784 - 1.75193i) q^{30} +(2.87174 + 7.89005i) q^{31} +(-0.642788 + 0.766044i) q^{32} +(-1.02256 - 3.93024i) q^{33} +(1.19209 - 3.27524i) q^{34} +(0.970599 + 3.10219i) q^{35} +(2.57601 + 1.53759i) q^{36} +(2.71169 - 4.69678i) q^{37} +(-1.74604 + 1.46510i) q^{38} +(-0.616016 - 0.438042i) q^{39} +(-1.20990 - 0.213338i) q^{40} +(-0.273818 + 1.55290i) q^{41} +(-3.06381 - 3.40779i) q^{42} +(-1.56927 + 1.31677i) q^{43} +(-2.03054 - 1.17233i) q^{44} +(-0.0535437 + 3.68531i) q^{45} +(2.70496 + 4.68513i) q^{46} +(-4.45922 - 1.62303i) q^{47} +(1.67624 - 0.436123i) q^{48} +(2.93032 + 6.35714i) q^{49} +(1.19386 + 3.28012i) q^{50} +(-4.97020 + 3.42664i) q^{51} +(-0.429778 + 0.0757815i) q^{52} -0.117957i q^{53} +(-2.09285 - 4.75605i) q^{54} -2.88058i q^{55} +(-2.64297 - 0.121235i) q^{56} +(3.93522 - 0.315500i) q^{57} +(1.98950 - 0.724117i) q^{58} +(9.22472 + 7.74046i) q^{59} +(1.49371 + 1.51557i) q^{60} +(3.82461 - 10.5080i) q^{61} +(-4.19821 - 7.27151i) q^{62} +(0.904201 + 7.88558i) q^{63} +(0.500000 - 0.866025i) q^{64} +(-0.344635 - 0.410720i) q^{65} +(1.68951 + 3.69296i) q^{66} +(1.46744 - 8.32229i) q^{67} +(-0.605240 + 3.43248i) q^{68} +(0.884457 - 9.32843i) q^{69} +(-1.49454 - 2.88651i) q^{70} +(-1.77135 - 1.02269i) q^{71} +(-2.80387 - 1.06691i) q^{72} +(-6.00651 + 3.46786i) q^{73} +(-1.85490 + 5.09631i) q^{74} +(1.60718 - 5.82841i) q^{75} +(1.46510 - 1.74604i) q^{76} +(-0.796142 - 6.15211i) q^{77} +(0.682723 + 0.324417i) q^{78} +(-0.916064 - 5.19526i) q^{79} +1.22857 q^{80} +(-1.81967 + 8.81413i) q^{81} -1.57686i q^{82} +(-1.50719 - 8.54769i) q^{83} +(3.60902 + 2.82400i) q^{84} +(-4.02385 + 1.46456i) q^{85} +(1.31677 - 1.56927i) q^{86} +(-3.53512 - 0.974809i) q^{87} +(2.20327 + 0.801923i) q^{88} +(-7.35317 - 12.7361i) q^{89} +(-0.587217 - 3.63862i) q^{90} +(-0.849559 - 0.781931i) q^{91} +(-3.47743 - 4.14424i) q^{92} +(-1.37271 + 14.4781i) q^{93} +(4.67331 + 0.824031i) q^{94} +(2.75771 + 0.486259i) q^{95} +(-1.57505 + 0.720574i) q^{96} +(-9.82215 - 11.7056i) q^{97} +(-3.98971 - 5.75172i) q^{98} +(1.32195 - 6.90866i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 12 q^{9} + 12 q^{11} + 6 q^{14} + 12 q^{15} + 24 q^{21} - 60 q^{23} + 12 q^{29} - 72 q^{30} + 54 q^{35} - 12 q^{36} + 48 q^{39} + 24 q^{42} + 18 q^{49} - 60 q^{50} - 36 q^{51} + 6 q^{56} - 60 q^{57} - 36 q^{60} - 78 q^{63} + 72 q^{64} - 120 q^{65} + 36 q^{70} - 72 q^{71} - 24 q^{72} - 36 q^{74} + 66 q^{77} - 60 q^{78} - 72 q^{79} + 12 q^{84} - 72 q^{85} - 48 q^{86} - 18 q^{91} + 12 q^{92} + 24 q^{93} - 120 q^{95} + 36 q^{98} + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.984808 + 0.173648i −0.696364 + 0.122788i
\(3\) 1.56441 + 0.743380i 0.903214 + 0.429190i
\(4\) 0.939693 0.342020i 0.469846 0.171010i
\(5\) 0.941136 + 0.789707i 0.420889 + 0.353168i 0.828501 0.559987i \(-0.189194\pi\)
−0.407612 + 0.913155i \(0.633638\pi\)
\(6\) −1.66973 0.460429i −0.681665 0.187969i
\(7\) 2.22826 + 1.42648i 0.842205 + 0.539158i
\(8\) −0.866025 + 0.500000i −0.306186 + 0.176777i
\(9\) 1.89477 + 2.32590i 0.631591 + 0.775302i
\(10\) −1.06397 0.614283i −0.336457 0.194253i
\(11\) −1.50712 1.79612i −0.454415 0.541550i 0.489385 0.872068i \(-0.337221\pi\)
−0.943800 + 0.330517i \(0.892777\pi\)
\(12\) 1.72432 + 0.163488i 0.497768 + 0.0471949i
\(13\) −0.429778 0.0757815i −0.119199 0.0210180i 0.113730 0.993512i \(-0.463720\pi\)
−0.232929 + 0.972494i \(0.574831\pi\)
\(14\) −2.44212 1.01787i −0.652683 0.272038i
\(15\) 0.885273 + 1.93505i 0.228577 + 0.499627i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) −1.74272 + 3.01848i −0.422671 + 0.732088i −0.996200 0.0870975i \(-0.972241\pi\)
0.573529 + 0.819186i \(0.305574\pi\)
\(18\) −2.26988 1.96155i −0.535015 0.462341i
\(19\) 1.97392 1.13964i 0.452849 0.261452i −0.256184 0.966628i \(-0.582465\pi\)
0.709032 + 0.705176i \(0.249132\pi\)
\(20\) 1.15447 + 0.420194i 0.258148 + 0.0939583i
\(21\) 2.42551 + 3.88805i 0.529289 + 0.848441i
\(22\) 1.79612 + 1.50712i 0.382934 + 0.321320i
\(23\) −1.85030 5.08367i −0.385815 1.06002i −0.968867 0.247583i \(-0.920364\pi\)
0.583052 0.812435i \(-0.301858\pi\)
\(24\) −1.72651 + 0.138421i −0.352423 + 0.0282550i
\(25\) −0.606141 3.43760i −0.121228 0.687519i
\(26\) 0.436408 0.0855867
\(27\) 1.23518 + 5.04721i 0.237710 + 0.971336i
\(28\) 2.58177 + 0.578340i 0.487908 + 0.109296i
\(29\) −2.08501 + 0.367644i −0.387177 + 0.0682698i −0.363849 0.931458i \(-0.618537\pi\)
−0.0233285 + 0.999728i \(0.507426\pi\)
\(30\) −1.20784 1.75193i −0.220521 0.319856i
\(31\) 2.87174 + 7.89005i 0.515780 + 1.41709i 0.875129 + 0.483891i \(0.160777\pi\)
−0.359348 + 0.933203i \(0.617001\pi\)
\(32\) −0.642788 + 0.766044i −0.113630 + 0.135419i
\(33\) −1.02256 3.93024i −0.178005 0.684166i
\(34\) 1.19209 3.27524i 0.204442 0.561699i
\(35\) 0.970599 + 3.10219i 0.164061 + 0.524365i
\(36\) 2.57601 + 1.53759i 0.429335 + 0.256264i
\(37\) 2.71169 4.69678i 0.445799 0.772146i −0.552309 0.833640i \(-0.686253\pi\)
0.998107 + 0.0614933i \(0.0195863\pi\)
\(38\) −1.74604 + 1.46510i −0.283244 + 0.237670i
\(39\) −0.616016 0.438042i −0.0986416 0.0701429i
\(40\) −1.20990 0.213338i −0.191302 0.0337317i
\(41\) −0.273818 + 1.55290i −0.0427632 + 0.242522i −0.998695 0.0510656i \(-0.983738\pi\)
0.955932 + 0.293588i \(0.0948494\pi\)
\(42\) −3.06381 3.40779i −0.472756 0.525834i
\(43\) −1.56927 + 1.31677i −0.239311 + 0.200806i −0.754553 0.656239i \(-0.772146\pi\)
0.515242 + 0.857045i \(0.327702\pi\)
\(44\) −2.03054 1.17233i −0.306116 0.176736i
\(45\) −0.0535437 + 3.68531i −0.00798183 + 0.549373i
\(46\) 2.70496 + 4.68513i 0.398825 + 0.690785i
\(47\) −4.45922 1.62303i −0.650445 0.236743i −0.00433921 0.999991i \(-0.501381\pi\)
−0.646106 + 0.763248i \(0.723603\pi\)
\(48\) 1.67624 0.436123i 0.241945 0.0629490i
\(49\) 2.93032 + 6.35714i 0.418617 + 0.908163i
\(50\) 1.19386 + 3.28012i 0.168838 + 0.463878i
\(51\) −4.97020 + 3.42664i −0.695968 + 0.479826i
\(52\) −0.429778 + 0.0757815i −0.0595995 + 0.0105090i
\(53\) 0.117957i 0.0162026i −0.999967 0.00810130i \(-0.997421\pi\)
0.999967 0.00810130i \(-0.00257875\pi\)
\(54\) −2.09285 4.75605i −0.284801 0.647216i
\(55\) 2.88058i 0.388417i
\(56\) −2.64297 0.121235i −0.353182 0.0162007i
\(57\) 3.93522 0.315500i 0.521232 0.0417890i
\(58\) 1.98950 0.724117i 0.261234 0.0950813i
\(59\) 9.22472 + 7.74046i 1.20096 + 1.00772i 0.999602 + 0.0282033i \(0.00897857\pi\)
0.201354 + 0.979519i \(0.435466\pi\)
\(60\) 1.49371 + 1.51557i 0.192837 + 0.195659i
\(61\) 3.82461 10.5080i 0.489691 1.34542i −0.411269 0.911514i \(-0.634914\pi\)
0.900960 0.433902i \(-0.142864\pi\)
\(62\) −4.19821 7.27151i −0.533173 0.923482i
\(63\) 0.904201 + 7.88558i 0.113919 + 0.993490i
\(64\) 0.500000 0.866025i 0.0625000 0.108253i
\(65\) −0.344635 0.410720i −0.0427467 0.0509435i
\(66\) 1.68951 + 3.69296i 0.207964 + 0.454572i
\(67\) 1.46744 8.32229i 0.179277 1.01673i −0.753814 0.657088i \(-0.771788\pi\)
0.933091 0.359641i \(-0.117101\pi\)
\(68\) −0.605240 + 3.43248i −0.0733961 + 0.416250i
\(69\) 0.884457 9.32843i 0.106476 1.12301i
\(70\) −1.49454 2.88651i −0.178632 0.345004i
\(71\) −1.77135 1.02269i −0.210220 0.121371i 0.391194 0.920308i \(-0.372062\pi\)
−0.601414 + 0.798938i \(0.705396\pi\)
\(72\) −2.80387 1.06691i −0.330440 0.125736i
\(73\) −6.00651 + 3.46786i −0.703009 + 0.405882i −0.808467 0.588541i \(-0.799702\pi\)
0.105458 + 0.994424i \(0.466369\pi\)
\(74\) −1.85490 + 5.09631i −0.215628 + 0.592434i
\(75\) 1.60718 5.82841i 0.185582 0.673007i
\(76\) 1.46510 1.74604i 0.168058 0.200284i
\(77\) −0.796142 6.15211i −0.0907288 0.701098i
\(78\) 0.682723 + 0.324417i 0.0773031 + 0.0367330i
\(79\) −0.916064 5.19526i −0.103065 0.584512i −0.991975 0.126431i \(-0.959648\pi\)
0.888910 0.458081i \(-0.151463\pi\)
\(80\) 1.22857 0.137358
\(81\) −1.81967 + 8.81413i −0.202185 + 0.979347i
\(82\) 1.57686i 0.174135i
\(83\) −1.50719 8.54769i −0.165435 0.938231i −0.948614 0.316435i \(-0.897514\pi\)
0.783179 0.621797i \(-0.213597\pi\)
\(84\) 3.60902 + 2.82400i 0.393777 + 0.308123i
\(85\) −4.02385 + 1.46456i −0.436447 + 0.158854i
\(86\) 1.31677 1.56927i 0.141991 0.169219i
\(87\) −3.53512 0.974809i −0.379005 0.104511i
\(88\) 2.20327 + 0.801923i 0.234869 + 0.0854853i
\(89\) −7.35317 12.7361i −0.779434 1.35002i −0.932268 0.361768i \(-0.882173\pi\)
0.152834 0.988252i \(-0.451160\pi\)
\(90\) −0.587217 3.63862i −0.0618981 0.383544i
\(91\) −0.849559 0.781931i −0.0890580 0.0819686i
\(92\) −3.47743 4.14424i −0.362548 0.432067i
\(93\) −1.37271 + 14.4781i −0.142343 + 1.50131i
\(94\) 4.67331 + 0.824031i 0.482016 + 0.0849924i
\(95\) 2.75771 + 0.486259i 0.282935 + 0.0498891i
\(96\) −1.57505 + 0.720574i −0.160753 + 0.0735433i
\(97\) −9.82215 11.7056i −0.997288 1.18852i −0.982047 0.188638i \(-0.939593\pi\)
−0.0152411 0.999884i \(-0.504852\pi\)
\(98\) −3.98971 5.75172i −0.403021 0.581011i
\(99\) 1.32195 6.90866i 0.132861 0.694347i
\(100\) −1.74531 3.02297i −0.174531 0.302297i
\(101\) −11.7582 4.27964i −1.16999 0.425840i −0.317331 0.948315i \(-0.602787\pi\)
−0.852654 + 0.522475i \(0.825009\pi\)
\(102\) 4.29967 4.23765i 0.425730 0.419590i
\(103\) −4.48548 + 5.34559i −0.441967 + 0.526716i −0.940335 0.340249i \(-0.889489\pi\)
0.498368 + 0.866966i \(0.333933\pi\)
\(104\) 0.410090 0.149260i 0.0402126 0.0146362i
\(105\) −0.787684 + 5.57462i −0.0768701 + 0.544027i
\(106\) 0.0204830 + 0.116165i 0.00198948 + 0.0112829i
\(107\) 3.92045i 0.379004i −0.981880 0.189502i \(-0.939313\pi\)
0.981880 0.189502i \(-0.0606874\pi\)
\(108\) 2.88693 + 4.32037i 0.277795 + 0.415728i
\(109\) −14.6558 −1.40377 −0.701885 0.712290i \(-0.747658\pi\)
−0.701885 + 0.712290i \(0.747658\pi\)
\(110\) 0.500207 + 2.83682i 0.0476929 + 0.270480i
\(111\) 7.73369 5.33189i 0.734050 0.506081i
\(112\) 2.62387 0.339554i 0.247933 0.0320849i
\(113\) 2.86487 3.41422i 0.269504 0.321183i −0.614270 0.789096i \(-0.710549\pi\)
0.883775 + 0.467913i \(0.154994\pi\)
\(114\) −3.82064 + 0.994050i −0.357836 + 0.0931013i
\(115\) 2.27322 6.24562i 0.211979 0.582407i
\(116\) −1.83353 + 1.05859i −0.170239 + 0.0982875i
\(117\) −0.638072 1.14321i −0.0589898 0.105690i
\(118\) −10.4287 6.02101i −0.960039 0.554279i
\(119\) −8.18903 + 4.24001i −0.750687 + 0.388681i
\(120\) −1.73419 1.23316i −0.158309 0.112572i
\(121\) 0.955505 5.41894i 0.0868641 0.492631i
\(122\) −1.94181 + 11.0125i −0.175803 + 0.997028i
\(123\) −1.58276 + 2.22583i −0.142713 + 0.200696i
\(124\) 5.39711 + 6.43202i 0.484675 + 0.577613i
\(125\) 5.21565 9.03376i 0.466502 0.808004i
\(126\) −2.25978 7.60877i −0.201317 0.677843i
\(127\) 0.559717 + 0.969458i 0.0496668 + 0.0860255i 0.889790 0.456370i \(-0.150851\pi\)
−0.840123 + 0.542396i \(0.817517\pi\)
\(128\) −0.342020 + 0.939693i −0.0302306 + 0.0830579i
\(129\) −3.43385 + 0.893414i −0.302333 + 0.0786607i
\(130\) 0.410720 + 0.344635i 0.0360225 + 0.0302265i
\(131\) 16.4598 5.99087i 1.43810 0.523425i 0.498857 0.866684i \(-0.333753\pi\)
0.939241 + 0.343260i \(0.111531\pi\)
\(132\) −2.30512 3.34348i −0.200635 0.291012i
\(133\) 6.02409 + 0.276329i 0.522355 + 0.0239608i
\(134\) 8.45068i 0.730027i
\(135\) −2.82335 + 5.72554i −0.242995 + 0.492776i
\(136\) 3.48544i 0.298874i
\(137\) 22.1177 3.89995i 1.88965 0.333196i 0.895845 0.444368i \(-0.146572\pi\)
0.993801 + 0.111172i \(0.0354605\pi\)
\(138\) 0.748845 + 9.34030i 0.0637459 + 0.795099i
\(139\) 6.05302 + 16.6305i 0.513411 + 1.41058i 0.877660 + 0.479283i \(0.159103\pi\)
−0.364250 + 0.931301i \(0.618675\pi\)
\(140\) 1.97307 + 2.58314i 0.166755 + 0.218315i
\(141\) −5.76954 5.85398i −0.485883 0.492994i
\(142\) 1.92202 + 0.699559i 0.161293 + 0.0587057i
\(143\) 0.511616 + 0.886145i 0.0427835 + 0.0741032i
\(144\) 2.94654 + 0.563810i 0.245545 + 0.0469841i
\(145\) −2.25261 1.30055i −0.187069 0.108004i
\(146\) 5.31307 4.45820i 0.439713 0.368963i
\(147\) −0.141543 + 12.1235i −0.0116743 + 0.999932i
\(148\) 0.941760 5.34098i 0.0774122 0.439026i
\(149\) 11.4259 + 2.01470i 0.936049 + 0.165051i 0.620809 0.783962i \(-0.286804\pi\)
0.315239 + 0.949012i \(0.397915\pi\)
\(150\) −0.570675 + 6.01895i −0.0465954 + 0.491445i
\(151\) −8.42543 + 7.06977i −0.685652 + 0.575330i −0.917652 0.397386i \(-0.869918\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(152\) −1.13964 + 1.97392i −0.0924373 + 0.160106i
\(153\) −10.3227 + 1.66593i −0.834545 + 0.134683i
\(154\) 1.85235 + 5.92039i 0.149267 + 0.477079i
\(155\) −3.52812 + 9.69344i −0.283386 + 0.778596i
\(156\) −0.728685 0.200935i −0.0583415 0.0160877i
\(157\) −9.34321 + 11.1348i −0.745669 + 0.888654i −0.996852 0.0792859i \(-0.974736\pi\)
0.251183 + 0.967940i \(0.419180\pi\)
\(158\) 1.80429 + 4.95726i 0.143542 + 0.394378i
\(159\) 0.0876867 0.184533i 0.00695400 0.0146344i
\(160\) −1.20990 + 0.213338i −0.0956511 + 0.0168659i
\(161\) 3.12878 13.9672i 0.246582 1.10077i
\(162\) 0.261466 8.99620i 0.0205427 0.706808i
\(163\) 3.92430 0.307375 0.153687 0.988120i \(-0.450885\pi\)
0.153687 + 0.988120i \(0.450885\pi\)
\(164\) 0.273818 + 1.55290i 0.0213816 + 0.121261i
\(165\) 2.14136 4.50641i 0.166705 0.350824i
\(166\) 2.96858 + 8.15611i 0.230407 + 0.633037i
\(167\) 4.67824 + 3.92551i 0.362013 + 0.303765i 0.805592 0.592470i \(-0.201847\pi\)
−0.443579 + 0.896235i \(0.646292\pi\)
\(168\) −4.04458 2.15439i −0.312046 0.166215i
\(169\) −12.0370 4.38112i −0.925926 0.337009i
\(170\) 3.70840 2.14104i 0.284421 0.164211i
\(171\) 6.39084 + 2.43179i 0.488719 + 0.185963i
\(172\) −1.02427 + 1.77408i −0.0780997 + 0.135273i
\(173\) −18.9535 + 15.9039i −1.44101 + 1.20915i −0.502178 + 0.864764i \(0.667468\pi\)
−0.938829 + 0.344384i \(0.888088\pi\)
\(174\) 3.65069 + 0.346133i 0.276758 + 0.0262403i
\(175\) 3.55301 8.52452i 0.268583 0.644393i
\(176\) −2.30905 0.407147i −0.174051 0.0306899i
\(177\) 8.67717 + 18.9667i 0.652216 + 1.42563i
\(178\) 9.45305 + 11.2657i 0.708536 + 0.844401i
\(179\) 15.9501 + 9.20879i 1.19217 + 0.688297i 0.958797 0.284091i \(-0.0916918\pi\)
0.233369 + 0.972388i \(0.425025\pi\)
\(180\) 1.21014 + 3.48137i 0.0901981 + 0.259486i
\(181\) 4.81715 2.78118i 0.358056 0.206724i −0.310172 0.950681i \(-0.600387\pi\)
0.668228 + 0.743957i \(0.267053\pi\)
\(182\) 0.972433 + 0.622527i 0.0720815 + 0.0461448i
\(183\) 13.7947 13.5958i 1.01974 1.00503i
\(184\) 4.14424 + 3.47743i 0.305518 + 0.256360i
\(185\) 6.26115 2.27887i 0.460329 0.167546i
\(186\) −1.16224 14.4965i −0.0852193 1.06293i
\(187\) 8.04804 1.41909i 0.588531 0.103774i
\(188\) −4.74541 −0.346094
\(189\) −4.44744 + 13.0085i −0.323504 + 0.946227i
\(190\) −2.80026 −0.203152
\(191\) 9.01172 1.58901i 0.652065 0.114977i 0.162176 0.986762i \(-0.448149\pi\)
0.489888 + 0.871785i \(0.337038\pi\)
\(192\) 1.42599 0.983131i 0.102912 0.0709514i
\(193\) −25.3984 + 9.24425i −1.82821 + 0.665416i −0.834840 + 0.550492i \(0.814440\pi\)
−0.993374 + 0.114923i \(0.963338\pi\)
\(194\) 11.7056 + 9.82215i 0.840412 + 0.705189i
\(195\) −0.233830 0.898730i −0.0167449 0.0643594i
\(196\) 4.92787 + 4.97153i 0.351991 + 0.355109i
\(197\) −9.39441 + 5.42386i −0.669324 + 0.386434i −0.795820 0.605533i \(-0.792960\pi\)
0.126497 + 0.991967i \(0.459627\pi\)
\(198\) −0.102186 + 7.03326i −0.00726204 + 0.499832i
\(199\) −4.71281 2.72094i −0.334082 0.192882i 0.323570 0.946204i \(-0.395117\pi\)
−0.657652 + 0.753322i \(0.728450\pi\)
\(200\) 2.24373 + 2.67397i 0.158656 + 0.189079i
\(201\) 8.48231 11.9286i 0.598296 0.841381i
\(202\) 12.3227 + 2.17283i 0.867024 + 0.152880i
\(203\) −5.17040 2.15502i −0.362891 0.151253i
\(204\) −3.49848 + 4.91990i −0.244943 + 0.344462i
\(205\) −1.48404 + 1.24525i −0.103650 + 0.0869724i
\(206\) 3.48908 6.04327i 0.243096 0.421055i
\(207\) 8.31822 13.9360i 0.578156 0.968621i
\(208\) −0.377941 + 0.218204i −0.0262055 + 0.0151297i
\(209\) −5.02188 1.82781i −0.347371 0.126433i
\(210\) −0.192306 5.62671i −0.0132704 0.388280i
\(211\) 17.8538 + 14.9811i 1.22911 + 1.03134i 0.998297 + 0.0583429i \(0.0185817\pi\)
0.230809 + 0.972999i \(0.425863\pi\)
\(212\) −0.0403436 0.110843i −0.00277081 0.00761273i
\(213\) −2.01087 2.91669i −0.137783 0.199848i
\(214\) 0.680779 + 3.86089i 0.0465371 + 0.263925i
\(215\) −2.51676 −0.171642
\(216\) −3.59330 3.75342i −0.244493 0.255388i
\(217\) −4.85598 + 21.6776i −0.329646 + 1.47157i
\(218\) 14.4331 2.54495i 0.977536 0.172366i
\(219\) −11.9746 + 0.960047i −0.809168 + 0.0648739i
\(220\) −0.985216 2.70686i −0.0664232 0.182496i
\(221\) 0.977727 1.16521i 0.0657691 0.0783805i
\(222\) −6.69033 + 6.59383i −0.449025 + 0.442549i
\(223\) 2.24207 6.16004i 0.150140 0.412507i −0.841708 0.539933i \(-0.818449\pi\)
0.991848 + 0.127426i \(0.0406717\pi\)
\(224\) −2.52505 + 0.790026i −0.168712 + 0.0527859i
\(225\) 6.84702 7.92329i 0.456468 0.528219i
\(226\) −2.22847 + 3.85983i −0.148236 + 0.256752i
\(227\) −4.62522 + 3.88102i −0.306986 + 0.257592i −0.783245 0.621713i \(-0.786437\pi\)
0.476259 + 0.879305i \(0.341993\pi\)
\(228\) 3.58999 1.64240i 0.237753 0.108770i
\(229\) −19.5706 3.45082i −1.29326 0.228037i −0.515659 0.856794i \(-0.672453\pi\)
−0.777602 + 0.628757i \(0.783564\pi\)
\(230\) −1.15414 + 6.54548i −0.0761020 + 0.431596i
\(231\) 3.32786 10.2163i 0.218957 0.672181i
\(232\) 1.62185 1.36090i 0.106480 0.0893472i
\(233\) 3.33964 + 1.92814i 0.218787 + 0.126317i 0.605389 0.795930i \(-0.293018\pi\)
−0.386601 + 0.922247i \(0.626351\pi\)
\(234\) 0.826895 + 1.01504i 0.0540558 + 0.0663555i
\(235\) −2.91502 5.04897i −0.190155 0.329358i
\(236\) 11.3158 + 4.11861i 0.736595 + 0.268099i
\(237\) 2.42895 8.80851i 0.157777 0.572174i
\(238\) 7.32835 5.59761i 0.475026 0.362839i
\(239\) 3.12052 + 8.57356i 0.201850 + 0.554578i 0.998774 0.0495016i \(-0.0157633\pi\)
−0.796924 + 0.604079i \(0.793541\pi\)
\(240\) 1.92198 + 0.913291i 0.124064 + 0.0589527i
\(241\) 27.7998 4.90186i 1.79074 0.315757i 0.823066 0.567945i \(-0.192261\pi\)
0.967678 + 0.252188i \(0.0811503\pi\)
\(242\) 5.50254i 0.353716i
\(243\) −9.39895 + 12.4362i −0.602943 + 0.797784i
\(244\) 11.1824i 0.715881i
\(245\) −2.26245 + 8.29703i −0.144543 + 0.530078i
\(246\) 1.17220 2.46685i 0.0747369 0.157281i
\(247\) −0.934713 + 0.340208i −0.0594743 + 0.0216469i
\(248\) −6.43202 5.39711i −0.408434 0.342717i
\(249\) 3.99632 14.4925i 0.253256 0.918427i
\(250\) −3.56771 + 9.80221i −0.225642 + 0.619946i
\(251\) 5.07709 + 8.79378i 0.320463 + 0.555058i 0.980584 0.196101i \(-0.0628282\pi\)
−0.660121 + 0.751160i \(0.729495\pi\)
\(252\) 3.54670 + 7.10077i 0.223421 + 0.447306i
\(253\) −6.34224 + 10.9851i −0.398733 + 0.690626i
\(254\) −0.719558 0.857536i −0.0451491 0.0538066i
\(255\) −7.38368 0.700069i −0.462384 0.0438400i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 2.19809 12.4660i 0.137113 0.777607i −0.836252 0.548346i \(-0.815258\pi\)
0.973365 0.229261i \(-0.0736310\pi\)
\(258\) 3.22654 1.47612i 0.200876 0.0918994i
\(259\) 12.7422 6.59751i 0.791763 0.409949i
\(260\) −0.464325 0.268078i −0.0287962 0.0166255i
\(261\) −4.80573 4.15294i −0.297467 0.257061i
\(262\) −15.1694 + 8.75806i −0.937169 + 0.541075i
\(263\) −9.71268 + 26.6854i −0.598909 + 1.64549i 0.154542 + 0.987986i \(0.450610\pi\)
−0.753451 + 0.657504i \(0.771612\pi\)
\(264\) 2.85068 + 2.89240i 0.175447 + 0.178015i
\(265\) 0.0931513 0.111013i 0.00572224 0.00681950i
\(266\) −5.98056 + 0.773942i −0.366692 + 0.0474534i
\(267\) −2.03566 25.3907i −0.124580 1.55388i
\(268\) −1.46744 8.32229i −0.0896384 0.508365i
\(269\) 12.8796 0.785282 0.392641 0.919692i \(-0.371562\pi\)
0.392641 + 0.919692i \(0.371562\pi\)
\(270\) 1.78623 6.12883i 0.108706 0.372988i
\(271\) 23.3304i 1.41722i −0.705601 0.708610i \(-0.749323\pi\)
0.705601 0.708610i \(-0.250677\pi\)
\(272\) 0.605240 + 3.43248i 0.0366980 + 0.208125i
\(273\) −0.747789 1.85481i −0.0452583 0.112258i
\(274\) −21.1045 + 7.68141i −1.27497 + 0.464051i
\(275\) −5.26080 + 6.26958i −0.317238 + 0.378070i
\(276\) −2.35939 9.06836i −0.142019 0.545851i
\(277\) −20.8905 7.60350i −1.25519 0.456850i −0.373035 0.927817i \(-0.621683\pi\)
−0.882151 + 0.470967i \(0.843905\pi\)
\(278\) −8.84893 15.3268i −0.530723 0.919240i
\(279\) −12.9102 + 21.6292i −0.772913 + 1.29491i
\(280\) −2.39166 2.20127i −0.142929 0.131551i
\(281\) −6.37582 7.59841i −0.380350 0.453283i 0.541575 0.840653i \(-0.317828\pi\)
−0.921925 + 0.387369i \(0.873384\pi\)
\(282\) 6.69842 + 4.76317i 0.398885 + 0.283643i
\(283\) −7.82006 1.37889i −0.464855 0.0819664i −0.0636847 0.997970i \(-0.520285\pi\)
−0.401170 + 0.916004i \(0.631396\pi\)
\(284\) −2.01430 0.355176i −0.119527 0.0210758i
\(285\) 3.95273 + 2.81074i 0.234139 + 0.166494i
\(286\) −0.657721 0.783842i −0.0388919 0.0463495i
\(287\) −2.82532 + 3.06968i −0.166773 + 0.181197i
\(288\) −2.99968 0.0435823i −0.176758 0.00256811i
\(289\) 2.42587 + 4.20172i 0.142698 + 0.247160i
\(290\) 2.44423 + 0.889626i 0.143530 + 0.0522406i
\(291\) −6.66420 25.6139i −0.390662 1.50152i
\(292\) −4.45820 + 5.31307i −0.260896 + 0.310924i
\(293\) −11.8053 + 4.29677i −0.689672 + 0.251020i −0.662995 0.748624i \(-0.730715\pi\)
−0.0266772 + 0.999644i \(0.508493\pi\)
\(294\) −1.96584 11.9639i −0.114650 0.697750i
\(295\) 2.56902 + 14.5696i 0.149574 + 0.848278i
\(296\) 5.42338i 0.315227i
\(297\) 7.20383 9.82529i 0.418009 0.570121i
\(298\) −11.6022 −0.672097
\(299\) 0.409972 + 2.32507i 0.0237093 + 0.134462i
\(300\) −0.483175 6.02660i −0.0278961 0.347946i
\(301\) −5.37510 + 0.695589i −0.309815 + 0.0400931i
\(302\) 7.06977 8.42543i 0.406820 0.484829i
\(303\) −15.2133 15.4359i −0.873981 0.886771i
\(304\) 0.779562 2.14183i 0.0447110 0.122842i
\(305\) 11.8977 6.86917i 0.681263 0.393327i
\(306\) 9.87663 3.43315i 0.564610 0.196260i
\(307\) 7.67098 + 4.42884i 0.437806 + 0.252767i 0.702667 0.711519i \(-0.251993\pi\)
−0.264861 + 0.964287i \(0.585326\pi\)
\(308\) −2.85227 5.50879i −0.162523 0.313893i
\(309\) −10.9909 + 5.02829i −0.625253 + 0.286049i
\(310\) 1.79128 10.1588i 0.101738 0.576983i
\(311\) 3.63244 20.6006i 0.205977 1.16815i −0.689918 0.723887i \(-0.742353\pi\)
0.895895 0.444266i \(-0.146535\pi\)
\(312\) 0.752507 + 0.0713474i 0.0426023 + 0.00403925i
\(313\) 8.13089 + 9.69001i 0.459585 + 0.547712i 0.945213 0.326453i \(-0.105854\pi\)
−0.485628 + 0.874165i \(0.661409\pi\)
\(314\) 7.26772 12.5881i 0.410141 0.710386i
\(315\) −5.37632 + 8.13546i −0.302921 + 0.458381i
\(316\) −2.63770 4.56863i −0.148382 0.257006i
\(317\) 1.60647 4.41375i 0.0902285 0.247901i −0.886368 0.462982i \(-0.846779\pi\)
0.976596 + 0.215081i \(0.0690017\pi\)
\(318\) −0.0543107 + 0.196956i −0.00304559 + 0.0110448i
\(319\) 3.80270 + 3.19085i 0.212911 + 0.178653i
\(320\) 1.15447 0.420194i 0.0645371 0.0234896i
\(321\) 2.91438 6.13320i 0.162665 0.342322i
\(322\) −0.655871 + 14.2983i −0.0365503 + 0.796812i
\(323\) 7.94431i 0.442033i
\(324\) 1.30468 + 8.90493i 0.0724822 + 0.494718i
\(325\) 1.52334i 0.0844996i
\(326\) −3.86468 + 0.681447i −0.214045 + 0.0377419i
\(327\) −22.9277 10.8948i −1.26791 0.602485i
\(328\) −0.539317 1.48176i −0.0297788 0.0818165i
\(329\) −7.62112 9.97752i −0.420166 0.550078i
\(330\) −1.32630 + 4.80979i −0.0730105 + 0.264770i
\(331\) 9.76080 + 3.55264i 0.536502 + 0.195271i 0.596039 0.802955i \(-0.296740\pi\)
−0.0595370 + 0.998226i \(0.518962\pi\)
\(332\) −4.33978 7.51671i −0.238176 0.412533i
\(333\) 16.0623 2.59221i 0.880209 0.142052i
\(334\) −5.28882 3.05350i −0.289392 0.167080i
\(335\) 7.95324 6.67356i 0.434532 0.364615i
\(336\) 4.35724 + 1.41933i 0.237707 + 0.0774308i
\(337\) −0.683890 + 3.87853i −0.0372538 + 0.211277i −0.997752 0.0670077i \(-0.978655\pi\)
0.960499 + 0.278285i \(0.0897659\pi\)
\(338\) 12.6149 + 2.22435i 0.686162 + 0.120989i
\(339\) 7.01990 3.21156i 0.381269 0.174428i
\(340\) −3.28027 + 2.75247i −0.177898 + 0.149274i
\(341\) 9.84340 17.0493i 0.533050 0.923269i
\(342\) −6.71602 1.28508i −0.363161 0.0694894i
\(343\) −2.53880 + 18.3454i −0.137083 + 0.990560i
\(344\) 0.700641 1.92499i 0.0377760 0.103789i
\(345\) 8.19912 8.08086i 0.441426 0.435059i
\(346\) 15.9039 18.9535i 0.854997 1.01895i
\(347\) 9.50367 + 26.1111i 0.510184 + 1.40172i 0.881046 + 0.473030i \(0.156840\pi\)
−0.370862 + 0.928688i \(0.620938\pi\)
\(348\) −3.65533 + 0.293061i −0.195946 + 0.0157097i
\(349\) −16.5657 + 2.92098i −0.886740 + 0.156356i −0.598425 0.801179i \(-0.704206\pi\)
−0.288316 + 0.957535i \(0.593095\pi\)
\(350\) −2.01877 + 9.01198i −0.107908 + 0.481711i
\(351\) −0.148367 2.26279i −0.00791924 0.120779i
\(352\) 2.34467 0.124971
\(353\) 0.293221 + 1.66294i 0.0156066 + 0.0885094i 0.991616 0.129218i \(-0.0412467\pi\)
−0.976010 + 0.217727i \(0.930136\pi\)
\(354\) −11.8389 17.1718i −0.629229 0.912672i
\(355\) −0.859455 2.36133i −0.0456151 0.125327i
\(356\) −11.2657 9.45305i −0.597081 0.501011i
\(357\) −15.9630 + 0.545571i −0.844849 + 0.0288747i
\(358\) −17.3069 6.29918i −0.914696 0.332922i
\(359\) −10.5518 + 6.09211i −0.556905 + 0.321529i −0.751902 0.659274i \(-0.770864\pi\)
0.194997 + 0.980804i \(0.437530\pi\)
\(360\) −1.79628 3.21834i −0.0946725 0.169622i
\(361\) −6.90242 + 11.9553i −0.363285 + 0.629229i
\(362\) −4.26102 + 3.57542i −0.223954 + 0.187920i
\(363\) 5.52313 7.76715i 0.289889 0.407670i
\(364\) −1.06576 0.444208i −0.0558610 0.0232828i
\(365\) −8.39154 1.47965i −0.439233 0.0774486i
\(366\) −11.2243 + 15.7846i −0.586702 + 0.825076i
\(367\) −13.7838 16.4269i −0.719507 0.857475i 0.275076 0.961423i \(-0.411297\pi\)
−0.994583 + 0.103948i \(0.966853\pi\)
\(368\) −4.68513 2.70496i −0.244229 0.141006i
\(369\) −4.13072 + 2.30552i −0.215037 + 0.120021i
\(370\) −5.77031 + 3.33149i −0.299984 + 0.173196i
\(371\) 0.168263 0.262839i 0.00873577 0.0136459i
\(372\) 3.66187 + 14.0744i 0.189859 + 0.729726i
\(373\) 15.0931 + 12.6646i 0.781491 + 0.655749i 0.943624 0.331020i \(-0.107393\pi\)
−0.162133 + 0.986769i \(0.551837\pi\)
\(374\) −7.67935 + 2.79505i −0.397090 + 0.144529i
\(375\) 14.8749 10.2553i 0.768139 0.529583i
\(376\) 4.67331 0.824031i 0.241008 0.0424962i
\(377\) 0.923954 0.0475861
\(378\) 2.12097 13.5831i 0.109091 0.698641i
\(379\) 24.8328 1.27558 0.637788 0.770212i \(-0.279849\pi\)
0.637788 + 0.770212i \(0.279849\pi\)
\(380\) 2.75771 0.486259i 0.141468 0.0249446i
\(381\) 0.154953 + 1.93271i 0.00793847 + 0.0990160i
\(382\) −8.59888 + 3.12974i −0.439957 + 0.160131i
\(383\) 7.41782 + 6.22429i 0.379033 + 0.318047i 0.812323 0.583208i \(-0.198203\pi\)
−0.433290 + 0.901255i \(0.642647\pi\)
\(384\) −1.23361 + 1.21582i −0.0629523 + 0.0620444i
\(385\) 4.10908 6.41869i 0.209418 0.327127i
\(386\) 23.4073 13.5142i 1.19140 0.687854i
\(387\) −6.03610 1.15498i −0.306832 0.0587112i
\(388\) −13.2333 7.64027i −0.671821 0.387876i
\(389\) 19.7679 + 23.5584i 1.00227 + 1.19446i 0.980865 + 0.194689i \(0.0623698\pi\)
0.0214059 + 0.999771i \(0.493186\pi\)
\(390\) 0.386341 + 0.844472i 0.0195631 + 0.0427615i
\(391\) 18.5695 + 3.27430i 0.939099 + 0.165589i
\(392\) −5.71630 4.04029i −0.288717 0.204065i
\(393\) 30.2034 + 2.86367i 1.52356 + 0.144453i
\(394\) 8.30984 6.97278i 0.418644 0.351284i
\(395\) 3.24059 5.61286i 0.163052 0.282414i
\(396\) −1.12068 6.94415i −0.0563162 0.348957i
\(397\) 7.92617 4.57618i 0.397803 0.229672i −0.287732 0.957711i \(-0.592901\pi\)
0.685536 + 0.728039i \(0.259568\pi\)
\(398\) 5.11369 + 1.86123i 0.256326 + 0.0932952i
\(399\) 9.21875 + 4.91048i 0.461515 + 0.245832i
\(400\) −2.67397 2.24373i −0.133699 0.112187i
\(401\) −11.1932 30.7530i −0.558961 1.53573i −0.821148 0.570715i \(-0.806666\pi\)
0.262187 0.965017i \(-0.415556\pi\)
\(402\) −6.28206 + 13.2203i −0.313321 + 0.659371i
\(403\) −0.636293 3.60860i −0.0316960 0.179757i
\(404\) −12.5128 −0.622536
\(405\) −8.67313 + 6.85829i −0.430971 + 0.340791i
\(406\) 5.46606 + 1.22445i 0.271276 + 0.0607684i
\(407\) −12.5228 + 2.20811i −0.620734 + 0.109452i
\(408\) 2.59100 5.45266i 0.128274 0.269947i
\(409\) −2.40239 6.60050i −0.118790 0.326374i 0.866020 0.500010i \(-0.166670\pi\)
−0.984810 + 0.173637i \(0.944448\pi\)
\(410\) 1.24525 1.48404i 0.0614987 0.0732913i
\(411\) 37.5004 + 10.3407i 1.84976 + 0.510071i
\(412\) −2.38667 + 6.55733i −0.117583 + 0.323057i
\(413\) 9.51351 + 30.4066i 0.468129 + 1.49621i
\(414\) −5.77188 + 15.1688i −0.283673 + 0.745504i
\(415\) 5.33170 9.23478i 0.261723 0.453317i
\(416\) 0.334308 0.280518i 0.0163908 0.0137535i
\(417\) −2.89338 + 30.5167i −0.141690 + 1.49441i
\(418\) 5.26298 + 0.928006i 0.257421 + 0.0453902i
\(419\) −5.62520 + 31.9021i −0.274809 + 1.55852i 0.464759 + 0.885437i \(0.346141\pi\)
−0.739568 + 0.673082i \(0.764970\pi\)
\(420\) 1.16645 + 5.50783i 0.0569170 + 0.268755i
\(421\) 7.36408 6.17920i 0.358903 0.301156i −0.445450 0.895307i \(-0.646956\pi\)
0.804353 + 0.594151i \(0.202512\pi\)
\(422\) −20.1840 11.6532i −0.982541 0.567271i
\(423\) −4.67422 13.4470i −0.227268 0.653815i
\(424\) 0.0589784 + 0.102154i 0.00286424 + 0.00496101i
\(425\) 11.4326 + 4.16114i 0.554564 + 0.201845i
\(426\) 2.48680 + 2.52319i 0.120486 + 0.122249i
\(427\) 23.5117 17.9589i 1.13781 0.869094i
\(428\) −1.34087 3.68402i −0.0648135 0.178074i
\(429\) 0.141636 + 1.76662i 0.00683827 + 0.0852933i
\(430\) 2.47853 0.437031i 0.119525 0.0210755i
\(431\) 1.82273i 0.0877979i 0.999036 + 0.0438989i \(0.0139780\pi\)
−0.999036 + 0.0438989i \(0.986022\pi\)
\(432\) 4.19048 + 3.07243i 0.201615 + 0.147822i
\(433\) 32.5239i 1.56300i 0.623906 + 0.781499i \(0.285545\pi\)
−0.623906 + 0.781499i \(0.714455\pi\)
\(434\) 1.01794 22.1915i 0.0488626 1.06523i
\(435\) −2.55722 3.70914i −0.122609 0.177840i
\(436\) −13.7719 + 5.01258i −0.659556 + 0.240059i
\(437\) −9.44592 7.92607i −0.451860 0.379155i
\(438\) 11.6260 3.02483i 0.555510 0.144532i
\(439\) −10.8479 + 29.8044i −0.517743 + 1.42249i 0.355257 + 0.934768i \(0.384393\pi\)
−0.873001 + 0.487719i \(0.837829\pi\)
\(440\) 1.44029 + 2.49465i 0.0686631 + 0.118928i
\(441\) −9.23382 + 18.8610i −0.439706 + 0.898142i
\(442\) −0.760537 + 1.31729i −0.0361751 + 0.0626570i
\(443\) −22.8370 27.2161i −1.08502 1.29307i −0.953379 0.301777i \(-0.902420\pi\)
−0.131640 0.991298i \(-0.542024\pi\)
\(444\) 5.44368 7.65542i 0.258346 0.363310i
\(445\) 3.13742 17.7932i 0.148728 0.843479i
\(446\) −1.13833 + 6.45579i −0.0539015 + 0.305690i
\(447\) 16.3772 + 11.6456i 0.774614 + 0.550819i
\(448\) 2.34950 1.21649i 0.111003 0.0574739i
\(449\) −5.81350 3.35643i −0.274356 0.158400i 0.356509 0.934292i \(-0.383967\pi\)
−0.630866 + 0.775892i \(0.717300\pi\)
\(450\) −5.36713 + 8.99189i −0.253009 + 0.423882i
\(451\) 3.20187 1.84860i 0.150770 0.0870473i
\(452\) 1.52437 4.18816i 0.0717002 0.196995i
\(453\) −18.4364 + 4.79675i −0.866216 + 0.225371i
\(454\) 3.88102 4.62522i 0.182145 0.217072i
\(455\) −0.182054 1.40681i −0.00853484 0.0659521i
\(456\) −3.25025 + 2.24084i −0.152207 + 0.104937i
\(457\) 0.292432 + 1.65846i 0.0136794 + 0.0775796i 0.990883 0.134724i \(-0.0430147\pi\)
−0.977204 + 0.212303i \(0.931904\pi\)
\(458\) 19.8725 0.928580
\(459\) −17.3875 5.06751i −0.811577 0.236531i
\(460\) 6.64645i 0.309892i
\(461\) −0.201902 1.14505i −0.00940353 0.0533301i 0.979745 0.200250i \(-0.0641753\pi\)
−0.989148 + 0.146919i \(0.953064\pi\)
\(462\) −1.50326 + 10.6389i −0.0699381 + 0.494968i
\(463\) −0.00916975 + 0.00333751i −0.000426154 + 0.000155107i −0.342233 0.939615i \(-0.611183\pi\)
0.341807 + 0.939770i \(0.388961\pi\)
\(464\) −1.36090 + 1.62185i −0.0631780 + 0.0752926i
\(465\) −12.7253 + 12.5418i −0.590124 + 0.581612i
\(466\) −3.62372 1.31893i −0.167866 0.0610981i
\(467\) −4.32870 7.49752i −0.200308 0.346944i 0.748320 0.663338i \(-0.230861\pi\)
−0.948628 + 0.316394i \(0.897528\pi\)
\(468\) −0.990593 0.856035i −0.0457902 0.0395702i
\(469\) 15.1414 16.4510i 0.699166 0.759636i
\(470\) 3.74748 + 4.46607i 0.172858 + 0.206005i
\(471\) −22.8940 + 10.4739i −1.05490 + 0.482610i
\(472\) −11.8591 2.09107i −0.545858 0.0962495i
\(473\) 4.73017 + 0.834056i 0.217493 + 0.0383499i
\(474\) −0.862464 + 9.09647i −0.0396143 + 0.417815i
\(475\) −5.11411 6.09476i −0.234651 0.279647i
\(476\) −6.24500 + 6.78512i −0.286239 + 0.310995i
\(477\) 0.274356 0.223501i 0.0125619 0.0102334i
\(478\) −4.56190 7.90144i −0.208656 0.361403i
\(479\) −29.2874 10.6598i −1.33818 0.487056i −0.428939 0.903334i \(-0.641112\pi\)
−0.909238 + 0.416277i \(0.863335\pi\)
\(480\) −2.05138 0.565667i −0.0936321 0.0258190i
\(481\) −1.52135 + 1.81308i −0.0693678 + 0.0826693i
\(482\) −26.5263 + 9.65478i −1.20824 + 0.439763i
\(483\) 15.2776 19.5245i 0.695155 0.888398i
\(484\) −0.955505 5.41894i −0.0434321 0.246315i
\(485\) 18.7732i 0.852445i
\(486\) 7.09663 13.8794i 0.321910 0.629582i
\(487\) −1.34497 −0.0609466 −0.0304733 0.999536i \(-0.509701\pi\)
−0.0304733 + 0.999536i \(0.509701\pi\)
\(488\) 1.94181 + 11.0125i 0.0879014 + 0.498514i
\(489\) 6.13922 + 2.91724i 0.277625 + 0.131922i
\(490\) 0.787315 8.56385i 0.0355673 0.386875i
\(491\) −4.22823 + 5.03901i −0.190818 + 0.227407i −0.852968 0.521964i \(-0.825200\pi\)
0.662150 + 0.749371i \(0.269644\pi\)
\(492\) −0.726030 + 2.63293i −0.0327320 + 0.118702i
\(493\) 2.52387 6.93426i 0.113669 0.312304i
\(494\) 0.861436 0.497350i 0.0387578 0.0223768i
\(495\) 6.69995 5.45804i 0.301140 0.245321i
\(496\) 7.27151 + 4.19821i 0.326500 + 0.188505i
\(497\) −2.48819 4.80560i −0.111610 0.215561i
\(498\) −1.41900 + 14.9663i −0.0635870 + 0.670656i
\(499\) 5.69767 32.3131i 0.255063 1.44653i −0.540848 0.841120i \(-0.681897\pi\)
0.795911 0.605413i \(-0.206992\pi\)
\(500\) 1.81138 10.2728i 0.0810072 0.459414i
\(501\) 4.40055 + 9.61883i 0.196602 + 0.429737i
\(502\) −6.52698 7.77855i −0.291313 0.347174i
\(503\) −16.8167 + 29.1274i −0.749821 + 1.29873i 0.198087 + 0.980185i \(0.436527\pi\)
−0.947908 + 0.318544i \(0.896806\pi\)
\(504\) −4.72585 6.37701i −0.210506 0.284055i
\(505\) −7.68641 13.3133i −0.342041 0.592432i
\(506\) 4.33835 11.9195i 0.192863 0.529887i
\(507\) −15.5741 15.8020i −0.691668 0.701790i
\(508\) 0.857536 + 0.719558i 0.0380470 + 0.0319252i
\(509\) 1.94816 0.709073i 0.0863508 0.0314291i −0.298484 0.954415i \(-0.596481\pi\)
0.384834 + 0.922986i \(0.374259\pi\)
\(510\) 7.39307 0.592729i 0.327371 0.0262465i
\(511\) −18.3309 0.840851i −0.810912 0.0371971i
\(512\) 1.00000i 0.0441942i
\(513\) 8.19016 + 8.55513i 0.361605 + 0.377718i
\(514\) 12.6583i 0.558333i
\(515\) −8.44289 + 1.48871i −0.372038 + 0.0656004i
\(516\) −2.92120 + 2.01398i −0.128598 + 0.0886605i
\(517\) 3.80545 + 10.4554i 0.167364 + 0.459828i
\(518\) −11.4030 + 8.70994i −0.501019 + 0.382693i
\(519\) −41.4737 + 10.7906i −1.82049 + 0.473653i
\(520\) 0.503822 + 0.183376i 0.0220941 + 0.00804158i
\(521\) 17.6685 + 30.6027i 0.774069 + 1.34073i 0.935316 + 0.353813i \(0.115115\pi\)
−0.161247 + 0.986914i \(0.551551\pi\)
\(522\) 5.45387 + 3.25534i 0.238710 + 0.142482i
\(523\) 0.666516 + 0.384813i 0.0291447 + 0.0168267i 0.514502 0.857489i \(-0.327977\pi\)
−0.485357 + 0.874316i \(0.661310\pi\)
\(524\) 13.4181 11.2592i 0.586174 0.491858i
\(525\) 11.8953 10.6946i 0.519155 0.466752i
\(526\) 4.93126 27.9665i 0.215013 1.21940i
\(527\) −28.8206 5.08184i −1.25544 0.221368i
\(528\) −3.30964 2.35344i −0.144033 0.102421i
\(529\) −4.80103 + 4.02854i −0.208741 + 0.175154i
\(530\) −0.0724588 + 0.125502i −0.00314741 + 0.00545147i
\(531\) −0.524819 + 36.1222i −0.0227752 + 1.56757i
\(532\) 5.75531 1.80070i 0.249524 0.0780701i
\(533\) 0.235362 0.646653i 0.0101947 0.0280096i
\(534\) 6.41378 + 24.6514i 0.277551 + 1.06677i
\(535\) 3.09601 3.68968i 0.133852 0.159519i
\(536\) 2.89030 + 7.94104i 0.124842 + 0.343001i
\(537\) 18.1069 + 26.2633i 0.781370 + 1.13335i
\(538\) −12.6839 + 2.23651i −0.546842 + 0.0964230i
\(539\) 7.00183 14.8442i 0.301590 0.639385i
\(540\) −0.694829 + 6.34589i −0.0299007 + 0.273084i
\(541\) 28.0848 1.20746 0.603731 0.797188i \(-0.293680\pi\)
0.603731 + 0.797188i \(0.293680\pi\)
\(542\) 4.05128 + 22.9759i 0.174017 + 0.986901i
\(543\) 9.60348 0.769946i 0.412125 0.0330415i
\(544\) −1.19209 3.27524i −0.0511104 0.140425i
\(545\) −13.7931 11.5738i −0.590831 0.495766i
\(546\) 1.05851 + 1.69678i 0.0453001 + 0.0726153i
\(547\) 30.8451 + 11.2267i 1.31884 + 0.480019i 0.903087 0.429458i \(-0.141295\pi\)
0.415754 + 0.909477i \(0.363518\pi\)
\(548\) 19.4500 11.2295i 0.830863 0.479699i
\(549\) 31.6875 11.0147i 1.35239 0.470094i
\(550\) 4.09218 7.08786i 0.174491 0.302227i
\(551\) −3.69667 + 3.10187i −0.157483 + 0.132144i
\(552\) 3.89825 + 8.52089i 0.165921 + 0.362673i
\(553\) 5.36969 12.8831i 0.228342 0.547847i
\(554\) 21.8934 + 3.86040i 0.930162 + 0.164013i
\(555\) 11.4891 + 1.08932i 0.487685 + 0.0462389i
\(556\) 11.3760 + 13.5573i 0.482448 + 0.574959i
\(557\) 19.8930 + 11.4852i 0.842895 + 0.486645i 0.858247 0.513237i \(-0.171554\pi\)
−0.0153525 + 0.999882i \(0.504887\pi\)
\(558\) 8.95818 23.5425i 0.379230 0.996633i
\(559\) 0.774225 0.446999i 0.0327462 0.0189061i
\(560\) 2.73757 + 1.75252i 0.115683 + 0.0740576i
\(561\) 13.6454 + 3.76271i 0.576108 + 0.158862i
\(562\) 7.59841 + 6.37582i 0.320520 + 0.268948i
\(563\) 18.1788 6.61655i 0.766146 0.278854i 0.0707626 0.997493i \(-0.477457\pi\)
0.695384 + 0.718639i \(0.255235\pi\)
\(564\) −7.42378 3.52764i −0.312597 0.148540i
\(565\) 5.39247 0.950837i 0.226863 0.0400020i
\(566\) 7.94070 0.333773
\(567\) −16.6279 + 17.0445i −0.698305 + 0.715801i
\(568\) 2.04537 0.0858220
\(569\) −13.7869 + 2.43100i −0.577976 + 0.101913i −0.454992 0.890496i \(-0.650358\pi\)
−0.122985 + 0.992409i \(0.539247\pi\)
\(570\) −4.38075 2.08165i −0.183490 0.0871908i
\(571\) −25.4729 + 9.27136i −1.06601 + 0.387994i −0.814682 0.579909i \(-0.803088\pi\)
−0.251324 + 0.967903i \(0.580866\pi\)
\(572\) 0.783842 + 0.657721i 0.0327741 + 0.0275007i
\(573\) 15.2793 + 4.21326i 0.638301 + 0.176012i
\(574\) 2.24935 3.51365i 0.0938862 0.146657i
\(575\) −16.3540 + 9.44201i −0.682011 + 0.393759i
\(576\) 2.96168 0.477969i 0.123403 0.0199154i
\(577\) 23.7587 + 13.7171i 0.989089 + 0.571051i 0.905002 0.425408i \(-0.139869\pi\)
0.0840869 + 0.996458i \(0.473203\pi\)
\(578\) −3.11863 3.71664i −0.129718 0.154592i
\(579\) −46.6055 4.41881i −1.93686 0.183639i
\(580\) −2.56158 0.451675i −0.106364 0.0187548i
\(581\) 8.83469 21.1965i 0.366525 0.879378i
\(582\) 11.0108 + 24.0676i 0.456411 + 0.997633i
\(583\) −0.211864 + 0.177775i −0.00877453 + 0.00736270i
\(584\) 3.46786 6.00651i 0.143501 0.248551i
\(585\) 0.302290 1.57981i 0.0124982 0.0653170i
\(586\) 10.8798 6.28146i 0.449441 0.259485i
\(587\) 41.8734 + 15.2407i 1.72830 + 0.629050i 0.998507 0.0546196i \(-0.0173946\pi\)
0.729792 + 0.683669i \(0.239617\pi\)
\(588\) 4.01348 + 11.4408i 0.165513 + 0.471811i
\(589\) 14.6604 + 12.3016i 0.604073 + 0.506877i
\(590\) −5.05999 13.9022i −0.208316 0.572344i
\(591\) −18.7287 + 1.50155i −0.770397 + 0.0617655i
\(592\) −0.941760 5.34098i −0.0387061 0.219513i
\(593\) −15.7583 −0.647115 −0.323558 0.946209i \(-0.604879\pi\)
−0.323558 + 0.946209i \(0.604879\pi\)
\(594\) −5.38824 + 10.9270i −0.221082 + 0.448338i
\(595\) −11.0554 2.47650i −0.453225 0.101527i
\(596\) 11.4259 2.01470i 0.468024 0.0825253i
\(597\) −5.35008 7.76008i −0.218964 0.317599i
\(598\) −0.807488 2.21856i −0.0330206 0.0907235i
\(599\) 13.2291 15.7658i 0.540525 0.644173i −0.424780 0.905296i \(-0.639649\pi\)
0.965305 + 0.261124i \(0.0840931\pi\)
\(600\) 1.52234 + 5.85114i 0.0621494 + 0.238872i
\(601\) 2.58497 7.10215i 0.105443 0.289703i −0.875740 0.482784i \(-0.839626\pi\)
0.981183 + 0.193081i \(0.0618480\pi\)
\(602\) 5.17265 1.61840i 0.210821 0.0659610i
\(603\) 22.1373 12.3557i 0.901502 0.503164i
\(604\) −5.49931 + 9.52508i −0.223764 + 0.387570i
\(605\) 5.17863 4.34539i 0.210541 0.176665i
\(606\) 17.6626 + 12.5597i 0.717493 + 0.510201i
\(607\) −25.2819 4.45788i −1.02616 0.180940i −0.364861 0.931062i \(-0.618884\pi\)
−0.661299 + 0.750122i \(0.729995\pi\)
\(608\) −0.395794 + 2.24466i −0.0160516 + 0.0910330i
\(609\) −6.48663 7.21491i −0.262852 0.292363i
\(610\) −10.5242 + 8.83083i −0.426111 + 0.357550i
\(611\) 1.79348 + 1.03547i 0.0725566 + 0.0418906i
\(612\) −9.13043 + 5.09605i −0.369076 + 0.205996i
\(613\) −10.0628 17.4293i −0.406433 0.703962i 0.588054 0.808821i \(-0.299894\pi\)
−0.994487 + 0.104859i \(0.966561\pi\)
\(614\) −8.32350 3.02951i −0.335909 0.122261i
\(615\) −3.24734 + 0.844889i −0.130945 + 0.0340692i
\(616\) 3.76553 + 4.92981i 0.151718 + 0.198628i
\(617\) 3.08423 + 8.47385i 0.124166 + 0.341145i 0.986165 0.165766i \(-0.0530097\pi\)
−0.861999 + 0.506911i \(0.830787\pi\)
\(618\) 9.95081 6.86045i 0.400280 0.275968i
\(619\) −10.9095 + 1.92363i −0.438488 + 0.0773173i −0.388534 0.921434i \(-0.627019\pi\)
−0.0499538 + 0.998752i \(0.515907\pi\)
\(620\) 10.3155i 0.414282i
\(621\) 23.3729 15.6181i 0.937922 0.626733i
\(622\) 20.9184i 0.838752i
\(623\) 1.78292 38.8684i 0.0714312 1.55723i
\(624\) −0.753464 + 0.0604079i −0.0301627 + 0.00241825i
\(625\) −4.35792 + 1.58615i −0.174317 + 0.0634461i
\(626\) −9.69001 8.13089i −0.387291 0.324976i
\(627\) −6.49753 6.59262i −0.259486 0.263284i
\(628\) −4.97142 + 13.6589i −0.198381 + 0.545048i
\(629\) 9.45142 + 16.3703i 0.376853 + 0.652728i
\(630\) 3.88194 8.94545i 0.154660 0.356395i
\(631\) −8.40768 + 14.5625i −0.334704 + 0.579725i −0.983428 0.181299i \(-0.941970\pi\)
0.648724 + 0.761024i \(0.275303\pi\)
\(632\) 3.39096 + 4.04119i 0.134885 + 0.160750i
\(633\) 16.7940 + 36.7088i 0.667503 + 1.45904i
\(634\) −0.815627 + 4.62565i −0.0323927 + 0.183708i
\(635\) −0.238818 + 1.35440i −0.00947720 + 0.0537479i
\(636\) 0.0192845 0.203395i 0.000764680 0.00806513i
\(637\) −0.777634 2.95423i −0.0308110 0.117051i
\(638\) −4.29902 2.48204i −0.170200 0.0982649i
\(639\) −0.977626 6.05774i −0.0386743 0.239641i
\(640\) −1.06397 + 0.614283i −0.0420571 + 0.0242817i
\(641\) 13.6635 37.5403i 0.539677 1.48275i −0.307556 0.951530i \(-0.599511\pi\)
0.847233 0.531221i \(-0.178267\pi\)
\(642\) −1.80509 + 6.54610i −0.0712411 + 0.258354i
\(643\) 9.74558 11.6143i 0.384328 0.458025i −0.538847 0.842404i \(-0.681140\pi\)
0.923175 + 0.384379i \(0.125584\pi\)
\(644\) −1.83696 14.1950i −0.0723865 0.559359i
\(645\) −3.93725 1.87091i −0.155029 0.0736670i
\(646\) −1.37952 7.82362i −0.0542763 0.307816i
\(647\) −39.1958 −1.54094 −0.770472 0.637473i \(-0.779980\pi\)
−0.770472 + 0.637473i \(0.779980\pi\)
\(648\) −2.83118 8.54309i −0.111219 0.335604i
\(649\) 28.2345i 1.10830i
\(650\) −0.264525 1.50020i −0.0103755 0.0588425i
\(651\) −23.7114 + 30.3028i −0.929324 + 1.18766i
\(652\) 3.68764 1.34219i 0.144419 0.0525642i
\(653\) −25.1406 + 29.9614i −0.983829 + 1.17248i 0.00118396 + 0.999999i \(0.499623\pi\)
−0.985013 + 0.172482i \(0.944821\pi\)
\(654\) 24.4713 + 6.74795i 0.956902 + 0.263866i
\(655\) 20.2219 + 7.36018i 0.790136 + 0.287586i
\(656\) 0.788428 + 1.36560i 0.0307830 + 0.0533176i
\(657\) −19.4469 7.39976i −0.758695 0.288692i
\(658\) 9.23791 + 8.50254i 0.360131 + 0.331464i
\(659\) 8.02297 + 9.56140i 0.312531 + 0.372459i 0.899328 0.437274i \(-0.144056\pi\)
−0.586798 + 0.809734i \(0.699612\pi\)
\(660\) 0.470939 4.96703i 0.0183313 0.193341i
\(661\) −27.8439 4.90963i −1.08300 0.190963i −0.396460 0.918052i \(-0.629761\pi\)
−0.686543 + 0.727090i \(0.740873\pi\)
\(662\) −10.2294 1.80372i −0.397578 0.0701037i
\(663\) 2.39576 1.09605i 0.0930437 0.0425669i
\(664\) 5.57911 + 6.64892i 0.216511 + 0.258028i
\(665\) 5.45127 + 5.01733i 0.211391 + 0.194564i
\(666\) −15.3682 + 5.34202i −0.595504 + 0.206999i
\(667\) 5.72689 + 9.91926i 0.221746 + 0.384075i
\(668\) 5.73871 + 2.08872i 0.222037 + 0.0808150i
\(669\) 8.08677 7.97013i 0.312653 0.308143i
\(670\) −6.67356 + 7.95324i −0.257822 + 0.307260i
\(671\) −24.6378 + 8.96744i −0.951133 + 0.346184i
\(672\) −4.53750 0.641141i −0.175038 0.0247326i
\(673\) −1.02565 5.81673i −0.0395358 0.224219i 0.958638 0.284629i \(-0.0918703\pi\)
−0.998174 + 0.0604101i \(0.980759\pi\)
\(674\) 3.93836i 0.151700i
\(675\) 16.6016 7.30536i 0.638995 0.281183i
\(676\) −12.8095 −0.492675
\(677\) 6.20980 + 35.2175i 0.238662 + 1.35352i 0.834763 + 0.550610i \(0.185605\pi\)
−0.596101 + 0.802910i \(0.703284\pi\)
\(678\) −6.35557 + 4.38177i −0.244084 + 0.168281i
\(679\) −5.18858 40.0942i −0.199119 1.53867i
\(680\) 2.75247 3.28027i 0.105553 0.125793i
\(681\) −10.1208 + 2.63322i −0.387831 + 0.100905i
\(682\) −6.73328 + 18.4995i −0.257831 + 0.708384i
\(683\) −37.1567 + 21.4524i −1.42176 + 0.820855i −0.996450 0.0841913i \(-0.973169\pi\)
−0.425313 + 0.905046i \(0.639836\pi\)
\(684\) 6.83714 + 0.0993366i 0.261425 + 0.00379823i
\(685\) 23.8956 + 13.7961i 0.913005 + 0.527123i
\(686\) −0.685416 18.5076i −0.0261693 0.706622i
\(687\) −28.0512 19.9469i −1.07022 0.761021i
\(688\) −0.355725 + 2.01741i −0.0135619 + 0.0769132i
\(689\) −0.00893894 + 0.0506953i −0.000340547 + 0.00193134i
\(690\) −6.67133 + 9.38186i −0.253973 + 0.357161i
\(691\) 22.9322 + 27.3296i 0.872383 + 1.03967i 0.998862 + 0.0476960i \(0.0151879\pi\)
−0.126479 + 0.991969i \(0.540368\pi\)
\(692\) −12.3710 + 21.4272i −0.470275 + 0.814541i
\(693\) 12.8007 13.5086i 0.486259 0.513149i
\(694\) −13.8934 24.0641i −0.527388 0.913462i
\(695\) −7.43654 + 20.4317i −0.282084 + 0.775019i
\(696\) 3.54891 0.923350i 0.134521 0.0349995i
\(697\) −4.21021 3.53278i −0.159473 0.133814i
\(698\) 15.8068 5.75320i 0.598296 0.217762i
\(699\) 3.79123 + 5.49903i 0.143398 + 0.207992i
\(700\) 0.423185 9.22563i 0.0159949 0.348696i
\(701\) 22.7597i 0.859624i −0.902918 0.429812i \(-0.858580\pi\)
0.902918 0.429812i \(-0.141420\pi\)
\(702\) 0.539042 + 2.20265i 0.0203448 + 0.0831335i
\(703\) 12.3614i 0.466221i
\(704\) −2.30905 + 0.407147i −0.0870255 + 0.0153449i
\(705\) −0.806999 10.0656i −0.0303933 0.379094i
\(706\) −0.577533 1.58676i −0.0217358 0.0597185i
\(707\) −20.0956 26.3090i −0.755772 0.989451i
\(708\) 14.6409 + 14.8551i 0.550238 + 0.558290i
\(709\) 42.5614 + 15.4911i 1.59843 + 0.581780i 0.979105 0.203356i \(-0.0651848\pi\)
0.619323 + 0.785136i \(0.287407\pi\)
\(710\) 1.25644 + 2.17622i 0.0471533 + 0.0816719i
\(711\) 10.3479 11.9745i 0.388078 0.449079i
\(712\) 12.7361 + 7.35317i 0.477304 + 0.275572i
\(713\) 34.7968 29.1980i 1.30315 1.09347i
\(714\) 15.6257 3.30922i 0.584777 0.123844i
\(715\) −0.218295 + 1.23801i −0.00816376 + 0.0462990i
\(716\) 18.1378 + 3.19818i 0.677840 + 0.119522i
\(717\) −1.49163 + 15.7323i −0.0557059 + 0.587534i
\(718\) 9.33366 7.83187i 0.348329 0.292283i
\(719\) −0.807602 + 1.39881i −0.0301185 + 0.0521667i −0.880692 0.473690i \(-0.842922\pi\)
0.850573 + 0.525857i \(0.176255\pi\)
\(720\) 2.32785 + 2.85753i 0.0867540 + 0.106494i
\(721\) −17.6202 + 5.51294i −0.656210 + 0.205312i
\(722\) 4.72154 12.9723i 0.175717 0.482780i
\(723\) 47.1344 + 12.9973i 1.75295 + 0.483375i
\(724\) 3.57542 4.26102i 0.132879 0.158359i
\(725\) 2.52762 + 6.94459i 0.0938736 + 0.257916i
\(726\) −4.09047 + 8.60824i −0.151812 + 0.319482i
\(727\) −48.1472 + 8.48966i −1.78568 + 0.314864i −0.966114 0.258117i \(-0.916898\pi\)
−0.819569 + 0.572981i \(0.805787\pi\)
\(728\) 1.12671 + 0.252393i 0.0417585 + 0.00935429i
\(729\) −23.9487 + 12.4684i −0.886988 + 0.461792i
\(730\) 8.52099 0.315376
\(731\) −1.23986 7.03157i −0.0458577 0.260072i
\(732\) 8.31278 17.4939i 0.307249 0.646594i
\(733\) −0.0218471 0.0600243i −0.000806939 0.00221705i 0.939288 0.343128i \(-0.111487\pi\)
−0.940095 + 0.340911i \(0.889264\pi\)
\(734\) 16.4269 + 13.7838i 0.606326 + 0.508768i
\(735\) −9.70725 + 11.2981i −0.358057 + 0.416737i
\(736\) 5.08367 + 1.85030i 0.187386 + 0.0682031i
\(737\) −17.1594 + 9.90701i −0.632076 + 0.364929i
\(738\) 3.66762 2.98779i 0.135007 0.109982i
\(739\) 11.3282 19.6211i 0.416715 0.721772i −0.578891 0.815405i \(-0.696514\pi\)
0.995607 + 0.0936324i \(0.0298478\pi\)
\(740\) 5.10414 4.28288i 0.187632 0.157442i
\(741\) −1.71518 0.162621i −0.0630087 0.00597405i
\(742\) −0.120065 + 0.288064i −0.00440773 + 0.0105752i
\(743\) −28.1945 4.97145i −1.03436 0.182385i −0.369402 0.929270i \(-0.620438\pi\)
−0.664954 + 0.746885i \(0.731549\pi\)
\(744\) −6.05024 13.2247i −0.221812 0.484843i
\(745\) 9.16233 + 10.9192i 0.335682 + 0.400050i
\(746\) −17.0630 9.85132i −0.624720 0.360682i
\(747\) 17.0253 19.7015i 0.622925 0.720841i
\(748\) 7.07732 4.08609i 0.258773 0.149402i
\(749\) 5.59244 8.73580i 0.204343 0.319199i
\(750\) −12.8681 + 12.6825i −0.469878 + 0.463101i
\(751\) 33.1976 + 27.8561i 1.21140 + 1.01648i 0.999229 + 0.0392509i \(0.0124972\pi\)
0.212169 + 0.977233i \(0.431947\pi\)
\(752\) −4.45922 + 1.62303i −0.162611 + 0.0591856i
\(753\) 1.40555 + 17.5313i 0.0512210 + 0.638876i
\(754\) −0.909917 + 0.160443i −0.0331372 + 0.00584299i
\(755\) −13.5125 −0.491771
\(756\) 0.269934 + 13.7451i 0.00981739 + 0.499904i
\(757\) 24.6013 0.894149 0.447075 0.894497i \(-0.352466\pi\)
0.447075 + 0.894497i \(0.352466\pi\)
\(758\) −24.4556 + 4.31218i −0.888266 + 0.156625i
\(759\) −18.0880 + 12.4705i −0.656551 + 0.452651i
\(760\) −2.63138 + 0.957744i −0.0954501 + 0.0347410i
\(761\) −0.393164 0.329903i −0.0142522 0.0119590i 0.635634 0.771991i \(-0.280739\pi\)
−0.649886 + 0.760032i \(0.725183\pi\)
\(762\) −0.488211 1.87644i −0.0176860 0.0679764i
\(763\) −32.6570 20.9062i −1.18226 0.756854i
\(764\) 7.92477 4.57537i 0.286708 0.165531i
\(765\) −11.0307 6.58408i −0.398816 0.238048i
\(766\) −8.38597 4.84164i −0.302997 0.174936i
\(767\) −3.37800 4.02575i −0.121973 0.145361i
\(768\) 1.00374 1.41156i 0.0362195 0.0509353i