Properties

Label 378.2.z
Level $378$
Weight $2$
Character orbit 378.z
Rep. character $\chi_{378}(41,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $144$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.z (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).

Total New Old
Modular forms 456 144 312
Cusp forms 408 144 264
Eisenstein series 48 0 48

Trace form

\( 144 q - 12 q^{9} + O(q^{10}) \) \( 144 q - 12 q^{9} + 12 q^{11} + 6 q^{14} + 12 q^{15} + 24 q^{21} - 60 q^{23} + 12 q^{29} - 72 q^{30} + 54 q^{35} - 12 q^{36} + 48 q^{39} + 24 q^{42} + 18 q^{49} - 60 q^{50} - 36 q^{51} + 6 q^{56} - 60 q^{57} - 36 q^{60} - 78 q^{63} + 72 q^{64} - 120 q^{65} + 36 q^{70} - 72 q^{71} - 24 q^{72} - 36 q^{74} + 66 q^{77} - 60 q^{78} - 72 q^{79} + 12 q^{84} - 72 q^{85} - 48 q^{86} - 18 q^{91} + 12 q^{92} + 24 q^{93} - 120 q^{95} + 36 q^{98} + 144 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
378.2.z.a 378.z 189.ae $144$ $3.018$ None 378.2.z.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)