Newspace parameters
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.w (of order \(9\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −0.939693 | + | 0.342020i | −1.70460 | + | 0.307144i | 0.766044 | − | 0.642788i | −2.61773 | − | 0.952774i | 1.49675 | − | 0.871628i | −1.47144 | − | 2.19883i | −0.500000 | + | 0.866025i | 2.81133 | − | 1.04711i | 2.78573 | ||
25.2 | −0.939693 | + | 0.342020i | −1.58205 | − | 0.705062i | 0.766044 | − | 0.642788i | 1.56427 | + | 0.569347i | 1.72779 | + | 0.121449i | 0.319985 | − | 2.62633i | −0.500000 | + | 0.866025i | 2.00577 | + | 2.23089i | −1.66466 | ||
25.3 | −0.939693 | + | 0.342020i | −1.25749 | + | 1.19110i | 0.766044 | − | 0.642788i | 1.98579 | + | 0.722770i | 0.774279 | − | 1.54935i | 2.63247 | + | 0.264792i | −0.500000 | + | 0.866025i | 0.162584 | − | 2.99559i | −2.11324 | ||
25.4 | −0.939693 | + | 0.342020i | −1.03071 | − | 1.39199i | 0.766044 | − | 0.642788i | −3.69961 | − | 1.34655i | 1.44464 | + | 0.955517i | 0.644767 | + | 2.56598i | −0.500000 | + | 0.866025i | −0.875266 | + | 2.86948i | 3.93704 | ||
25.5 | −0.939693 | + | 0.342020i | −0.649954 | − | 1.60548i | 0.766044 | − | 0.642788i | 3.27017 | + | 1.19024i | 1.15986 | + | 1.28636i | 1.64949 | + | 2.06862i | −0.500000 | + | 0.866025i | −2.15512 | + | 2.08697i | −3.48004 | ||
25.6 | −0.939693 | + | 0.342020i | −0.195246 | − | 1.72101i | 0.766044 | − | 0.642788i | 0.182581 | + | 0.0664541i | 0.772092 | + | 1.55044i | −2.63939 | − | 0.183356i | −0.500000 | + | 0.866025i | −2.92376 | + | 0.672041i | −0.194299 | ||
25.7 | −0.939693 | + | 0.342020i | −0.135903 | + | 1.72671i | 0.766044 | − | 0.642788i | −1.85969 | − | 0.676871i | −0.462863 | − | 1.66906i | 2.63192 | + | 0.270209i | −0.500000 | + | 0.866025i | −2.96306 | − | 0.469329i | 1.97904 | ||
25.8 | −0.939693 | + | 0.342020i | 0.807797 | + | 1.53214i | 0.766044 | − | 0.642788i | 1.59297 | + | 0.579794i | −1.28310 | − | 1.16346i | −2.02988 | + | 1.69693i | −0.500000 | + | 0.866025i | −1.69493 | + | 2.47532i | −1.69520 | ||
25.9 | −0.939693 | + | 0.342020i | 1.06159 | − | 1.36859i | 0.766044 | − | 0.642788i | −1.03287 | − | 0.375933i | −0.529482 | + | 1.64914i | 2.42642 | − | 1.05474i | −0.500000 | + | 0.866025i | −0.746062 | − | 2.90575i | 1.09915 | ||
25.10 | −0.939693 | + | 0.342020i | 1.14375 | + | 1.30071i | 0.766044 | − | 0.642788i | 1.59112 | + | 0.579119i | −1.51964 | − | 0.831077i | 0.142417 | − | 2.64192i | −0.500000 | + | 0.866025i | −0.383668 | + | 2.97537i | −1.69323 | ||
25.11 | −0.939693 | + | 0.342020i | 1.65621 | − | 0.506908i | 0.766044 | − | 0.642788i | 0.501605 | + | 0.182569i | −1.38296 | + | 1.04280i | −1.88202 | + | 1.85957i | −0.500000 | + | 0.866025i | 2.48609 | − | 1.67910i | −0.533797 | ||
25.12 | −0.939693 | + | 0.342020i | 1.71296 | + | 0.256429i | 0.766044 | − | 0.642788i | −3.35800 | − | 1.22221i | −1.69736 | + | 0.344903i | −2.15868 | − | 1.52974i | −0.500000 | + | 0.866025i | 2.86849 | + | 0.878508i | 3.57351 | ||
121.1 | −0.939693 | − | 0.342020i | −1.70460 | − | 0.307144i | 0.766044 | + | 0.642788i | −2.61773 | + | 0.952774i | 1.49675 | + | 0.871628i | −1.47144 | + | 2.19883i | −0.500000 | − | 0.866025i | 2.81133 | + | 1.04711i | 2.78573 | ||
121.2 | −0.939693 | − | 0.342020i | −1.58205 | + | 0.705062i | 0.766044 | + | 0.642788i | 1.56427 | − | 0.569347i | 1.72779 | − | 0.121449i | 0.319985 | + | 2.62633i | −0.500000 | − | 0.866025i | 2.00577 | − | 2.23089i | −1.66466 | ||
121.3 | −0.939693 | − | 0.342020i | −1.25749 | − | 1.19110i | 0.766044 | + | 0.642788i | 1.98579 | − | 0.722770i | 0.774279 | + | 1.54935i | 2.63247 | − | 0.264792i | −0.500000 | − | 0.866025i | 0.162584 | + | 2.99559i | −2.11324 | ||
121.4 | −0.939693 | − | 0.342020i | −1.03071 | + | 1.39199i | 0.766044 | + | 0.642788i | −3.69961 | + | 1.34655i | 1.44464 | − | 0.955517i | 0.644767 | − | 2.56598i | −0.500000 | − | 0.866025i | −0.875266 | − | 2.86948i | 3.93704 | ||
121.5 | −0.939693 | − | 0.342020i | −0.649954 | + | 1.60548i | 0.766044 | + | 0.642788i | 3.27017 | − | 1.19024i | 1.15986 | − | 1.28636i | 1.64949 | − | 2.06862i | −0.500000 | − | 0.866025i | −2.15512 | − | 2.08697i | −3.48004 | ||
121.6 | −0.939693 | − | 0.342020i | −0.195246 | + | 1.72101i | 0.766044 | + | 0.642788i | 0.182581 | − | 0.0664541i | 0.772092 | − | 1.55044i | −2.63939 | + | 0.183356i | −0.500000 | − | 0.866025i | −2.92376 | − | 0.672041i | −0.194299 | ||
121.7 | −0.939693 | − | 0.342020i | −0.135903 | − | 1.72671i | 0.766044 | + | 0.642788i | −1.85969 | + | 0.676871i | −0.462863 | + | 1.66906i | 2.63192 | − | 0.270209i | −0.500000 | − | 0.866025i | −2.96306 | + | 0.469329i | 1.97904 | ||
121.8 | −0.939693 | − | 0.342020i | 0.807797 | − | 1.53214i | 0.766044 | + | 0.642788i | 1.59297 | − | 0.579794i | −1.28310 | + | 1.16346i | −2.02988 | − | 1.69693i | −0.500000 | − | 0.866025i | −1.69493 | − | 2.47532i | −1.69520 | ||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.w | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 378.2.w.a | yes | 72 |
7.c | even | 3 | 1 | 378.2.v.b | ✓ | 72 | |
27.e | even | 9 | 1 | 378.2.v.b | ✓ | 72 | |
189.w | even | 9 | 1 | inner | 378.2.w.a | yes | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
378.2.v.b | ✓ | 72 | 7.c | even | 3 | 1 | |
378.2.v.b | ✓ | 72 | 27.e | even | 9 | 1 | |
378.2.w.a | yes | 72 | 1.a | even | 1 | 1 | trivial |
378.2.w.a | yes | 72 | 189.w | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} + 15 T_{5}^{70} + 41 T_{5}^{69} + 24 T_{5}^{68} + 87 T_{5}^{67} + 4671 T_{5}^{66} - 4338 T_{5}^{65} + 53712 T_{5}^{64} + 95076 T_{5}^{63} - 17937 T_{5}^{62} - 229095 T_{5}^{61} + 14772387 T_{5}^{60} + \cdots + 18\!\cdots\!89 \)
acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\).