Properties

Label 378.2.v.b.79.1
Level $378$
Weight $2$
Character 378.79
Analytic conductor $3.018$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(67,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 79.1
Character \(\chi\) \(=\) 378.79
Dual form 378.2.v.b.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(-1.73077 - 0.0664993i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.294369 - 1.66945i) q^{5} +(-1.28310 - 1.16346i) q^{6} +(-2.64575 + 0.00486080i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(2.99116 + 0.230191i) q^{9} +O(q^{10})\) \(q+(0.766044 + 0.642788i) q^{2} +(-1.73077 - 0.0664993i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.294369 - 1.66945i) q^{5} +(-1.28310 - 1.16346i) q^{6} +(-2.64575 + 0.00486080i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(2.99116 + 0.230191i) q^{9} +(0.847602 - 1.46809i) q^{10} +(1.08481 - 6.15227i) q^{11} +(-0.235057 - 1.71603i) q^{12} +(-0.226902 - 1.28683i) q^{13} +(-2.02988 - 1.69693i) q^{14} +(0.398469 + 2.90902i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(-1.03612 + 1.79461i) q^{17} +(2.14339 + 2.09901i) q^{18} +(-3.71970 - 6.44271i) q^{19} +(1.59297 - 0.579794i) q^{20} +(4.57951 + 0.167527i) q^{21} +(4.78562 - 4.01561i) q^{22} +(4.05743 - 3.40459i) q^{23} +(0.922977 - 1.46564i) q^{24} +(1.99805 - 0.727232i) q^{25} +(0.653339 - 1.13162i) q^{26} +(-5.16171 - 0.597318i) q^{27} +(-0.464216 - 2.60471i) q^{28} +(-0.726953 + 4.12275i) q^{29} +(-1.56463 + 2.48457i) q^{30} +(-0.490802 - 2.78347i) q^{31} +(-0.939693 - 0.342020i) q^{32} +(-2.28669 + 10.5761i) q^{33} +(-1.94727 + 0.708747i) q^{34} +(0.786941 + 4.41551i) q^{35} +(0.292715 + 2.98569i) q^{36} -9.35873 q^{37} +(1.29184 - 7.32638i) q^{38} +(0.307144 + 2.24230i) q^{39} +(1.59297 + 0.579794i) q^{40} +(0.943258 + 5.34948i) q^{41} +(3.40043 + 3.07199i) q^{42} +(1.44997 + 1.21667i) q^{43} +6.24718 q^{44} +(-0.496212 - 5.06135i) q^{45} +5.29660 q^{46} +(-0.218830 + 1.24105i) q^{47} +(1.64914 - 0.529471i) q^{48} +(6.99995 - 0.0257209i) q^{49} +(1.99805 + 0.727232i) q^{50} +(1.91263 - 3.03716i) q^{51} +(1.22788 - 0.446910i) q^{52} +(0.611155 + 1.05855i) q^{53} +(-3.57015 - 3.77545i) q^{54} -10.5902 q^{55} +(1.31866 - 2.29371i) q^{56} +(6.00952 + 11.3982i) q^{57} +(-3.20693 + 2.69094i) q^{58} +(1.36405 + 0.496475i) q^{59} +(-2.79563 + 0.897561i) q^{60} +(1.48009 - 8.39399i) q^{61} +(1.41321 - 2.44775i) q^{62} +(-7.91496 - 0.594487i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-2.08150 + 0.757604i) q^{65} +(-8.54986 + 6.63187i) q^{66} +(-4.26770 + 3.58102i) q^{67} +(-1.94727 - 0.708747i) q^{68} +(-7.24890 + 5.62276i) q^{69} +(-2.23540 + 3.88831i) q^{70} +(4.83278 + 8.37063i) q^{71} +(-1.69493 + 2.47532i) q^{72} -5.04256 q^{73} +(-7.16920 - 6.01568i) q^{74} +(-3.50654 + 1.12580i) q^{75} +(5.69891 - 4.78195i) q^{76} +(-2.84023 + 16.2826i) q^{77} +(-1.20603 + 1.91513i) q^{78} +(-5.05574 - 4.24227i) q^{79} +(0.847602 + 1.46809i) q^{80} +(8.89402 + 1.37707i) q^{81} +(-2.71600 + 4.70425i) q^{82} +(1.19636 - 6.78487i) q^{83} +(0.630242 + 4.53903i) q^{84} +(3.30101 + 1.20147i) q^{85} +(0.328683 + 1.86405i) q^{86} +(1.53235 - 7.08721i) q^{87} +(4.78562 + 4.01561i) q^{88} +(-3.26175 - 5.64952i) q^{89} +(2.87325 - 4.19617i) q^{90} +(0.606581 + 3.40352i) q^{91} +(4.05743 + 3.40459i) q^{92} +(0.664367 + 4.85020i) q^{93} +(-0.965365 + 0.810037i) q^{94} +(-9.66081 + 8.10638i) q^{95} +(1.60365 + 0.654448i) q^{96} +(7.24932 + 6.08290i) q^{97} +(5.37881 + 4.47978i) q^{98} +(4.66104 - 18.1527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9} - 6 q^{10} + 12 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{15} - 12 q^{17} - 18 q^{19} - 30 q^{21} - 6 q^{22} + 30 q^{23} + 6 q^{25} - 18 q^{26} - 6 q^{27} + 3 q^{29} + 3 q^{30} + 9 q^{31} - 18 q^{33} + 9 q^{34} - 18 q^{35} + 9 q^{36} - 24 q^{39} - 6 q^{41} + 12 q^{42} + 24 q^{43} + 51 q^{45} + 45 q^{47} - 6 q^{48} - 12 q^{49} + 6 q^{50} - 51 q^{51} + 6 q^{52} - 15 q^{53} + 27 q^{54} + 72 q^{55} - 3 q^{56} - 63 q^{57} + 3 q^{58} - 30 q^{59} - 3 q^{60} + 9 q^{61} - 24 q^{62} - 39 q^{63} - 36 q^{64} + 9 q^{65} - 6 q^{67} + 9 q^{68} - 21 q^{69} - 33 q^{70} + 12 q^{71} - 12 q^{72} + 132 q^{73} - 18 q^{74} - 30 q^{75} - 33 q^{77} + 30 q^{78} - 9 q^{79} - 6 q^{80} + 36 q^{81} - 33 q^{82} - 18 q^{83} + 15 q^{84} + 21 q^{85} - 12 q^{86} - 39 q^{87} - 6 q^{88} - 36 q^{89} + 69 q^{90} + 39 q^{91} + 30 q^{92} - 66 q^{93} - 9 q^{94} - 33 q^{95} - 48 q^{97} - 12 q^{98} - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.541675 + 0.454519i
\(3\) −1.73077 0.0664993i −0.999263 0.0383934i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −0.294369 1.66945i −0.131646 0.746601i −0.977137 0.212611i \(-0.931803\pi\)
0.845491 0.533990i \(-0.179308\pi\)
\(6\) −1.28310 1.16346i −0.523825 0.474981i
\(7\) −2.64575 + 0.00486080i −0.999998 + 0.00183721i
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 2.99116 + 0.230191i 0.997052 + 0.0767302i
\(10\) 0.847602 1.46809i 0.268035 0.464251i
\(11\) 1.08481 6.15227i 0.327083 1.85498i −0.167530 0.985867i \(-0.553579\pi\)
0.494613 0.869113i \(-0.335310\pi\)
\(12\) −0.235057 1.71603i −0.0678550 0.495374i
\(13\) −0.226902 1.28683i −0.0629314 0.356902i −0.999971 0.00767732i \(-0.997556\pi\)
0.937039 0.349224i \(-0.113555\pi\)
\(14\) −2.02988 1.69693i −0.542509 0.453524i
\(15\) 0.398469 + 2.90902i 0.102884 + 0.751105i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −1.03612 + 1.79461i −0.251296 + 0.435257i −0.963883 0.266327i \(-0.914190\pi\)
0.712587 + 0.701584i \(0.247523\pi\)
\(18\) 2.14339 + 2.09901i 0.505203 + 0.494742i
\(19\) −3.71970 6.44271i −0.853357 1.47806i −0.878161 0.478366i \(-0.841229\pi\)
0.0248031 0.999692i \(-0.492104\pi\)
\(20\) 1.59297 0.579794i 0.356199 0.129646i
\(21\) 4.57951 + 0.167527i 0.999332 + 0.0365575i
\(22\) 4.78562 4.01561i 1.02030 0.856131i
\(23\) 4.05743 3.40459i 0.846033 0.709906i −0.112879 0.993609i \(-0.536007\pi\)
0.958912 + 0.283703i \(0.0915630\pi\)
\(24\) 0.922977 1.46564i 0.188402 0.299173i
\(25\) 1.99805 0.727232i 0.399611 0.145446i
\(26\) 0.653339 1.13162i 0.128130 0.221928i
\(27\) −5.16171 0.597318i −0.993371 0.114954i
\(28\) −0.464216 2.60471i −0.0877286 0.492244i
\(29\) −0.726953 + 4.12275i −0.134992 + 0.765576i 0.839874 + 0.542782i \(0.182629\pi\)
−0.974865 + 0.222794i \(0.928482\pi\)
\(30\) −1.56463 + 2.48457i −0.285662 + 0.453618i
\(31\) −0.490802 2.78347i −0.0881506 0.499927i −0.996632 0.0820019i \(-0.973869\pi\)
0.908482 0.417925i \(-0.137242\pi\)
\(32\) −0.939693 0.342020i −0.166116 0.0604612i
\(33\) −2.28669 + 10.5761i −0.398061 + 1.84105i
\(34\) −1.94727 + 0.708747i −0.333953 + 0.121549i
\(35\) 0.786941 + 4.41551i 0.133017 + 0.746358i
\(36\) 0.292715 + 2.98569i 0.0487859 + 0.497614i
\(37\) −9.35873 −1.53857 −0.769283 0.638908i \(-0.779386\pi\)
−0.769283 + 0.638908i \(0.779386\pi\)
\(38\) 1.29184 7.32638i 0.209564 1.18850i
\(39\) 0.307144 + 2.24230i 0.0491823 + 0.359055i
\(40\) 1.59297 + 0.579794i 0.251871 + 0.0916735i
\(41\) 0.943258 + 5.34948i 0.147312 + 0.835449i 0.965482 + 0.260471i \(0.0838780\pi\)
−0.818169 + 0.574977i \(0.805011\pi\)
\(42\) 3.40043 + 3.07199i 0.524697 + 0.474018i
\(43\) 1.44997 + 1.21667i 0.221119 + 0.185541i 0.746617 0.665254i \(-0.231677\pi\)
−0.525498 + 0.850795i \(0.676121\pi\)
\(44\) 6.24718 0.941798
\(45\) −0.496212 5.06135i −0.0739709 0.754501i
\(46\) 5.29660 0.780941
\(47\) −0.218830 + 1.24105i −0.0319197 + 0.181026i −0.996599 0.0824004i \(-0.973741\pi\)
0.964680 + 0.263426i \(0.0848525\pi\)
\(48\) 1.64914 0.529471i 0.238033 0.0764225i
\(49\) 6.99995 0.0257209i 0.999993 0.00367442i
\(50\) 1.99805 + 0.727232i 0.282567 + 0.102846i
\(51\) 1.91263 3.03716i 0.267821 0.425288i
\(52\) 1.22788 0.446910i 0.170276 0.0619753i
\(53\) 0.611155 + 1.05855i 0.0839486 + 0.145403i 0.904943 0.425533i \(-0.139914\pi\)
−0.820994 + 0.570937i \(0.806580\pi\)
\(54\) −3.57015 3.77545i −0.485836 0.513774i
\(55\) −10.5902 −1.42799
\(56\) 1.31866 2.29371i 0.176214 0.306510i
\(57\) 6.00952 + 11.3982i 0.795981 + 1.50973i
\(58\) −3.20693 + 2.69094i −0.421091 + 0.353337i
\(59\) 1.36405 + 0.496475i 0.177585 + 0.0646355i 0.429282 0.903170i \(-0.358767\pi\)
−0.251698 + 0.967806i \(0.580989\pi\)
\(60\) −2.79563 + 0.897561i −0.360914 + 0.115875i
\(61\) 1.48009 8.39399i 0.189506 1.07474i −0.730523 0.682889i \(-0.760723\pi\)
0.920028 0.391852i \(-0.128165\pi\)
\(62\) 1.41321 2.44775i 0.179477 0.310864i
\(63\) −7.91496 0.594487i −0.997191 0.0748983i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −2.08150 + 0.757604i −0.258178 + 0.0939693i
\(66\) −8.54986 + 6.63187i −1.05242 + 0.816327i
\(67\) −4.26770 + 3.58102i −0.521382 + 0.437492i −0.865113 0.501577i \(-0.832754\pi\)
0.343731 + 0.939068i \(0.388309\pi\)
\(68\) −1.94727 0.708747i −0.236141 0.0859481i
\(69\) −7.24890 + 5.62276i −0.872665 + 0.676900i
\(70\) −2.23540 + 3.88831i −0.267182 + 0.464742i
\(71\) 4.83278 + 8.37063i 0.573546 + 0.993410i 0.996198 + 0.0871185i \(0.0277659\pi\)
−0.422652 + 0.906292i \(0.638901\pi\)
\(72\) −1.69493 + 2.47532i −0.199749 + 0.291719i
\(73\) −5.04256 −0.590187 −0.295093 0.955468i \(-0.595351\pi\)
−0.295093 + 0.955468i \(0.595351\pi\)
\(74\) −7.16920 6.01568i −0.833403 0.699308i
\(75\) −3.50654 + 1.12580i −0.404900 + 0.129997i
\(76\) 5.69891 4.78195i 0.653710 0.548528i
\(77\) −2.84023 + 16.2826i −0.323675 + 1.85558i
\(78\) −1.20603 + 1.91513i −0.136557 + 0.216845i
\(79\) −5.05574 4.24227i −0.568815 0.477292i 0.312437 0.949938i \(-0.398855\pi\)
−0.881252 + 0.472646i \(0.843299\pi\)
\(80\) 0.847602 + 1.46809i 0.0947648 + 0.164137i
\(81\) 8.89402 + 1.37707i 0.988225 + 0.153008i
\(82\) −2.71600 + 4.70425i −0.299932 + 0.519498i
\(83\) 1.19636 6.78487i 0.131317 0.744737i −0.846037 0.533125i \(-0.821018\pi\)
0.977354 0.211612i \(-0.0678713\pi\)
\(84\) 0.630242 + 4.53903i 0.0687650 + 0.495249i
\(85\) 3.30101 + 1.20147i 0.358045 + 0.130318i
\(86\) 0.328683 + 1.86405i 0.0354427 + 0.201006i
\(87\) 1.53235 7.08721i 0.164285 0.759829i
\(88\) 4.78562 + 4.01561i 0.510149 + 0.428066i
\(89\) −3.26175 5.64952i −0.345745 0.598848i 0.639744 0.768588i \(-0.279040\pi\)
−0.985489 + 0.169740i \(0.945707\pi\)
\(90\) 2.87325 4.19617i 0.302867 0.442316i
\(91\) 0.606581 + 3.40352i 0.0635870 + 0.356785i
\(92\) 4.05743 + 3.40459i 0.423016 + 0.354953i
\(93\) 0.664367 + 4.85020i 0.0688917 + 0.502943i
\(94\) −0.965365 + 0.810037i −0.0995698 + 0.0835490i
\(95\) −9.66081 + 8.10638i −0.991178 + 0.831697i
\(96\) 1.60365 + 0.654448i 0.163672 + 0.0667944i
\(97\) 7.24932 + 6.08290i 0.736057 + 0.617625i 0.931776 0.363035i \(-0.118259\pi\)
−0.195719 + 0.980660i \(0.562704\pi\)
\(98\) 5.37881 + 4.47978i 0.543342 + 0.452526i
\(99\) 4.66104 18.1527i 0.468452 1.82441i
\(100\) 1.06314 + 1.84142i 0.106314 + 0.184142i
\(101\) 8.96195 + 7.51997i 0.891747 + 0.748265i 0.968560 0.248781i \(-0.0800299\pi\)
−0.0768128 + 0.997046i \(0.524474\pi\)
\(102\) 3.41741 1.09719i 0.338374 0.108638i
\(103\) 2.57181 + 14.5855i 0.253408 + 1.43715i 0.800126 + 0.599832i \(0.204766\pi\)
−0.546718 + 0.837317i \(0.684123\pi\)
\(104\) 1.22788 + 0.446910i 0.120403 + 0.0438232i
\(105\) −1.06839 7.69458i −0.104264 0.750914i
\(106\) −0.212252 + 1.20374i −0.0206157 + 0.116918i
\(107\) −4.50839 + 7.80876i −0.435842 + 0.754901i −0.997364 0.0725610i \(-0.976883\pi\)
0.561522 + 0.827462i \(0.310216\pi\)
\(108\) −0.308078 5.18701i −0.0296448 0.499120i
\(109\) −9.27298 16.0613i −0.888190 1.53839i −0.842013 0.539457i \(-0.818629\pi\)
−0.0461775 0.998933i \(-0.514704\pi\)
\(110\) −8.11260 6.80728i −0.773506 0.649049i
\(111\) 16.1978 + 0.622349i 1.53743 + 0.0590708i
\(112\) 2.48453 0.909466i 0.234766 0.0859365i
\(113\) 15.9066 13.3472i 1.49637 1.25560i 0.610190 0.792255i \(-0.291093\pi\)
0.886177 0.463346i \(-0.153351\pi\)
\(114\) −2.72308 + 12.5944i −0.255040 + 1.17957i
\(115\) −6.87817 5.77147i −0.641393 0.538192i
\(116\) −4.18635 −0.388693
\(117\) −0.382485 3.90133i −0.0353607 0.360678i
\(118\) 0.725798 + 1.25712i 0.0668151 + 0.115727i
\(119\) 2.73258 4.75312i 0.250495 0.435718i
\(120\) −2.71852 1.10942i −0.248165 0.101276i
\(121\) −26.3370 9.58590i −2.39428 0.871445i
\(122\) 6.52937 5.47879i 0.591141 0.496026i
\(123\) −1.27683 9.32147i −0.115128 0.840488i
\(124\) 2.65596 0.966690i 0.238512 0.0868114i
\(125\) −6.04025 10.4620i −0.540257 0.935752i
\(126\) −5.68108 5.54304i −0.506111 0.493813i
\(127\) −1.57627 + 2.73017i −0.139871 + 0.242264i −0.927448 0.373953i \(-0.878002\pi\)
0.787577 + 0.616217i \(0.211335\pi\)
\(128\) 0.173648 0.984808i 0.0153485 0.0870455i
\(129\) −2.42867 2.20221i −0.213832 0.193894i
\(130\) −2.08150 0.757604i −0.182560 0.0664463i
\(131\) 16.5994 13.9286i 1.45030 1.21695i 0.517938 0.855418i \(-0.326700\pi\)
0.932362 0.361527i \(-0.117745\pi\)
\(132\) −10.8125 0.415434i −0.941104 0.0361588i
\(133\) 9.87270 + 17.0277i 0.856071 + 1.47649i
\(134\) −5.57108 −0.481268
\(135\) 0.522255 + 8.79304i 0.0449485 + 0.756785i
\(136\) −1.03612 1.79461i −0.0888464 0.153886i
\(137\) 17.4902 6.36590i 1.49429 0.543876i 0.539712 0.841850i \(-0.318533\pi\)
0.954574 + 0.297974i \(0.0963109\pi\)
\(138\) −9.16722 0.352220i −0.780365 0.0299830i
\(139\) 7.38333 + 2.68731i 0.626246 + 0.227935i 0.635596 0.772021i \(-0.280754\pi\)
−0.00935072 + 0.999956i \(0.502976\pi\)
\(140\) −4.21178 + 1.54173i −0.355960 + 0.130300i
\(141\) 0.461275 2.13342i 0.0388464 0.179667i
\(142\) −1.67841 + 9.51872i −0.140849 + 0.798794i
\(143\) −8.16306 −0.682629
\(144\) −2.88950 + 0.806727i −0.240791 + 0.0672273i
\(145\) 7.09672 0.589351
\(146\) −3.86282 3.24129i −0.319689 0.268251i
\(147\) −12.1170 0.420975i −0.999397 0.0347214i
\(148\) −1.62513 9.21655i −0.133585 0.757596i
\(149\) 7.92344 + 2.88390i 0.649113 + 0.236258i 0.645529 0.763736i \(-0.276637\pi\)
0.00358421 + 0.999994i \(0.498859\pi\)
\(150\) −3.40982 1.39154i −0.278410 0.113619i
\(151\) −2.13898 + 12.1308i −0.174068 + 0.987187i 0.765147 + 0.643856i \(0.222666\pi\)
−0.939215 + 0.343331i \(0.888445\pi\)
\(152\) 7.43940 0.603415
\(153\) −3.51229 + 5.12945i −0.283952 + 0.414692i
\(154\) −12.6420 + 10.6476i −1.01872 + 0.858004i
\(155\) −4.50239 + 1.63874i −0.361641 + 0.131627i
\(156\) −2.15490 + 0.691848i −0.172530 + 0.0553922i
\(157\) 11.5374 + 4.19928i 0.920787 + 0.335139i 0.758551 0.651613i \(-0.225907\pi\)
0.162235 + 0.986752i \(0.448130\pi\)
\(158\) −1.14604 6.49953i −0.0911743 0.517075i
\(159\) −0.987378 1.87275i −0.0783042 0.148519i
\(160\) −0.294369 + 1.66945i −0.0232719 + 0.131982i
\(161\) −10.7184 + 9.02740i −0.844727 + 0.711459i
\(162\) 5.92805 + 6.77187i 0.465752 + 0.532048i
\(163\) 2.02983 3.51577i 0.158988 0.275376i −0.775516 0.631328i \(-0.782510\pi\)
0.934504 + 0.355952i \(0.115843\pi\)
\(164\) −5.10442 + 1.85786i −0.398588 + 0.145074i
\(165\) 18.3293 + 0.704245i 1.42694 + 0.0548254i
\(166\) 5.27770 4.42851i 0.409629 0.343719i
\(167\) 3.47271 2.91395i 0.268726 0.225488i −0.498460 0.866913i \(-0.666101\pi\)
0.767186 + 0.641425i \(0.221656\pi\)
\(168\) −2.43484 + 3.88221i −0.187852 + 0.299519i
\(169\) 10.6116 3.86229i 0.816274 0.297099i
\(170\) 1.75643 + 3.04223i 0.134712 + 0.233328i
\(171\) −9.64315 20.1274i −0.737430 1.53918i
\(172\) −0.946404 + 1.63922i −0.0721626 + 0.124989i
\(173\) 11.0308 4.01490i 0.838660 0.305247i 0.113252 0.993566i \(-0.463873\pi\)
0.725408 + 0.688319i \(0.241651\pi\)
\(174\) 5.72942 4.44414i 0.434346 0.336910i
\(175\) −5.28281 + 1.93378i −0.399343 + 0.146180i
\(176\) 1.08481 + 6.15227i 0.0817708 + 0.463745i
\(177\) −2.32785 0.949994i −0.174972 0.0714059i
\(178\) 1.13279 6.42440i 0.0849066 0.481529i
\(179\) −1.42864 + 2.47448i −0.106782 + 0.184951i −0.914465 0.404666i \(-0.867388\pi\)
0.807683 + 0.589617i \(0.200721\pi\)
\(180\) 4.89829 1.36757i 0.365097 0.101932i
\(181\) 5.39816 9.34989i 0.401242 0.694972i −0.592634 0.805472i \(-0.701912\pi\)
0.993876 + 0.110500i \(0.0352452\pi\)
\(182\) −1.72307 + 2.99715i −0.127722 + 0.222163i
\(183\) −3.11989 + 14.4297i −0.230629 + 1.06667i
\(184\) 0.919745 + 5.21613i 0.0678045 + 0.384538i
\(185\) 2.75492 + 15.6239i 0.202546 + 1.14869i
\(186\) −2.60871 + 4.14252i −0.191280 + 0.303744i
\(187\) 9.91694 + 8.32130i 0.725198 + 0.608513i
\(188\) −1.26019 −0.0919091
\(189\) 13.6595 + 1.55526i 0.993580 + 0.113129i
\(190\) −12.6113 −0.914920
\(191\) −15.3321 12.8652i −1.10939 0.930893i −0.111374 0.993779i \(-0.535525\pi\)
−0.998021 + 0.0628859i \(0.979970\pi\)
\(192\) 0.807797 + 1.53214i 0.0582977 + 0.110573i
\(193\) −3.64662 20.6810i −0.262489 1.48865i −0.776090 0.630622i \(-0.782800\pi\)
0.513601 0.858029i \(-0.328311\pi\)
\(194\) 1.64329 + 9.31955i 0.117981 + 0.669104i
\(195\) 3.65299 1.17282i 0.261596 0.0839876i
\(196\) 1.24086 + 6.88914i 0.0886328 + 0.492082i
\(197\) −4.04409 + 7.00458i −0.288130 + 0.499055i −0.973363 0.229268i \(-0.926367\pi\)
0.685234 + 0.728323i \(0.259700\pi\)
\(198\) 15.2389 10.9097i 1.08298 0.775320i
\(199\) 7.02511 12.1678i 0.497997 0.862555i −0.502001 0.864867i \(-0.667403\pi\)
0.999997 + 0.00231187i \(0.000735891\pi\)
\(200\) −0.369225 + 2.09398i −0.0261082 + 0.148067i
\(201\) 7.62455 5.91414i 0.537794 0.417151i
\(202\) 2.03151 + 11.5213i 0.142936 + 0.810633i
\(203\) 1.90329 10.9113i 0.133585 0.765823i
\(204\) 3.32314 + 1.35617i 0.232667 + 0.0949510i
\(205\) 8.65302 3.14944i 0.604353 0.219967i
\(206\) −7.40524 + 12.8262i −0.515947 + 0.893647i
\(207\) 12.9201 9.24967i 0.898010 0.642897i
\(208\) 0.653339 + 1.13162i 0.0453009 + 0.0784635i
\(209\) −43.6725 + 15.8955i −3.02089 + 1.09951i
\(210\) 4.12755 6.58114i 0.284828 0.454142i
\(211\) 7.20837 6.04854i 0.496245 0.416399i −0.360013 0.932947i \(-0.617228\pi\)
0.856258 + 0.516549i \(0.172783\pi\)
\(212\) −0.936344 + 0.785686i −0.0643083 + 0.0539611i
\(213\) −7.80781 14.8090i −0.534982 1.01470i
\(214\) −8.47300 + 3.08392i −0.579202 + 0.210812i
\(215\) 1.60435 2.77881i 0.109416 0.189513i
\(216\) 3.09815 4.17151i 0.210802 0.283835i
\(217\) 1.31207 + 7.36198i 0.0890689 + 0.499764i
\(218\) 3.22047 18.2642i 0.218118 1.23701i
\(219\) 8.72752 + 0.335327i 0.589751 + 0.0226593i
\(220\) −1.83898 10.4294i −0.123984 0.703147i
\(221\) 2.54445 + 0.926104i 0.171158 + 0.0622965i
\(222\) 12.0082 + 10.8885i 0.805940 + 0.730790i
\(223\) −20.6225 + 7.50597i −1.38098 + 0.502637i −0.922476 0.386054i \(-0.873838\pi\)
−0.458507 + 0.888691i \(0.651616\pi\)
\(224\) 2.48785 + 0.900331i 0.166227 + 0.0601559i
\(225\) 6.14389 1.71533i 0.409593 0.114355i
\(226\) 20.7646 1.38124
\(227\) −1.97838 + 11.2199i −0.131309 + 0.744693i 0.846049 + 0.533104i \(0.178975\pi\)
−0.977359 + 0.211588i \(0.932136\pi\)
\(228\) −10.1815 + 7.89750i −0.674288 + 0.523025i
\(229\) 19.5625 + 7.12016i 1.29273 + 0.470514i 0.894621 0.446826i \(-0.147446\pi\)
0.398105 + 0.917340i \(0.369668\pi\)
\(230\) −1.55915 8.84241i −0.102808 0.583051i
\(231\) 5.99858 27.9927i 0.394678 1.84178i
\(232\) −3.20693 2.69094i −0.210545 0.176669i
\(233\) −2.96744 −0.194403 −0.0972017 0.995265i \(-0.530989\pi\)
−0.0972017 + 0.995265i \(0.530989\pi\)
\(234\) 2.21473 3.23445i 0.144781 0.211443i
\(235\) 2.13629 0.139356
\(236\) −0.252067 + 1.42954i −0.0164082 + 0.0930553i
\(237\) 8.46823 + 7.67861i 0.550071 + 0.498779i
\(238\) 5.14853 1.88463i 0.333729 0.122162i
\(239\) 0.0373684 + 0.0136010i 0.00241716 + 0.000879776i 0.343228 0.939252i \(-0.388479\pi\)
−0.340811 + 0.940132i \(0.610702\pi\)
\(240\) −1.36938 2.59730i −0.0883931 0.167655i
\(241\) −17.7989 + 6.47826i −1.14653 + 0.417301i −0.844266 0.535924i \(-0.819963\pi\)
−0.302260 + 0.953226i \(0.597741\pi\)
\(242\) −14.0136 24.2723i −0.900831 1.56029i
\(243\) −15.3020 2.97485i −0.981622 0.190837i
\(244\) 8.52348 0.545660
\(245\) −2.10351 11.6785i −0.134388 0.746112i
\(246\) 5.01362 7.96139i 0.319656 0.507600i
\(247\) −7.44664 + 6.24848i −0.473819 + 0.397581i
\(248\) 2.65596 + 0.966690i 0.168654 + 0.0613849i
\(249\) −2.52181 + 11.6635i −0.159813 + 0.739146i
\(250\) 2.09776 11.8970i 0.132674 0.752431i
\(251\) −9.77360 + 16.9284i −0.616904 + 1.06851i 0.373143 + 0.927774i \(0.378280\pi\)
−0.990047 + 0.140736i \(0.955053\pi\)
\(252\) −0.788963 7.89795i −0.0497000 0.497524i
\(253\) −16.5444 28.6558i −1.04014 1.80157i
\(254\) −2.96241 + 1.07823i −0.185878 + 0.0676542i
\(255\) −5.63341 2.29899i −0.352778 0.143968i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −12.9421 4.71055i −0.807308 0.293836i −0.0947967 0.995497i \(-0.530220\pi\)
−0.712511 + 0.701661i \(0.752442\pi\)
\(258\) −0.444917 3.24811i −0.0276993 0.202218i
\(259\) 24.7608 0.0454909i 1.53856 0.00282667i
\(260\) −1.10754 1.91832i −0.0686869 0.118969i
\(261\) −3.12345 + 12.1645i −0.193337 + 0.752961i
\(262\) 21.6690 1.33872
\(263\) 10.0155 + 8.40396i 0.617579 + 0.518211i 0.897042 0.441946i \(-0.145712\pi\)
−0.279462 + 0.960157i \(0.590156\pi\)
\(264\) −8.01579 7.26836i −0.493338 0.447336i
\(265\) 1.58729 1.33190i 0.0975066 0.0818178i
\(266\) −3.38226 + 19.3900i −0.207380 + 1.18888i
\(267\) 5.26967 + 9.99495i 0.322498 + 0.611681i
\(268\) −4.26770 3.58102i −0.260691 0.218746i
\(269\) 7.37085 + 12.7667i 0.449409 + 0.778399i 0.998348 0.0574638i \(-0.0183014\pi\)
−0.548939 + 0.835862i \(0.684968\pi\)
\(270\) −5.25199 + 7.07156i −0.319626 + 0.430361i
\(271\) −9.09135 + 15.7467i −0.552260 + 0.956542i 0.445851 + 0.895107i \(0.352901\pi\)
−0.998111 + 0.0614351i \(0.980432\pi\)
\(272\) 0.359840 2.04075i 0.0218185 0.123739i
\(273\) −0.823523 5.93105i −0.0498419 0.358964i
\(274\) 17.4902 + 6.36590i 1.05662 + 0.384578i
\(275\) −2.30662 13.0815i −0.139094 0.788843i
\(276\) −6.79609 6.16239i −0.409077 0.370932i
\(277\) 10.5416 + 8.84542i 0.633381 + 0.531470i 0.901977 0.431783i \(-0.142115\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(278\) 3.92859 + 6.80451i 0.235621 + 0.408108i
\(279\) −0.827334 8.43878i −0.0495312 0.505217i
\(280\) −4.21742 1.52624i −0.252039 0.0912106i
\(281\) −12.2374 10.2684i −0.730021 0.612561i 0.200116 0.979772i \(-0.435868\pi\)
−0.930137 + 0.367212i \(0.880312\pi\)
\(282\) 1.72470 1.33780i 0.102704 0.0796646i
\(283\) 6.79540 5.70201i 0.403944 0.338950i −0.418072 0.908414i \(-0.637294\pi\)
0.822016 + 0.569465i \(0.192849\pi\)
\(284\) −7.40425 + 6.21291i −0.439362 + 0.368668i
\(285\) 17.2597 13.3879i 1.02238 0.793030i
\(286\) −6.25327 5.24711i −0.369763 0.310268i
\(287\) −2.52162 14.1488i −0.148847 0.835177i
\(288\) −2.73204 1.23934i −0.160987 0.0730290i
\(289\) 6.35292 + 11.0036i 0.373701 + 0.647269i
\(290\) 5.43641 + 4.56169i 0.319237 + 0.267871i
\(291\) −12.1424 11.0102i −0.711802 0.645429i
\(292\) −0.875631 4.96595i −0.0512424 0.290610i
\(293\) −18.0435 6.56729i −1.05411 0.383665i −0.243899 0.969801i \(-0.578427\pi\)
−0.810213 + 0.586135i \(0.800649\pi\)
\(294\) −9.01160 8.11117i −0.525567 0.473053i
\(295\) 0.427305 2.42337i 0.0248786 0.141094i
\(296\) 4.67936 8.10490i 0.271983 0.471088i
\(297\) −9.27434 + 31.1083i −0.538152 + 1.80508i
\(298\) 4.21597 + 7.30228i 0.244225 + 0.423010i
\(299\) −5.30176 4.44870i −0.306609 0.257275i
\(300\) −1.71761 3.25777i −0.0991660 0.188088i
\(301\) −3.84218 3.21196i −0.221460 0.185134i
\(302\) −9.43605 + 7.91779i −0.542984 + 0.455617i
\(303\) −15.0110 13.6113i −0.862361 0.781950i
\(304\) 5.69891 + 4.78195i 0.326855 + 0.274264i
\(305\) −14.4490 −0.827350
\(306\) −5.98772 + 1.67173i −0.342295 + 0.0955664i
\(307\) 4.64779 + 8.05021i 0.265264 + 0.459450i 0.967633 0.252363i \(-0.0812077\pi\)
−0.702369 + 0.711813i \(0.747874\pi\)
\(308\) −16.5285 + 0.0303663i −0.941797 + 0.00173028i
\(309\) −3.48130 25.4152i −0.198044 1.44582i
\(310\) −4.50239 1.63874i −0.255719 0.0930740i
\(311\) 17.2554 14.4790i 0.978466 0.821030i −0.00539151 0.999985i \(-0.501716\pi\)
0.983857 + 0.178955i \(0.0572717\pi\)
\(312\) −2.09546 0.855154i −0.118632 0.0484136i
\(313\) −13.3198 + 4.84803i −0.752882 + 0.274027i −0.689818 0.723983i \(-0.742310\pi\)
−0.0630642 + 0.998009i \(0.520087\pi\)
\(314\) 6.13893 + 10.6329i 0.346440 + 0.600052i
\(315\) 1.33745 + 13.3886i 0.0753570 + 0.754364i
\(316\) 3.29990 5.71559i 0.185634 0.321527i
\(317\) −0.460115 + 2.60944i −0.0258427 + 0.146561i −0.994999 0.0998863i \(-0.968152\pi\)
0.969156 + 0.246447i \(0.0792632\pi\)
\(318\) 0.447408 2.06929i 0.0250894 0.116040i
\(319\) 24.5757 + 8.94483i 1.37598 + 0.500814i
\(320\) −1.29860 + 1.08966i −0.0725940 + 0.0609136i
\(321\) 8.32228 13.2154i 0.464504 0.737611i
\(322\) −14.0135 + 0.0257457i −0.780940 + 0.00143475i
\(323\) 15.4162 0.857780
\(324\) 0.188280 + 8.99803i 0.0104600 + 0.499891i
\(325\) −1.38919 2.40614i −0.0770581 0.133469i
\(326\) 3.81483 1.38848i 0.211284 0.0769011i
\(327\) 14.9814 + 28.4151i 0.828471 + 1.57136i
\(328\) −5.10442 1.85786i −0.281844 0.102583i
\(329\) 0.572938 3.28457i 0.0315871 0.181084i
\(330\) 13.5884 + 12.3213i 0.748017 + 0.678268i
\(331\) 2.80470 15.9062i 0.154160 0.874287i −0.805389 0.592746i \(-0.798044\pi\)
0.959549 0.281540i \(-0.0908453\pi\)
\(332\) 6.88954 0.378113
\(333\) −27.9934 2.15429i −1.53403 0.118054i
\(334\) 4.53330 0.248051
\(335\) 7.23462 + 6.07056i 0.395269 + 0.331670i
\(336\) −4.36063 + 1.40886i −0.237892 + 0.0768597i
\(337\) 3.43130 + 19.4599i 0.186915 + 1.06005i 0.923470 + 0.383670i \(0.125340\pi\)
−0.736556 + 0.676377i \(0.763549\pi\)
\(338\) 10.6116 + 3.86229i 0.577193 + 0.210081i
\(339\) −28.4183 + 22.0432i −1.54347 + 1.19722i
\(340\) −0.610002 + 3.45949i −0.0330820 + 0.187617i
\(341\) −17.6571 −0.956187
\(342\) 5.55055 21.6170i 0.300139 1.16891i
\(343\) −18.5200 + 0.102076i −0.999985 + 0.00551161i
\(344\) −1.77866 + 0.647378i −0.0958988 + 0.0349043i
\(345\) 11.5208 + 10.4465i 0.620257 + 0.562421i
\(346\) 11.0308 + 4.01490i 0.593022 + 0.215842i
\(347\) −0.399049 2.26312i −0.0214221 0.121491i 0.972221 0.234063i \(-0.0752021\pi\)
−0.993644 + 0.112572i \(0.964091\pi\)
\(348\) 7.24563 + 0.278390i 0.388407 + 0.0149233i
\(349\) −1.98276 + 11.2448i −0.106135 + 0.601920i 0.884626 + 0.466301i \(0.154413\pi\)
−0.990761 + 0.135619i \(0.956698\pi\)
\(350\) −5.28988 1.91436i −0.282756 0.102327i
\(351\) 0.402559 + 6.77776i 0.0214870 + 0.361770i
\(352\) −3.12359 + 5.41022i −0.166488 + 0.288366i
\(353\) 8.03755 2.92543i 0.427795 0.155705i −0.119144 0.992877i \(-0.538015\pi\)
0.546939 + 0.837172i \(0.315793\pi\)
\(354\) −1.17259 2.22405i −0.0623227 0.118207i
\(355\) 12.5517 10.5321i 0.666176 0.558988i
\(356\) 4.99730 4.19323i 0.264856 0.222241i
\(357\) −5.04556 + 8.04486i −0.267039 + 0.425779i
\(358\) −2.68497 + 0.977249i −0.141905 + 0.0516492i
\(359\) 4.47980 + 7.75924i 0.236435 + 0.409517i 0.959689 0.281065i \(-0.0906877\pi\)
−0.723254 + 0.690582i \(0.757354\pi\)
\(360\) 4.63136 + 2.10094i 0.244094 + 0.110729i
\(361\) −18.1723 + 31.4754i −0.956438 + 1.65660i
\(362\) 10.1452 3.69256i 0.533221 0.194077i
\(363\) 44.9460 + 18.3424i 2.35905 + 0.962727i
\(364\) −3.24648 + 1.18838i −0.170162 + 0.0622881i
\(365\) 1.48437 + 8.41829i 0.0776956 + 0.440634i
\(366\) −11.6652 + 9.04835i −0.609749 + 0.472965i
\(367\) 1.66934 9.46732i 0.0871391 0.494190i −0.909735 0.415188i \(-0.863716\pi\)
0.996874 0.0790017i \(-0.0251733\pi\)
\(368\) −2.64830 + 4.58699i −0.138052 + 0.239113i
\(369\) 1.59003 + 16.2183i 0.0827737 + 0.844289i
\(370\) −7.93248 + 13.7395i −0.412390 + 0.714280i
\(371\) −1.62211 2.79769i −0.0842156 0.145249i
\(372\) −4.66115 + 1.49650i −0.241669 + 0.0775901i
\(373\) 0.268372 + 1.52201i 0.0138958 + 0.0788068i 0.990967 0.134106i \(-0.0428162\pi\)
−0.977071 + 0.212913i \(0.931705\pi\)
\(374\) 2.24799 + 12.7490i 0.116241 + 0.659233i
\(375\) 9.75859 + 18.5091i 0.503932 + 0.955804i
\(376\) −0.965365 0.810037i −0.0497849 0.0417745i
\(377\) 5.47022 0.281731
\(378\) 9.46406 + 9.97154i 0.486779 + 0.512881i
\(379\) −11.2455 −0.577644 −0.288822 0.957383i \(-0.593264\pi\)
−0.288822 + 0.957383i \(0.593264\pi\)
\(380\) −9.66081 8.10638i −0.495589 0.415849i
\(381\) 2.90972 4.62049i 0.149069 0.236715i
\(382\) −3.47551 19.7106i −0.177823 1.00848i
\(383\) 4.04411 + 22.9353i 0.206644 + 1.17194i 0.894831 + 0.446404i \(0.147296\pi\)
−0.688187 + 0.725533i \(0.741593\pi\)
\(384\) −0.366035 + 1.69293i −0.0186791 + 0.0863921i
\(385\) 28.0191 0.0514771i 1.42799 0.00262352i
\(386\) 10.5000 18.1866i 0.534437 0.925672i
\(387\) 4.05703 + 3.97303i 0.206231 + 0.201960i
\(388\) −4.73166 + 8.19547i −0.240214 + 0.416062i
\(389\) −1.53598 + 8.71099i −0.0778774 + 0.441665i 0.920790 + 0.390058i \(0.127545\pi\)
−0.998668 + 0.0516063i \(0.983566\pi\)
\(390\) 3.55223 + 1.44966i 0.179874 + 0.0734064i
\(391\) 1.90593 + 10.8091i 0.0963870 + 0.546638i
\(392\) −3.47770 + 6.07500i −0.175650 + 0.306834i
\(393\) −29.6561 + 23.0034i −1.49595 + 1.16037i
\(394\) −7.60041 + 2.76632i −0.382903 + 0.139365i
\(395\) −5.59400 + 9.68909i −0.281465 + 0.487511i
\(396\) 18.6863 + 1.43804i 0.939022 + 0.0722644i
\(397\) −1.63892 2.83870i −0.0822552 0.142470i 0.821963 0.569541i \(-0.192879\pi\)
−0.904218 + 0.427071i \(0.859546\pi\)
\(398\) 13.2029 4.80546i 0.661801 0.240876i
\(399\) −15.9551 30.1276i −0.798753 1.50827i
\(400\) −1.62883 + 1.36675i −0.0814414 + 0.0683375i
\(401\) 17.5385 14.7166i 0.875833 0.734911i −0.0894852 0.995988i \(-0.528522\pi\)
0.965318 + 0.261077i \(0.0840777\pi\)
\(402\) 9.64228 + 0.370473i 0.480913 + 0.0184775i
\(403\) −3.47049 + 1.26315i −0.172877 + 0.0629222i
\(404\) −5.84950 + 10.1316i −0.291023 + 0.504067i
\(405\) −0.319173 15.2535i −0.0158598 0.757952i
\(406\) 8.47165 7.13513i 0.420441 0.354110i
\(407\) −10.1525 + 57.5775i −0.503239 + 2.85401i
\(408\) 1.67395 + 3.17496i 0.0828727 + 0.157184i
\(409\) −4.49402 25.4869i −0.222215 1.26024i −0.867938 0.496673i \(-0.834555\pi\)
0.645723 0.763572i \(-0.276556\pi\)
\(410\) 8.65302 + 3.14944i 0.427342 + 0.155540i
\(411\) −30.6949 + 9.85485i −1.51407 + 0.486104i
\(412\) −13.9173 + 5.06548i −0.685656 + 0.249558i
\(413\) −3.61135 1.30692i −0.177703 0.0643091i
\(414\) 15.8430 + 1.21923i 0.778639 + 0.0599218i
\(415\) −11.6792 −0.573308
\(416\) −0.226902 + 1.28683i −0.0111248 + 0.0630919i
\(417\) −12.6002 5.14212i −0.617033 0.251810i
\(418\) −43.6725 15.8955i −2.13609 0.777473i
\(419\) 0.330193 + 1.87262i 0.0161310 + 0.0914835i 0.991810 0.127719i \(-0.0407656\pi\)
−0.975679 + 0.219202i \(0.929654\pi\)
\(420\) 7.39216 2.38831i 0.360700 0.116537i
\(421\) 1.82280 + 1.52951i 0.0888380 + 0.0745439i 0.686125 0.727484i \(-0.259310\pi\)
−0.597287 + 0.802027i \(0.703755\pi\)
\(422\) 9.40986 0.458065
\(423\) −0.940234 + 3.66180i −0.0457157 + 0.178043i
\(424\) −1.22231 −0.0593606
\(425\) −0.765122 + 4.33922i −0.0371139 + 0.210483i
\(426\) 3.53793 16.3631i 0.171413 0.792797i
\(427\) −3.87513 + 22.2156i −0.187531 + 1.07509i
\(428\) −8.47300 3.08392i −0.409558 0.149067i
\(429\) 14.1284 + 0.542838i 0.682126 + 0.0262085i
\(430\) 3.01519 1.09744i 0.145405 0.0529232i
\(431\) −9.56044 16.5592i −0.460510 0.797627i 0.538476 0.842641i \(-0.319000\pi\)
−0.998986 + 0.0450138i \(0.985667\pi\)
\(432\) 5.05471 1.20411i 0.243195 0.0579329i
\(433\) 39.3705 1.89202 0.946012 0.324132i \(-0.105072\pi\)
0.946012 + 0.324132i \(0.105072\pi\)
\(434\) −3.72709 + 6.48299i −0.178906 + 0.311193i
\(435\) −12.2828 0.471927i −0.588916 0.0226272i
\(436\) 14.2070 11.9211i 0.680393 0.570918i
\(437\) −37.0272 13.4768i −1.77125 0.644682i
\(438\) 6.47013 + 5.86682i 0.309155 + 0.280327i
\(439\) −3.91770 + 22.2184i −0.186982 + 1.06043i 0.736401 + 0.676546i \(0.236524\pi\)
−0.923383 + 0.383881i \(0.874587\pi\)
\(440\) 5.29512 9.17142i 0.252435 0.437230i
\(441\) 20.9439 + 1.53439i 0.997327 + 0.0730661i
\(442\) 1.35387 + 2.34498i 0.0643972 + 0.111539i
\(443\) 21.7579 7.91924i 1.03375 0.376254i 0.231243 0.972896i \(-0.425721\pi\)
0.802508 + 0.596642i \(0.203499\pi\)
\(444\) 2.19983 + 16.0598i 0.104399 + 0.762166i
\(445\) −8.47143 + 7.10838i −0.401585 + 0.336969i
\(446\) −20.6225 7.50597i −0.976503 0.355418i
\(447\) −13.5219 5.51827i −0.639564 0.261005i
\(448\) 1.32708 + 2.28885i 0.0626988 + 0.108138i
\(449\) −17.1874 29.7695i −0.811125 1.40491i −0.912078 0.410018i \(-0.865522\pi\)
0.100953 0.994891i \(-0.467811\pi\)
\(450\) 5.80909 + 2.63520i 0.273843 + 0.124224i
\(451\) 33.9347 1.59792
\(452\) 15.9066 + 13.3472i 0.748184 + 0.627801i
\(453\) 4.50878 20.8533i 0.211841 0.979776i
\(454\) −8.72755 + 7.32329i −0.409604 + 0.343699i
\(455\) 5.50344 2.01455i 0.258005 0.0944434i
\(456\) −12.8759 0.494715i −0.602970 0.0231672i
\(457\) −5.95597 4.99766i −0.278609 0.233780i 0.492766 0.870162i \(-0.335986\pi\)
−0.771374 + 0.636382i \(0.780430\pi\)
\(458\) 10.4090 + 18.0289i 0.486380 + 0.842435i
\(459\) 6.42009 8.64435i 0.299664 0.403484i
\(460\) 4.48941 7.77588i 0.209320 0.362552i
\(461\) −3.93791 + 22.3330i −0.183407 + 1.04015i 0.744578 + 0.667535i \(0.232651\pi\)
−0.927985 + 0.372617i \(0.878461\pi\)
\(462\) 22.5885 17.5878i 1.05091 0.818260i
\(463\) −32.9983 12.0104i −1.53356 0.558170i −0.569070 0.822289i \(-0.692696\pi\)
−0.964490 + 0.264119i \(0.914919\pi\)
\(464\) −0.726953 4.12275i −0.0337479 0.191394i
\(465\) 7.90160 2.53688i 0.366428 0.117645i
\(466\) −2.27319 1.90743i −0.105303 0.0883601i
\(467\) −4.99826 8.65724i −0.231292 0.400609i 0.726897 0.686747i \(-0.240962\pi\)
−0.958189 + 0.286138i \(0.907629\pi\)
\(468\) 3.77564 1.05413i 0.174529 0.0487273i
\(469\) 11.2738 9.49522i 0.520577 0.438449i
\(470\) 1.63649 + 1.37318i 0.0754857 + 0.0633400i
\(471\) −19.6894 8.03523i −0.907241 0.370244i
\(472\) −1.11199 + 0.933067i −0.0511833 + 0.0429479i
\(473\) 9.05826 7.60078i 0.416499 0.349484i
\(474\) 1.55133 + 11.3254i 0.0712548 + 0.520194i
\(475\) −12.1175 10.1678i −0.555989 0.466530i
\(476\) 5.15542 + 1.86570i 0.236298 + 0.0855142i
\(477\) 1.58439 + 3.30697i 0.0725443 + 0.151416i
\(478\) 0.0198833 + 0.0344389i 0.000909443 + 0.00157520i
\(479\) 14.8336 + 12.4469i 0.677765 + 0.568712i 0.915352 0.402654i \(-0.131912\pi\)
−0.237587 + 0.971366i \(0.576357\pi\)
\(480\) 0.620504 2.86986i 0.0283220 0.130991i
\(481\) 2.12352 + 12.0431i 0.0968241 + 0.549117i
\(482\) −17.7989 6.47826i −0.810716 0.295077i
\(483\) 19.1514 14.9116i 0.871420 0.678502i
\(484\) 4.86689 27.6015i 0.221222 1.25461i
\(485\) 8.02112 13.8930i 0.364220 0.630848i
\(486\) −9.80979 12.1148i −0.444981 0.549538i
\(487\) 8.70939 + 15.0851i 0.394660 + 0.683571i 0.993058 0.117628i \(-0.0375290\pi\)
−0.598398 + 0.801199i \(0.704196\pi\)
\(488\) 6.52937 + 5.47879i 0.295571 + 0.248013i
\(489\) −3.74697 + 5.95002i −0.169444 + 0.269069i
\(490\) 5.89541 10.2984i 0.266328 0.465232i
\(491\) 14.8274 12.4416i 0.669149 0.561483i −0.243664 0.969860i \(-0.578349\pi\)
0.912813 + 0.408377i \(0.133905\pi\)
\(492\) 8.95813 2.87609i 0.403864 0.129664i
\(493\) −6.64552 5.57626i −0.299299 0.251142i
\(494\) −9.72090 −0.437364
\(495\) −31.6771 2.43778i −1.42378 0.109570i
\(496\) 1.41321 + 2.44775i 0.0634549 + 0.109907i
\(497\) −12.8270 22.1231i −0.575370 0.992355i
\(498\) −9.42899 + 7.31379i −0.422523 + 0.327739i
\(499\) −36.1469 13.1564i −1.61816 0.588961i −0.635127 0.772408i \(-0.719052\pi\)
−0.983030 + 0.183447i \(0.941274\pi\)
\(500\) 9.25420 7.76520i 0.413861 0.347270i
\(501\) −6.20425 + 4.81246i −0.277186 + 0.215005i
\(502\) −18.3684 + 6.68554i −0.819820 + 0.298390i
\(503\) −10.1741 17.6220i −0.453640 0.785727i 0.544969 0.838456i \(-0.316541\pi\)
−0.998609 + 0.0527289i \(0.983208\pi\)
\(504\) 4.47232 6.55731i 0.199213 0.292086i
\(505\) 9.91609 17.1752i 0.441260 0.764285i
\(506\) 5.74581 32.5861i 0.255433 1.44863i
\(507\) −18.6231 + 5.97909i −0.827079 + 0.265541i
\(508\) −2.96241 1.07823i −0.131436 0.0478387i
\(509\) 9.70115 8.14024i 0.429996 0.360810i −0.401954 0.915660i \(-0.631669\pi\)
0.831950 + 0.554850i \(0.187224\pi\)
\(510\) −2.83768 5.38221i −0.125655 0.238328i
\(511\) 13.3413 0.0245109i 0.590186 0.00108430i
\(512\) 1.00000 0.0441942
\(513\) 15.3516 + 35.4772i 0.677792 + 1.56636i
\(514\) −6.88636 11.9275i −0.303745 0.526101i
\(515\) 23.5926 8.58702i 1.03962 0.378389i
\(516\) 1.74702 2.77418i 0.0769082 0.122127i
\(517\) 7.39789 + 2.69261i 0.325359 + 0.118421i
\(518\) 18.9971 + 15.8811i 0.834686 + 0.697776i
\(519\) −19.3589 + 6.21534i −0.849761 + 0.272823i
\(520\) 0.384646 2.18143i 0.0168678 0.0956622i
\(521\) 13.9161 0.609676 0.304838 0.952404i \(-0.401398\pi\)
0.304838 + 0.952404i \(0.401398\pi\)
\(522\) −10.2119 + 7.31080i −0.446961 + 0.319985i
\(523\) −9.94983 −0.435075 −0.217538 0.976052i \(-0.569803\pi\)
−0.217538 + 0.976052i \(0.569803\pi\)
\(524\) 16.5994 + 13.9286i 0.725150 + 0.608473i
\(525\) 9.27194 2.99564i 0.404661 0.130740i
\(526\) 2.27032 + 12.8756i 0.0989906 + 0.561404i
\(527\) 5.50378 + 2.00321i 0.239748 + 0.0872612i
\(528\) −1.46844 10.7203i −0.0639057 0.466543i
\(529\) 0.877612 4.97718i 0.0381570 0.216399i
\(530\) 2.07206 0.0900047
\(531\) 3.96581 + 1.79903i 0.172102 + 0.0780711i
\(532\) −15.0546 + 12.6795i −0.652701 + 0.549728i
\(533\) 6.66983 2.42762i 0.288902 0.105152i
\(534\) −2.38783 + 11.0439i −0.103332 + 0.477914i
\(535\) 14.3635 + 5.22787i 0.620986 + 0.226021i
\(536\) −0.967408 5.48644i −0.0417857 0.236978i
\(537\) 2.63721 4.18776i 0.113804 0.180715i
\(538\) −2.55987 + 14.5177i −0.110364 + 0.625904i
\(539\) 7.43539 43.0935i 0.320265 1.85617i
\(540\) −8.56877 + 2.04122i −0.368741 + 0.0878399i
\(541\) 9.79775 16.9702i 0.421238 0.729606i −0.574823 0.818278i \(-0.694929\pi\)
0.996061 + 0.0886719i \(0.0282623\pi\)
\(542\) −17.0861 + 6.21885i −0.733913 + 0.267122i
\(543\) −9.96476 + 15.8236i −0.427629 + 0.679054i
\(544\) 1.58743 1.33201i 0.0680603 0.0571094i
\(545\) −24.0838 + 20.2087i −1.03164 + 0.865646i
\(546\) 3.18155 5.07280i 0.136158 0.217096i
\(547\) −14.4391 + 5.25541i −0.617372 + 0.224705i −0.631726 0.775192i \(-0.717653\pi\)
0.0143537 + 0.999897i \(0.495431\pi\)
\(548\) 9.30633 + 16.1190i 0.397547 + 0.688571i
\(549\) 6.35939 24.7670i 0.271412 1.05703i
\(550\) 6.64164 11.5037i 0.283201 0.490518i
\(551\) 29.2657 10.6519i 1.24676 0.453784i
\(552\) −1.24500 9.08911i −0.0529908 0.386858i
\(553\) 13.3968 + 11.1994i 0.569691 + 0.476247i
\(554\) 2.38958 + 13.5520i 0.101523 + 0.575768i
\(555\) −3.72916 27.2247i −0.158294 1.15562i
\(556\) −1.36438 + 7.73781i −0.0578628 + 0.328156i
\(557\) 0.0271240 0.0469801i 0.00114928 0.00199061i −0.865450 0.500995i \(-0.832968\pi\)
0.866599 + 0.499004i \(0.166301\pi\)
\(558\) 4.79057 6.99628i 0.202801 0.296176i
\(559\) 1.23665 2.14193i 0.0523045 0.0905941i
\(560\) −2.24968 3.88007i −0.0950662 0.163963i
\(561\) −16.6106 15.0618i −0.701301 0.635908i
\(562\) −2.77399 15.7321i −0.117014 0.663618i
\(563\) −2.64187 14.9828i −0.111342 0.631449i −0.988497 0.151242i \(-0.951673\pi\)
0.877155 0.480207i \(-0.159438\pi\)
\(564\) 2.18111 + 0.0838021i 0.0918414 + 0.00352871i
\(565\) −26.9649 22.6263i −1.13442 0.951894i
\(566\) 8.87076 0.372866
\(567\) −23.5380 3.60015i −0.988504 0.151192i
\(568\) −9.66557 −0.405558
\(569\) −17.9447 15.0574i −0.752283 0.631240i 0.183823 0.982959i \(-0.441153\pi\)
−0.936106 + 0.351719i \(0.885597\pi\)
\(570\) 21.8273 + 0.838643i 0.914245 + 0.0351269i
\(571\) −1.60735 9.11572i −0.0672654 0.381481i −0.999792 0.0203806i \(-0.993512\pi\)
0.932527 0.361101i \(-0.117599\pi\)
\(572\) −1.41750 8.03905i −0.0592687 0.336129i
\(573\) 25.6809 + 23.2863i 1.07284 + 0.972800i
\(574\) 7.16299 12.4595i 0.298977 0.520048i
\(575\) 5.63104 9.75324i 0.234830 0.406738i
\(576\) −1.29623 2.70551i −0.0540095 0.112730i
\(577\) 13.1250 22.7331i 0.546400 0.946393i −0.452117 0.891959i \(-0.649331\pi\)
0.998517 0.0544343i \(-0.0173355\pi\)
\(578\) −2.20635 + 12.5128i −0.0917719 + 0.520464i
\(579\) 4.93620 + 36.0366i 0.205141 + 1.49763i
\(580\) 1.23233 + 6.98891i 0.0511698 + 0.290199i
\(581\) −3.13228 + 17.9569i −0.129949 + 0.744977i
\(582\) −2.22442 16.2393i −0.0922050 0.673141i
\(583\) 7.17549 2.61166i 0.297178 0.108164i
\(584\) 2.52128 4.36698i 0.104331 0.180707i
\(585\) −6.40049 + 1.78697i −0.264628 + 0.0738821i
\(586\) −9.60074 16.6290i −0.396603 0.686937i
\(587\) 38.4208 13.9840i 1.58580 0.577183i 0.609343 0.792907i \(-0.291433\pi\)
0.976454 + 0.215724i \(0.0692112\pi\)
\(588\) −1.68952 12.0061i −0.0696748 0.495122i
\(589\) −16.1075 + 13.5158i −0.663697 + 0.556908i
\(590\) 1.88504 1.58174i 0.0776060 0.0651192i
\(591\) 7.46521 11.8544i 0.307078 0.487625i
\(592\) 8.79433 3.20087i 0.361445 0.131555i
\(593\) 14.1694 24.5421i 0.581867 1.00782i −0.413391 0.910554i \(-0.635656\pi\)
0.995258 0.0972697i \(-0.0310109\pi\)
\(594\) −27.1006 + 17.8689i −1.11195 + 0.733169i
\(595\) −8.73948 3.16274i −0.358284 0.129660i
\(596\) −1.46419 + 8.30385i −0.0599757 + 0.340139i
\(597\) −12.9680 + 20.5926i −0.530746 + 0.842800i
\(598\) −1.20181 6.81581i −0.0491457 0.278719i
\(599\) 25.9357 + 9.43981i 1.05970 + 0.385700i 0.812316 0.583217i \(-0.198206\pi\)
0.247386 + 0.968917i \(0.420428\pi\)
\(600\) 0.778294 3.59965i 0.0317737 0.146955i
\(601\) 25.9677 9.45146i 1.05924 0.385533i 0.247099 0.968990i \(-0.420523\pi\)
0.812144 + 0.583457i \(0.198300\pi\)
\(602\) −0.878671 4.93021i −0.0358120 0.200940i
\(603\) −13.5897 + 9.72901i −0.553414 + 0.396196i
\(604\) −12.3179 −0.501208
\(605\) −8.25037 + 46.7902i −0.335425 + 1.90229i
\(606\) −2.74993 20.0758i −0.111708 0.815523i
\(607\) −6.02460 2.19278i −0.244531 0.0890020i 0.216847 0.976206i \(-0.430423\pi\)
−0.461378 + 0.887204i \(0.652645\pi\)
\(608\) 1.29184 + 7.32638i 0.0523909 + 0.297124i
\(609\) −4.01976 + 18.7584i −0.162889 + 0.760130i
\(610\) −11.0686 9.28766i −0.448155 0.376047i
\(611\) 1.64667 0.0666171
\(612\) −5.66143 2.56821i −0.228850 0.103814i
\(613\) −43.5017 −1.75702 −0.878508 0.477728i \(-0.841461\pi\)
−0.878508 + 0.477728i \(0.841461\pi\)
\(614\) −1.61416 + 9.15437i −0.0651423 + 0.369440i
\(615\) −15.1859 + 4.87555i −0.612353 + 0.196601i
\(616\) −12.6811 10.6010i −0.510934 0.427128i
\(617\) 26.4638 + 9.63205i 1.06539 + 0.387772i 0.814452 0.580231i \(-0.197038\pi\)
0.250942 + 0.968002i \(0.419260\pi\)
\(618\) 13.6697 21.7069i 0.549877 0.873179i
\(619\) 22.9006 8.33513i 0.920452 0.335017i 0.162034 0.986785i \(-0.448195\pi\)
0.758418 + 0.651768i \(0.225973\pi\)
\(620\) −2.39567 4.14943i −0.0962126 0.166645i
\(621\) −22.9769 + 15.1499i −0.922031 + 0.607945i
\(622\) 22.5254 0.903185
\(623\) 8.65723 + 14.9314i 0.346845 + 0.598212i
\(624\) −1.05553 2.00202i −0.0422551 0.0801449i
\(625\) −7.54362 + 6.32985i −0.301745 + 0.253194i
\(626\) −13.3198 4.84803i −0.532368 0.193766i
\(627\) 76.6442 24.6073i 3.06087 0.982721i
\(628\) −2.13203 + 12.0913i −0.0850772 + 0.482497i
\(629\) 9.69675 16.7953i 0.386635 0.669671i
\(630\) −7.58149 + 11.1160i −0.302054 + 0.442871i
\(631\) 12.4789 + 21.6141i 0.496778 + 0.860445i 0.999993 0.00371657i \(-0.00118303\pi\)
−0.503215 + 0.864161i \(0.667850\pi\)
\(632\) 6.20178 2.25726i 0.246694 0.0897891i
\(633\) −12.8783 + 9.98930i −0.511866 + 0.397039i
\(634\) −2.02979 + 1.70319i −0.0806132 + 0.0676425i
\(635\) 5.02189 + 1.82782i 0.199288 + 0.0725348i
\(636\) 1.67285 1.29758i 0.0663327 0.0514523i
\(637\) −1.62140 9.00189i −0.0642424 0.356668i
\(638\) 13.0765 + 22.6491i 0.517702 + 0.896686i
\(639\) 12.5288 + 26.1503i 0.495630 + 1.03449i
\(640\) −1.69520 −0.0670088
\(641\) −18.2420 15.3069i −0.720516 0.604585i 0.207012 0.978338i \(-0.433626\pi\)
−0.927528 + 0.373754i \(0.878070\pi\)
\(642\) 14.8699 4.77412i 0.586869 0.188419i
\(643\) 14.0311 11.7735i 0.553331 0.464300i −0.322736 0.946489i \(-0.604603\pi\)
0.876067 + 0.482189i \(0.160158\pi\)
\(644\) −10.7515 8.98796i −0.423668 0.354175i
\(645\) −2.96155 + 4.70280i −0.116611 + 0.185173i
\(646\) 11.8095 + 9.90934i 0.464638 + 0.389878i
\(647\) 18.0908 + 31.3343i 0.711225 + 1.23188i 0.964398 + 0.264456i \(0.0851925\pi\)
−0.253173 + 0.967421i \(0.581474\pi\)
\(648\) −5.63959 + 7.01392i −0.221544 + 0.275533i
\(649\) 4.53419 7.85345i 0.177983 0.308275i
\(650\) 0.482459 2.73616i 0.0189236 0.107321i
\(651\) −1.78132 12.8292i −0.0698156 0.502815i
\(652\) 3.81483 + 1.38848i 0.149400 + 0.0543773i
\(653\) 1.93084 + 10.9503i 0.0755595 + 0.428519i 0.998997 + 0.0447709i \(0.0142558\pi\)
−0.923438 + 0.383748i \(0.874633\pi\)
\(654\) −6.78847 + 31.3970i −0.265450 + 1.22772i
\(655\) −28.1394 23.6118i −1.09950 0.922589i
\(656\) −2.71600 4.70425i −0.106042 0.183670i
\(657\) −15.0831 1.16075i −0.588447 0.0452851i
\(658\) 2.55017 2.14785i 0.0994161 0.0837318i
\(659\) 13.7667 + 11.5517i 0.536276 + 0.449989i 0.870262 0.492589i \(-0.163949\pi\)
−0.333986 + 0.942578i \(0.608394\pi\)
\(660\) 2.48931 + 18.1732i 0.0968962 + 0.707389i
\(661\) −36.2561 + 30.4225i −1.41020 + 1.18330i −0.453846 + 0.891080i \(0.649948\pi\)
−0.956352 + 0.292216i \(0.905607\pi\)
\(662\) 12.3729 10.3821i 0.480885 0.403510i
\(663\) −4.34228 1.77208i −0.168640 0.0688219i
\(664\) 5.27770 + 4.42851i 0.204814 + 0.171860i
\(665\) 25.5207 21.4944i 0.989649 0.833517i
\(666\) −20.0595 19.6441i −0.777288 0.761194i
\(667\) 11.0867 + 19.2028i 0.429280 + 0.743534i
\(668\) 3.47271 + 2.91395i 0.134363 + 0.112744i
\(669\) 36.1920 11.6198i 1.39926 0.449246i
\(670\) 1.63995 + 9.30064i 0.0633570 + 0.359315i
\(671\) −50.0365 18.2118i −1.93164 0.703059i
\(672\) −4.24604 1.72371i −0.163794 0.0664936i
\(673\) 4.00665 22.7229i 0.154445 0.875902i −0.804846 0.593483i \(-0.797752\pi\)
0.959291 0.282418i \(-0.0911367\pi\)
\(674\) −9.88003 + 17.1127i −0.380565 + 0.659157i
\(675\) −10.7478 + 2.56028i −0.413681 + 0.0985454i
\(676\) 5.64630 + 9.77967i 0.217165 + 0.376141i
\(677\) 1.23585 + 1.03700i 0.0474977 + 0.0398553i 0.666227 0.745749i \(-0.267908\pi\)
−0.618730 + 0.785604i \(0.712352\pi\)
\(678\) −35.9388 1.38083i −1.38022 0.0530305i
\(679\) −19.2094 16.0586i −0.737190 0.616272i
\(680\) −2.69101 + 2.25802i −0.103195 + 0.0865913i
\(681\) 4.17024 19.2876i 0.159804 0.739102i
\(682\) −13.5261 11.3498i −0.517943 0.434606i
\(683\) −2.97731 −0.113924 −0.0569619 0.998376i \(-0.518141\pi\)
−0.0569619 + 0.998376i \(0.518141\pi\)
\(684\) 18.1471 12.9917i 0.693871 0.496751i
\(685\) −15.7761 27.3250i −0.602774 1.04404i
\(686\) −14.2527 11.8262i −0.544172 0.451527i
\(687\) −33.3848 13.6243i −1.27371 0.519799i
\(688\) −1.77866 0.647378i −0.0678107 0.0246811i
\(689\) 1.22350 1.02664i 0.0466117 0.0391118i
\(690\) 2.11053 + 15.4079i 0.0803465 + 0.586568i
\(691\) −25.3368 + 9.22183i −0.963856 + 0.350815i −0.775543 0.631294i \(-0.782524\pi\)
−0.188313 + 0.982109i \(0.560302\pi\)
\(692\) 5.86939 + 10.1661i 0.223121 + 0.386456i
\(693\) −12.2437 + 48.0501i −0.465099 + 1.82527i
\(694\) 1.14902 1.99015i 0.0436160 0.0755452i
\(695\) 2.31291 13.1172i 0.0877336 0.497562i
\(696\) 5.37153 + 4.87066i 0.203607 + 0.184622i
\(697\) −10.5776 3.84992i −0.400653 0.145826i
\(698\) −8.74689 + 7.33952i −0.331075 + 0.277805i
\(699\) 5.13596 + 0.197333i 0.194260 + 0.00746381i
\(700\) −2.82176 4.86675i −0.106652 0.183946i
\(701\) 12.4466 0.470101 0.235050 0.971983i \(-0.424475\pi\)
0.235050 + 0.971983i \(0.424475\pi\)
\(702\) −4.04828 + 5.45082i −0.152793 + 0.205728i
\(703\) 34.8117 + 60.2956i 1.31295 + 2.27409i
\(704\) −5.87043 + 2.13666i −0.221250 + 0.0805285i
\(705\) −3.69743 0.142062i −0.139253 0.00535035i
\(706\) 8.03755 + 2.92543i 0.302497 + 0.110100i
\(707\) −23.7476 19.8524i −0.893120 0.746625i
\(708\) 0.531334 2.45745i 0.0199688 0.0923567i
\(709\) 3.60082 20.4213i 0.135232 0.766936i −0.839467 0.543411i \(-0.817132\pi\)
0.974698 0.223525i \(-0.0717564\pi\)
\(710\) 16.3851 0.614922
\(711\) −14.1460 13.8531i −0.530515 0.519531i
\(712\) 6.52351 0.244479
\(713\) −11.4680 9.62278i −0.429479 0.360376i
\(714\) −9.03626 + 2.91949i −0.338174 + 0.109259i
\(715\) 2.40295 + 13.6278i 0.0898653 + 0.509652i
\(716\) −2.68497 0.977249i −0.100342 0.0365215i
\(717\) −0.0637719 0.0260252i −0.00238160 0.000971930i
\(718\) −1.55582 + 8.82348i −0.0580626 + 0.329289i
\(719\) 18.6950 0.697205 0.348603 0.937271i \(-0.386656\pi\)
0.348603 + 0.937271i \(0.386656\pi\)
\(720\) 2.19737 + 4.58639i 0.0818911 + 0.170925i
\(721\) −6.87526 38.5770i −0.256048 1.43668i
\(722\) −34.1528 + 12.4306i −1.27104 + 0.462619i
\(723\) 31.2366 10.0288i 1.16170 0.372975i
\(724\) 10.1452 + 3.69256i 0.377044 + 0.137233i
\(725\) 1.54571 + 8.76615i 0.0574062 + 0.325567i
\(726\) 22.6404 + 42.9418i 0.840262 + 1.59372i
\(727\) 4.18619 23.7411i 0.155257 0.880507i −0.803293 0.595584i \(-0.796921\pi\)
0.958550 0.284923i \(-0.0919681\pi\)
\(728\) −3.25082 1.17644i −0.120483 0.0436019i
\(729\) 26.2864 + 6.16636i 0.973571 + 0.228384i
\(730\) −4.27408 + 7.40292i −0.158191 + 0.273995i
\(731\) −3.68580 + 1.34152i −0.136324 + 0.0496179i
\(732\) −14.7522 0.566806i −0.545258 0.0209498i
\(733\) 9.85742 8.27136i 0.364092 0.305510i −0.442327 0.896854i \(-0.645847\pi\)
0.806419 + 0.591344i \(0.201403\pi\)
\(734\) 7.36427 6.17936i 0.271820 0.228084i
\(735\) 2.86409 + 20.3527i 0.105643 + 0.750721i
\(736\) −4.97718 + 1.81154i −0.183461 + 0.0667744i
\(737\) 17.4018 + 30.1408i 0.641003 + 1.11025i
\(738\) −9.20686 + 13.4460i −0.338909 + 0.494953i
\(739\) −11.8507 + 20.5261i −0.435936 + 0.755063i −0.997372 0.0724571i \(-0.976916\pi\)
0.561435 + 0.827521i \(0.310249\pi\)
\(740\) −14.9082 + 5.42613i −0.548036 + 0.199469i
\(741\) 13.3040 10.3195i 0.488734 0.379096i
\(742\) 0.555714 3.18582i 0.0204009 0.116955i
\(743\) −5.30199 30.0691i −0.194511 1.10313i −0.913113 0.407706i \(-0.866329\pi\)
0.718602 0.695421i \(-0.244782\pi\)
\(744\) −4.53258 1.84974i −0.166173 0.0678148i
\(745\) 2.48210 14.0767i 0.0909373 0.515731i
\(746\) −0.772745 + 1.33843i −0.0282922 + 0.0490036i
\(747\) 5.14030 20.0192i 0.188074 0.732465i
\(748\) −6.47282 + 11.2113i −0.236670 + 0.409924i
\(749\) 11.8901 20.6819i 0.434455 0.755700i
\(750\) −4.42188 + 20.4515i −0.161464 + 0.746782i
\(751\) 3.36612 + 19.0902i 0.122831 + 0.696611i 0.982572 + 0.185881i \(0.0595138\pi\)
−0.859741 + 0.510730i \(0.829375\pi\)
\(752\) −0.218830 1.24105i −0.00797993 0.0452564i
\(753\) 18.0416 28.6493i 0.657473 1.04404i
\(754\) 4.19043 + 3.51619i 0.152607 + 0.128052i
\(755\) 20.8813 0.759950
\(756\) 0.840309 + 13.7220i 0.0305617 + 0.499065i
\(757\) −21.3375 −0.775525 −0.387763 0.921759i \(-0.626752\pi\)
−0.387763 + 0.921759i \(0.626752\pi\)
\(758\) −8.61457 7.22848i −0.312895 0.262550i
\(759\) 26.7290 + 50.6968i 0.970203 + 1.84018i
\(760\) −2.18993 12.4197i −0.0794371 0.450510i
\(761\) 1.09521 + 6.21124i 0.0397013 + 0.225157i 0.998203 0.0599312i \(-0.0190881\pi\)
−0.958501 + 0.285088i \(0.907977\pi\)
\(762\) 5.19897 1.66917i 0.188339 0.0604678i
\(763\) 24.6120 + 42.4490i 0.891015 + 1.53676i
\(764\) 10.0073 17.3332i 0.362053 0.627094i
\(765\) 9.59727 + 4.35365i 0.346990 + 0.157406i
\(766\) −11.6445 + 20.1689i −0.420734 + 0.728733i
\(767\) 0.329370 1.86795i 0.0118929 0.0674479i
\(768\) −1.36859 + 1.06158i −0.0493849 + 0.0383064i
\(769\) 3.06136 + 17.3618i 0.110