Properties

Label 378.2.v.b.67.9
Level $378$
Weight $2$
Character 378.67
Analytic conductor $3.018$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(67,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 67.9
Character \(\chi\) \(=\) 378.67
Dual form 378.2.v.b.79.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 0.642788i) q^{2} +(1.40163 + 1.01757i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.289065 + 1.63937i) q^{5} +(1.72779 - 0.121449i) q^{6} +(1.93330 - 1.80620i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.929121 + 2.85250i) q^{9} +O(q^{10})\) \(q+(0.766044 - 0.642788i) q^{2} +(1.40163 + 1.01757i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.289065 + 1.63937i) q^{5} +(1.72779 - 0.121449i) q^{6} +(1.93330 - 1.80620i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.929121 + 2.85250i) q^{9} +(0.832330 + 1.44164i) q^{10} +(0.472059 + 2.67718i) q^{11} +(1.24550 - 1.20364i) q^{12} +(-0.391548 + 2.22058i) q^{13} +(0.319985 - 2.62633i) q^{14} +(-2.07333 + 2.00364i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-3.56351 - 6.17218i) q^{17} +(2.54530 + 1.58791i) q^{18} +(1.76602 - 3.05883i) q^{19} +(1.56427 + 0.569347i) q^{20} +(4.54769 - 0.564370i) q^{21} +(2.08247 + 1.74740i) q^{22} +(-2.00945 - 1.68613i) q^{23} +(0.180424 - 1.72263i) q^{24} +(2.09449 + 0.762331i) q^{25} +(1.12742 + 1.95275i) q^{26} +(-1.60032 + 4.94358i) q^{27} +(-1.44305 - 2.21757i) q^{28} +(1.52100 + 8.62604i) q^{29} +(-0.300344 + 2.86759i) q^{30} +(1.52088 - 8.62534i) q^{31} +(-0.939693 + 0.342020i) q^{32} +(-2.06255 + 4.23276i) q^{33} +(-6.69721 - 2.43759i) q^{34} +(2.40219 + 3.69150i) q^{35} +(2.97050 - 0.419674i) q^{36} -9.89756 q^{37} +(-0.613331 - 3.47837i) q^{38} +(-2.80839 + 2.71400i) q^{39} +(1.56427 - 0.569347i) q^{40} +(0.959980 - 5.44432i) q^{41} +(3.12096 - 3.35553i) q^{42} +(-0.952500 + 0.799242i) q^{43} +2.71848 q^{44} +(-4.94487 + 0.698615i) q^{45} -2.62315 q^{46} +(0.104767 + 0.594161i) q^{47} +(-0.969071 - 1.43558i) q^{48} +(0.475260 - 6.98385i) q^{49} +(2.09449 - 0.762331i) q^{50} +(1.28588 - 12.2772i) q^{51} +(2.11885 + 0.771200i) q^{52} +(-2.22157 + 3.84788i) q^{53} +(1.95175 + 4.81567i) q^{54} -4.52534 q^{55} +(-2.53087 - 0.771181i) q^{56} +(5.58786 - 2.49030i) q^{57} +(6.70987 + 5.63025i) q^{58} +(-10.1977 + 3.71166i) q^{59} +(1.61317 + 2.38976i) q^{60} +(-1.63958 - 9.29853i) q^{61} +(-4.37920 - 7.58500i) q^{62} +(6.94845 + 3.83654i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-3.52717 - 1.28379i) q^{65} +(1.14076 + 4.56826i) q^{66} +(-0.796600 - 0.668427i) q^{67} +(-6.69721 + 2.43759i) q^{68} +(-1.10075 - 4.40807i) q^{69} +(4.21303 + 1.28375i) q^{70} +(-0.486389 + 0.842451i) q^{71} +(2.00577 - 2.23089i) q^{72} -7.91654 q^{73} +(-7.58197 + 6.36203i) q^{74} +(2.15997 + 3.19978i) q^{75} +(-2.70569 - 2.27035i) q^{76} +(5.74815 + 4.32314i) q^{77} +(-0.406826 + 3.88425i) q^{78} +(0.606801 - 0.509166i) q^{79} +(0.832330 - 1.44164i) q^{80} +(-7.27347 + 5.30063i) q^{81} +(-2.76415 - 4.78765i) q^{82} +(1.53575 + 8.70965i) q^{83} +(0.233902 - 4.57660i) q^{84} +(11.1486 - 4.05775i) q^{85} +(-0.215914 + 1.22451i) q^{86} +(-6.64568 + 13.6382i) q^{87} +(2.08247 - 1.74740i) q^{88} +(3.44098 - 5.95995i) q^{89} +(-3.33893 + 3.71367i) q^{90} +(3.25384 + 5.00025i) q^{91} +(-2.00945 + 1.68613i) q^{92} +(10.9086 - 10.5419i) q^{93} +(0.462175 + 0.387811i) q^{94} +(4.50406 + 3.77936i) q^{95} +(-1.66513 - 0.476814i) q^{96} +(13.0432 - 10.9446i) q^{97} +(-4.12506 - 5.65543i) q^{98} +(-7.19804 + 3.83397i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9} - 6 q^{10} + 12 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{15} - 12 q^{17} - 18 q^{19} - 30 q^{21} - 6 q^{22} + 30 q^{23} + 6 q^{25} - 18 q^{26} - 6 q^{27} + 3 q^{29} + 3 q^{30} + 9 q^{31} - 18 q^{33} + 9 q^{34} - 18 q^{35} + 9 q^{36} - 24 q^{39} - 6 q^{41} + 12 q^{42} + 24 q^{43} + 51 q^{45} + 45 q^{47} - 6 q^{48} - 12 q^{49} + 6 q^{50} - 51 q^{51} + 6 q^{52} - 15 q^{53} + 27 q^{54} + 72 q^{55} - 3 q^{56} - 63 q^{57} + 3 q^{58} - 30 q^{59} - 3 q^{60} + 9 q^{61} - 24 q^{62} - 39 q^{63} - 36 q^{64} + 9 q^{65} - 6 q^{67} + 9 q^{68} - 21 q^{69} - 33 q^{70} + 12 q^{71} - 12 q^{72} + 132 q^{73} - 18 q^{74} - 30 q^{75} - 33 q^{77} + 30 q^{78} - 9 q^{79} - 6 q^{80} + 36 q^{81} - 33 q^{82} - 18 q^{83} + 15 q^{84} + 21 q^{85} - 12 q^{86} - 39 q^{87} - 6 q^{88} - 36 q^{89} + 69 q^{90} + 39 q^{91} + 30 q^{92} - 66 q^{93} - 9 q^{94} - 33 q^{95} - 48 q^{97} - 12 q^{98} - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 0.642788i 0.541675 0.454519i
\(3\) 1.40163 + 1.01757i 0.809230 + 0.587492i
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −0.289065 + 1.63937i −0.129274 + 0.733149i 0.849403 + 0.527744i \(0.176962\pi\)
−0.978677 + 0.205404i \(0.934149\pi\)
\(6\) 1.72779 0.121449i 0.705366 0.0495811i
\(7\) 1.93330 1.80620i 0.730717 0.682681i
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) 0.929121 + 2.85250i 0.309707 + 0.950832i
\(10\) 0.832330 + 1.44164i 0.263206 + 0.455886i
\(11\) 0.472059 + 2.67718i 0.142331 + 0.807199i 0.969471 + 0.245204i \(0.0788550\pi\)
−0.827140 + 0.561995i \(0.810034\pi\)
\(12\) 1.24550 1.20364i 0.359544 0.347460i
\(13\) −0.391548 + 2.22058i −0.108596 + 0.615878i 0.881127 + 0.472880i \(0.156786\pi\)
−0.989723 + 0.142999i \(0.954326\pi\)
\(14\) 0.319985 2.62633i 0.0855196 0.701916i
\(15\) −2.07333 + 2.00364i −0.535331 + 0.517339i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) −3.56351 6.17218i −0.864279 1.49697i −0.867762 0.496980i \(-0.834442\pi\)
0.00348325 0.999994i \(-0.498891\pi\)
\(18\) 2.54530 + 1.58791i 0.599932 + 0.374274i
\(19\) 1.76602 3.05883i 0.405152 0.701744i −0.589187 0.807997i \(-0.700552\pi\)
0.994339 + 0.106253i \(0.0338853\pi\)
\(20\) 1.56427 + 0.569347i 0.349781 + 0.127310i
\(21\) 4.54769 0.564370i 0.992387 0.123156i
\(22\) 2.08247 + 1.74740i 0.443985 + 0.372548i
\(23\) −2.00945 1.68613i −0.418999 0.351582i 0.408783 0.912632i \(-0.365953\pi\)
−0.827782 + 0.561049i \(0.810398\pi\)
\(24\) 0.180424 1.72263i 0.0368288 0.351630i
\(25\) 2.09449 + 0.762331i 0.418897 + 0.152466i
\(26\) 1.12742 + 1.95275i 0.221105 + 0.382965i
\(27\) −1.60032 + 4.94358i −0.307982 + 0.951392i
\(28\) −1.44305 2.21757i −0.272711 0.419081i
\(29\) 1.52100 + 8.62604i 0.282443 + 1.60182i 0.714278 + 0.699862i \(0.246755\pi\)
−0.431835 + 0.901953i \(0.642134\pi\)
\(30\) −0.300344 + 2.86759i −0.0548351 + 0.523548i
\(31\) 1.52088 8.62534i 0.273158 1.54916i −0.471594 0.881816i \(-0.656321\pi\)
0.744752 0.667341i \(-0.232568\pi\)
\(32\) −0.939693 + 0.342020i −0.166116 + 0.0604612i
\(33\) −2.06255 + 4.23276i −0.359044 + 0.736828i
\(34\) −6.69721 2.43759i −1.14856 0.418042i
\(35\) 2.40219 + 3.69150i 0.406044 + 0.623977i
\(36\) 2.97050 0.419674i 0.495083 0.0699457i
\(37\) −9.89756 −1.62715 −0.813575 0.581460i \(-0.802482\pi\)
−0.813575 + 0.581460i \(0.802482\pi\)
\(38\) −0.613331 3.47837i −0.0994954 0.564267i
\(39\) −2.80839 + 2.71400i −0.449703 + 0.434588i
\(40\) 1.56427 0.569347i 0.247333 0.0900217i
\(41\) 0.959980 5.44432i 0.149924 0.850260i −0.813357 0.581765i \(-0.802363\pi\)
0.963281 0.268495i \(-0.0865264\pi\)
\(42\) 3.12096 3.35553i 0.481575 0.517770i
\(43\) −0.952500 + 0.799242i −0.145255 + 0.121883i −0.712520 0.701652i \(-0.752446\pi\)
0.567265 + 0.823535i \(0.308002\pi\)
\(44\) 2.71848 0.409826
\(45\) −4.94487 + 0.698615i −0.737138 + 0.104143i
\(46\) −2.62315 −0.386762
\(47\) 0.104767 + 0.594161i 0.0152818 + 0.0866672i 0.991495 0.130146i \(-0.0415447\pi\)
−0.976213 + 0.216814i \(0.930434\pi\)
\(48\) −0.969071 1.43558i −0.139873 0.207209i
\(49\) 0.475260 6.98385i 0.0678942 0.997693i
\(50\) 2.09449 0.762331i 0.296205 0.107810i
\(51\) 1.28588 12.2772i 0.180060 1.71915i
\(52\) 2.11885 + 0.771200i 0.293832 + 0.106946i
\(53\) −2.22157 + 3.84788i −0.305157 + 0.528547i −0.977296 0.211878i \(-0.932042\pi\)
0.672139 + 0.740425i \(0.265376\pi\)
\(54\) 1.95175 + 4.81567i 0.265600 + 0.655329i
\(55\) −4.52534 −0.610197
\(56\) −2.53087 0.771181i −0.338201 0.103053i
\(57\) 5.58786 2.49030i 0.740130 0.329849i
\(58\) 6.70987 + 5.63025i 0.881049 + 0.739288i
\(59\) −10.1977 + 3.71166i −1.32763 + 0.483217i −0.905895 0.423503i \(-0.860800\pi\)
−0.421733 + 0.906720i \(0.638578\pi\)
\(60\) 1.61317 + 2.38976i 0.208260 + 0.308517i
\(61\) −1.63958 9.29853i −0.209927 1.19055i −0.889496 0.456943i \(-0.848944\pi\)
0.679569 0.733612i \(-0.262167\pi\)
\(62\) −4.37920 7.58500i −0.556159 0.963296i
\(63\) 6.94845 + 3.83654i 0.875423 + 0.483358i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −3.52717 1.28379i −0.437492 0.159234i
\(66\) 1.14076 + 4.56826i 0.140417 + 0.562314i
\(67\) −0.796600 0.668427i −0.0973202 0.0816613i 0.592829 0.805328i \(-0.298011\pi\)
−0.690150 + 0.723667i \(0.742455\pi\)
\(68\) −6.69721 + 2.43759i −0.812156 + 0.295601i
\(69\) −1.10075 4.40807i −0.132515 0.530669i
\(70\) 4.21303 + 1.28375i 0.503554 + 0.153438i
\(71\) −0.486389 + 0.842451i −0.0577238 + 0.0999805i −0.893443 0.449176i \(-0.851718\pi\)
0.835719 + 0.549157i \(0.185051\pi\)
\(72\) 2.00577 2.23089i 0.236383 0.262913i
\(73\) −7.91654 −0.926561 −0.463281 0.886212i \(-0.653328\pi\)
−0.463281 + 0.886212i \(0.653328\pi\)
\(74\) −7.58197 + 6.36203i −0.881386 + 0.739571i
\(75\) 2.15997 + 3.19978i 0.249412 + 0.369479i
\(76\) −2.70569 2.27035i −0.310364 0.260427i
\(77\) 5.74815 + 4.32314i 0.655063 + 0.492668i
\(78\) −0.406826 + 3.88425i −0.0460640 + 0.439804i
\(79\) 0.606801 0.509166i 0.0682704 0.0572857i −0.608014 0.793926i \(-0.708034\pi\)
0.676284 + 0.736641i \(0.263589\pi\)
\(80\) 0.832330 1.44164i 0.0930573 0.161180i
\(81\) −7.27347 + 5.30063i −0.808163 + 0.588958i
\(82\) −2.76415 4.78765i −0.305250 0.528708i
\(83\) 1.53575 + 8.70965i 0.168570 + 0.956008i 0.945307 + 0.326183i \(0.105763\pi\)
−0.776737 + 0.629826i \(0.783126\pi\)
\(84\) 0.233902 4.57660i 0.0255208 0.499348i
\(85\) 11.1486 4.05775i 1.20923 0.440125i
\(86\) −0.215914 + 1.22451i −0.0232826 + 0.132042i
\(87\) −6.64568 + 13.6382i −0.712492 + 1.46217i
\(88\) 2.08247 1.74740i 0.221992 0.186274i
\(89\) 3.44098 5.95995i 0.364743 0.631753i −0.623992 0.781431i \(-0.714490\pi\)
0.988735 + 0.149678i \(0.0478236\pi\)
\(90\) −3.33893 + 3.71367i −0.351954 + 0.391456i
\(91\) 3.25384 + 5.00025i 0.341095 + 0.524169i
\(92\) −2.00945 + 1.68613i −0.209500 + 0.175791i
\(93\) 10.9086 10.5419i 1.13116 1.09315i
\(94\) 0.462175 + 0.387811i 0.0476697 + 0.0399996i
\(95\) 4.50406 + 3.77936i 0.462107 + 0.387754i
\(96\) −1.66513 0.476814i −0.169946 0.0486646i
\(97\) 13.0432 10.9446i 1.32434 1.11125i 0.338976 0.940795i \(-0.389920\pi\)
0.985365 0.170458i \(-0.0545248\pi\)
\(98\) −4.12506 5.65543i −0.416694 0.571285i
\(99\) −7.19804 + 3.83397i −0.723430 + 0.385328i
\(100\) 1.11445 1.93029i 0.111445 0.193029i
\(101\) −3.63473 + 3.04990i −0.361669 + 0.303476i −0.805455 0.592656i \(-0.798079\pi\)
0.443787 + 0.896132i \(0.353635\pi\)
\(102\) −6.90659 10.2314i −0.683855 1.01306i
\(103\) −2.44199 + 13.8492i −0.240617 + 1.36460i 0.589840 + 0.807520i \(0.299191\pi\)
−0.830456 + 0.557084i \(0.811920\pi\)
\(104\) 2.11885 0.771200i 0.207771 0.0756224i
\(105\) −0.389367 + 7.61849i −0.0379984 + 0.743488i
\(106\) 0.771545 + 4.37565i 0.0749391 + 0.425001i
\(107\) −6.02453 10.4348i −0.582413 1.00877i −0.995193 0.0979380i \(-0.968775\pi\)
0.412779 0.910831i \(-0.364558\pi\)
\(108\) 4.59058 + 2.43445i 0.441729 + 0.234255i
\(109\) −0.493499 + 0.854765i −0.0472686 + 0.0818717i −0.888692 0.458505i \(-0.848385\pi\)
0.841423 + 0.540377i \(0.181718\pi\)
\(110\) −3.46661 + 2.90883i −0.330529 + 0.277346i
\(111\) −13.8727 10.0714i −1.31674 0.955937i
\(112\) −2.43446 + 1.03605i −0.230035 + 0.0978975i
\(113\) −5.24150 4.39814i −0.493079 0.413742i 0.362049 0.932159i \(-0.382077\pi\)
−0.855128 + 0.518417i \(0.826522\pi\)
\(114\) 2.67981 5.49949i 0.250987 0.515074i
\(115\) 3.34505 2.80683i 0.311928 0.261738i
\(116\) 8.75911 0.813263
\(117\) −6.69800 + 0.946298i −0.619230 + 0.0874852i
\(118\) −5.42608 + 9.39825i −0.499512 + 0.865179i
\(119\) −18.0375 5.49622i −1.65350 0.503838i
\(120\) 2.77187 + 0.793733i 0.253036 + 0.0724576i
\(121\) 3.39218 1.23465i 0.308380 0.112241i
\(122\) −7.23297 6.06918i −0.654843 0.549478i
\(123\) 6.88549 6.65407i 0.620844 0.599977i
\(124\) −8.23021 2.99555i −0.739094 0.269008i
\(125\) −6.01684 + 10.4215i −0.538162 + 0.932124i
\(126\) 7.78890 1.52742i 0.693890 0.136074i
\(127\) 4.91915 + 8.52021i 0.436504 + 0.756047i 0.997417 0.0718278i \(-0.0228832\pi\)
−0.560913 + 0.827875i \(0.689550\pi\)
\(128\) 0.173648 + 0.984808i 0.0153485 + 0.0870455i
\(129\) −2.14833 + 0.151009i −0.189150 + 0.0132956i
\(130\) −3.52717 + 1.28379i −0.309353 + 0.112595i
\(131\) 16.9367 + 14.2116i 1.47977 + 1.24167i 0.906433 + 0.422351i \(0.138795\pi\)
0.573335 + 0.819321i \(0.305650\pi\)
\(132\) 3.81029 + 2.76623i 0.331643 + 0.240769i
\(133\) −2.11064 9.10341i −0.183016 0.789365i
\(134\) −1.03989 −0.0898326
\(135\) −7.64176 4.05254i −0.657698 0.348787i
\(136\) −3.56351 + 6.17218i −0.305569 + 0.529260i
\(137\) 4.27703 + 1.55671i 0.365411 + 0.132999i 0.518199 0.855260i \(-0.326603\pi\)
−0.152787 + 0.988259i \(0.548825\pi\)
\(138\) −3.67668 2.66923i −0.312980 0.227220i
\(139\) 9.92396 3.61203i 0.841739 0.306368i 0.115072 0.993357i \(-0.463290\pi\)
0.726668 + 0.686989i \(0.241068\pi\)
\(140\) 4.05255 1.72467i 0.342503 0.145761i
\(141\) −0.457754 + 0.939399i −0.0385498 + 0.0791116i
\(142\) 0.168921 + 0.958000i 0.0141756 + 0.0803936i
\(143\) −6.12972 −0.512593
\(144\) 0.102523 2.99825i 0.00854361 0.249854i
\(145\) −14.5809 −1.21088
\(146\) −6.06442 + 5.08865i −0.501895 + 0.421140i
\(147\) 7.77266 9.30515i 0.641078 0.767476i
\(148\) −1.71869 + 9.74720i −0.141276 + 0.801215i
\(149\) 7.32767 2.66706i 0.600307 0.218494i −0.0239500 0.999713i \(-0.507624\pi\)
0.624256 + 0.781219i \(0.285402\pi\)
\(150\) 3.71141 + 1.06277i 0.303036 + 0.0867751i
\(151\) 2.91770 + 16.5471i 0.237439 + 1.34658i 0.837416 + 0.546566i \(0.184065\pi\)
−0.599977 + 0.800017i \(0.704824\pi\)
\(152\) −3.53203 −0.286486
\(153\) 14.2952 15.8996i 1.15570 1.28541i
\(154\) 7.18220 0.383125i 0.578758 0.0308731i
\(155\) 13.7005 + 4.98657i 1.10045 + 0.400531i
\(156\) 2.18510 + 3.23701i 0.174948 + 0.259168i
\(157\) −9.60323 + 3.49529i −0.766421 + 0.278954i −0.695499 0.718527i \(-0.744816\pi\)
−0.0709223 + 0.997482i \(0.522594\pi\)
\(158\) 0.137551 0.780088i 0.0109429 0.0620605i
\(159\) −7.02929 + 3.13270i −0.557459 + 0.248439i
\(160\) −0.289065 1.63937i −0.0228526 0.129604i
\(161\) −6.93035 + 0.369691i −0.546188 + 0.0291357i
\(162\) −2.16462 + 8.73581i −0.170069 + 0.686350i
\(163\) 9.74051 + 16.8711i 0.762936 + 1.32144i 0.941331 + 0.337485i \(0.109576\pi\)
−0.178395 + 0.983959i \(0.557090\pi\)
\(164\) −5.19491 1.89079i −0.405654 0.147646i
\(165\) −6.34284 4.60483i −0.493790 0.358486i
\(166\) 6.77491 + 5.68482i 0.525835 + 0.441228i
\(167\) 13.6941 + 11.4907i 1.05968 + 0.889179i 0.994078 0.108667i \(-0.0346583\pi\)
0.0656035 + 0.997846i \(0.479103\pi\)
\(168\) −2.76260 3.65623i −0.213140 0.282084i
\(169\) 7.43833 + 2.70733i 0.572179 + 0.208256i
\(170\) 5.93204 10.2746i 0.454966 0.788025i
\(171\) 10.3661 + 2.19553i 0.792719 + 0.167897i
\(172\) 0.621700 + 1.07682i 0.0474042 + 0.0821064i
\(173\) −1.27575 0.464335i −0.0969935 0.0353028i 0.293068 0.956092i \(-0.405324\pi\)
−0.390061 + 0.920789i \(0.627546\pi\)
\(174\) 3.67559 + 14.7192i 0.278646 + 1.11586i
\(175\) 5.42618 2.30926i 0.410181 0.174564i
\(176\) 0.472059 2.67718i 0.0355828 0.201800i
\(177\) −18.0702 5.17447i −1.35824 0.388937i
\(178\) −1.19504 6.77740i −0.0895719 0.507988i
\(179\) −4.80449 8.32162i −0.359104 0.621987i 0.628707 0.777642i \(-0.283584\pi\)
−0.987811 + 0.155655i \(0.950251\pi\)
\(180\) −0.170667 + 4.99106i −0.0127207 + 0.372012i
\(181\) −2.78085 4.81657i −0.206699 0.358013i 0.743974 0.668209i \(-0.232939\pi\)
−0.950673 + 0.310196i \(0.899605\pi\)
\(182\) 5.70669 + 1.73889i 0.423008 + 0.128895i
\(183\) 7.16378 14.7015i 0.529562 1.08676i
\(184\) −0.455505 + 2.58330i −0.0335803 + 0.190443i
\(185\) 2.86104 16.2258i 0.210348 1.19294i
\(186\) 1.58022 15.0875i 0.115868 1.10627i
\(187\) 14.8418 12.4538i 1.08534 0.910711i
\(188\) 0.603326 0.0440021
\(189\) 5.83522 + 12.4479i 0.424450 + 0.905452i
\(190\) 5.87964 0.426554
\(191\) 13.0098 10.9165i 0.941358 0.789894i −0.0364627 0.999335i \(-0.511609\pi\)
0.977821 + 0.209441i \(0.0671646\pi\)
\(192\) −1.58205 + 0.705062i −0.114175 + 0.0508835i
\(193\) 3.86587 21.9244i 0.278271 1.57816i −0.450103 0.892977i \(-0.648613\pi\)
0.728375 0.685179i \(-0.240276\pi\)
\(194\) 2.95666 16.7681i 0.212276 1.20388i
\(195\) −3.63745 5.38852i −0.260483 0.385880i
\(196\) −6.79522 1.68077i −0.485373 0.120055i
\(197\) −0.401069 0.694672i −0.0285750 0.0494934i 0.851384 0.524543i \(-0.175764\pi\)
−0.879959 + 0.475049i \(0.842430\pi\)
\(198\) −3.04959 + 7.56380i −0.216725 + 0.537536i
\(199\) 1.19471 + 2.06930i 0.0846908 + 0.146689i 0.905259 0.424859i \(-0.139676\pi\)
−0.820569 + 0.571548i \(0.806343\pi\)
\(200\) −0.387045 2.19504i −0.0273682 0.155213i
\(201\) −0.436369 1.74748i −0.0307791 0.123258i
\(202\) −0.823926 + 4.67272i −0.0579712 + 0.328771i
\(203\) 18.5209 + 13.9294i 1.29991 + 0.977655i
\(204\) −11.8674 3.39826i −0.830884 0.237926i
\(205\) 8.64776 + 3.14753i 0.603986 + 0.219833i
\(206\) 7.03143 + 12.1788i 0.489903 + 0.848537i
\(207\) 2.94265 7.29857i 0.204529 0.507285i
\(208\) 1.12742 1.95275i 0.0781724 0.135399i
\(209\) 9.02269 + 3.28399i 0.624113 + 0.227158i
\(210\) 4.59880 + 6.08638i 0.317347 + 0.420000i
\(211\) 7.96237 + 6.68122i 0.548152 + 0.459954i 0.874315 0.485360i \(-0.161311\pi\)
−0.326163 + 0.945314i \(0.605756\pi\)
\(212\) 3.40365 + 2.85600i 0.233764 + 0.196151i
\(213\) −1.53899 + 0.685870i −0.105450 + 0.0469950i
\(214\) −11.3224 4.12102i −0.773984 0.281707i
\(215\) −1.03492 1.79253i −0.0705809 0.122250i
\(216\) 5.08143 1.08587i 0.345747 0.0738842i
\(217\) −12.6388 19.4223i −0.857978 1.31848i
\(218\) 0.171390 + 0.972003i 0.0116080 + 0.0658324i
\(219\) −11.0960 8.05560i −0.749801 0.544347i
\(220\) −0.785817 + 4.45659i −0.0529798 + 0.300463i
\(221\) 15.1011 5.49636i 1.01581 0.369725i
\(222\) −17.1009 + 1.20204i −1.14774 + 0.0806759i
\(223\) −2.39329 0.871087i −0.160267 0.0583323i 0.260641 0.965436i \(-0.416066\pi\)
−0.420908 + 0.907103i \(0.638288\pi\)
\(224\) −1.19895 + 2.35850i −0.0801079 + 0.157584i
\(225\) −0.228515 + 6.68281i −0.0152343 + 0.445521i
\(226\) −6.84229 −0.455142
\(227\) −1.24310 7.04998i −0.0825075 0.467923i −0.997867 0.0652850i \(-0.979204\pi\)
0.915359 0.402638i \(-0.131907\pi\)
\(228\) −1.48215 5.93540i −0.0981577 0.393082i
\(229\) −12.2477 + 4.45780i −0.809351 + 0.294580i −0.713356 0.700802i \(-0.752826\pi\)
−0.0959950 + 0.995382i \(0.530603\pi\)
\(230\) 0.758262 4.30032i 0.0499983 0.283554i
\(231\) 3.65770 + 11.9086i 0.240659 + 0.783526i
\(232\) 6.70987 5.63025i 0.440524 0.369644i
\(233\) 17.5676 1.15089 0.575447 0.817839i \(-0.304828\pi\)
0.575447 + 0.817839i \(0.304828\pi\)
\(234\) −4.52269 + 5.03029i −0.295658 + 0.328841i
\(235\) −1.00433 −0.0655155
\(236\) 1.88446 + 10.6873i 0.122668 + 0.695684i
\(237\) 1.36862 0.0962020i 0.0889013 0.00624899i
\(238\) −17.3505 + 7.38395i −1.12466 + 0.478631i
\(239\) −0.201785 + 0.0734437i −0.0130524 + 0.00475068i −0.348538 0.937295i \(-0.613322\pi\)
0.335486 + 0.942045i \(0.391100\pi\)
\(240\) 2.63358 1.17369i 0.169997 0.0757613i
\(241\) 6.03653 + 2.19712i 0.388847 + 0.141529i 0.529043 0.848595i \(-0.322551\pi\)
−0.140196 + 0.990124i \(0.544773\pi\)
\(242\) 1.80494 3.12625i 0.116026 0.200963i
\(243\) −15.5884 + 0.0282727i −0.999998 + 0.00181369i
\(244\) −9.44197 −0.604460
\(245\) 11.3117 + 2.79791i 0.722680 + 0.178752i
\(246\) 0.997438 9.52322i 0.0635943 0.607178i
\(247\) 6.10090 + 5.11926i 0.388191 + 0.325731i
\(248\) −8.23021 + 2.99555i −0.522619 + 0.190218i
\(249\) −6.71010 + 13.7704i −0.425235 + 0.872664i
\(250\) 2.08963 + 11.8509i 0.132160 + 0.749514i
\(251\) −8.78817 15.2216i −0.554704 0.960776i −0.997926 0.0643640i \(-0.979498\pi\)
0.443222 0.896412i \(-0.353835\pi\)
\(252\) 4.98484 6.17668i 0.314015 0.389094i
\(253\) 3.56549 6.17561i 0.224160 0.388257i
\(254\) 9.24497 + 3.36490i 0.580081 + 0.211132i
\(255\) 19.7552 + 5.65696i 1.23712 + 0.354252i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 15.4259 5.61458i 0.962243 0.350228i 0.187331 0.982297i \(-0.440016\pi\)
0.774912 + 0.632069i \(0.217794\pi\)
\(258\) −1.54865 + 1.49660i −0.0964148 + 0.0931743i
\(259\) −19.1349 + 17.8770i −1.18899 + 1.11082i
\(260\) −1.87677 + 3.25066i −0.116392 + 0.201597i
\(261\) −23.1925 + 12.3533i −1.43558 + 0.764649i
\(262\) 22.1093 1.36592
\(263\) −16.1539 + 13.5547i −0.996089 + 0.835818i −0.986438 0.164135i \(-0.947517\pi\)
−0.00965134 + 0.999953i \(0.503072\pi\)
\(264\) 4.69695 0.330155i 0.289077 0.0203196i
\(265\) −5.66592 4.75427i −0.348055 0.292053i
\(266\) −7.46840 5.61692i −0.457917 0.344396i
\(267\) 10.8876 4.85221i 0.666311 0.296950i
\(268\) −0.796600 + 0.668427i −0.0486601 + 0.0408307i
\(269\) 4.06583 7.04222i 0.247898 0.429371i −0.715045 0.699079i \(-0.753594\pi\)
0.962942 + 0.269707i \(0.0869270\pi\)
\(270\) −8.45885 + 1.80761i −0.514789 + 0.110007i
\(271\) 0.278589 + 0.482530i 0.0169231 + 0.0293116i 0.874363 0.485273i \(-0.161280\pi\)
−0.857440 + 0.514584i \(0.827946\pi\)
\(272\) 1.23759 + 7.01875i 0.0750402 + 0.425574i
\(273\) −0.527411 + 10.3195i −0.0319204 + 0.624564i
\(274\) 4.27703 1.55671i 0.258385 0.0940444i
\(275\) −1.05217 + 5.96718i −0.0634485 + 0.359834i
\(276\) −4.53225 + 0.318578i −0.272809 + 0.0191761i
\(277\) −22.0507 + 18.5027i −1.32490 + 1.11172i −0.339654 + 0.940550i \(0.610310\pi\)
−0.985242 + 0.171169i \(0.945245\pi\)
\(278\) 5.28043 9.14597i 0.316699 0.548539i
\(279\) 26.0168 3.67568i 1.55759 0.220057i
\(280\) 1.99584 3.92610i 0.119274 0.234630i
\(281\) −1.88720 + 1.58355i −0.112581 + 0.0944664i −0.697340 0.716740i \(-0.745633\pi\)
0.584760 + 0.811207i \(0.301189\pi\)
\(282\) 0.253174 + 1.01386i 0.0150763 + 0.0603745i
\(283\) 17.0380 + 14.2966i 1.01280 + 0.849844i 0.988706 0.149866i \(-0.0478842\pi\)
0.0240978 + 0.999710i \(0.492329\pi\)
\(284\) 0.745192 + 0.625290i 0.0442190 + 0.0371041i
\(285\) 2.46727 + 9.88043i 0.146149 + 0.585266i
\(286\) −4.69564 + 3.94011i −0.277659 + 0.232984i
\(287\) −7.97762 12.2594i −0.470904 0.723649i
\(288\) −1.84870 2.36269i −0.108936 0.139223i
\(289\) −16.8972 + 29.2669i −0.993955 + 1.72158i
\(290\) −11.1696 + 9.37245i −0.655904 + 0.550369i
\(291\) 29.4186 2.06787i 1.72455 0.121221i
\(292\) −1.37469 + 7.79627i −0.0804478 + 0.456242i
\(293\) −12.9815 + 4.72489i −0.758389 + 0.276031i −0.692131 0.721772i \(-0.743328\pi\)
−0.0662575 + 0.997803i \(0.521106\pi\)
\(294\) −0.0270302 12.1243i −0.00157643 0.707105i
\(295\) −3.13698 17.7907i −0.182642 1.03582i
\(296\) 4.94878 + 8.57154i 0.287642 + 0.498211i
\(297\) −13.9903 1.95068i −0.811799 0.113190i
\(298\) 3.89897 6.75322i 0.225862 0.391204i
\(299\) 4.53098 3.80195i 0.262033 0.219872i
\(300\) 3.52624 1.57152i 0.203588 0.0907316i
\(301\) −0.397869 + 3.26558i −0.0229328 + 0.188225i
\(302\) 12.8713 + 10.8003i 0.740663 + 0.621490i
\(303\) −8.19801 + 0.576249i −0.470963 + 0.0331046i
\(304\) −2.70569 + 2.27035i −0.155182 + 0.130213i
\(305\) 15.7177 0.899992
\(306\) 0.730686 21.3686i 0.0417706 1.22156i
\(307\) −2.51120 + 4.34952i −0.143322 + 0.248240i −0.928746 0.370718i \(-0.879112\pi\)
0.785424 + 0.618958i \(0.212445\pi\)
\(308\) 5.25562 4.91012i 0.299467 0.279780i
\(309\) −17.5153 + 16.9266i −0.996408 + 0.962919i
\(310\) 13.7005 4.98657i 0.778136 0.283218i
\(311\) −14.9273 12.5255i −0.846448 0.710254i 0.112556 0.993645i \(-0.464096\pi\)
−0.959004 + 0.283391i \(0.908541\pi\)
\(312\) 3.75459 + 1.07514i 0.212562 + 0.0608677i
\(313\) 3.40421 + 1.23903i 0.192418 + 0.0700343i 0.436432 0.899737i \(-0.356242\pi\)
−0.244014 + 0.969772i \(0.578464\pi\)
\(314\) −5.10977 + 8.85038i −0.288361 + 0.499456i
\(315\) −8.29806 + 10.2821i −0.467543 + 0.579329i
\(316\) −0.396061 0.685998i −0.0222802 0.0385904i
\(317\) −5.79125 32.8438i −0.325269 1.84469i −0.507779 0.861487i \(-0.669533\pi\)
0.182510 0.983204i \(-0.441578\pi\)
\(318\) −3.37109 + 6.91813i −0.189041 + 0.387949i
\(319\) −22.3754 + 8.14399i −1.25278 + 0.455976i
\(320\) −1.27520 1.07002i −0.0712861 0.0598161i
\(321\) 2.17394 20.7560i 0.121337 1.15849i
\(322\) −5.07132 + 4.73794i −0.282614 + 0.264035i
\(323\) −25.1729 −1.40066
\(324\) 3.95707 + 8.08341i 0.219837 + 0.449079i
\(325\) −2.51291 + 4.35249i −0.139391 + 0.241433i
\(326\) 18.3062 + 6.66290i 1.01389 + 0.369024i
\(327\) −1.56148 + 0.695895i −0.0863501 + 0.0384831i
\(328\) −5.19491 + 1.89079i −0.286841 + 0.104402i
\(329\) 1.27572 + 0.959458i 0.0703327 + 0.0528966i
\(330\) −7.81883 + 0.549596i −0.430412 + 0.0302543i
\(331\) −0.617493 3.50198i −0.0339405 0.192486i 0.963123 0.269060i \(-0.0867130\pi\)
−0.997064 + 0.0765739i \(0.975602\pi\)
\(332\) 8.84401 0.485378
\(333\) −9.19603 28.2328i −0.503939 1.54715i
\(334\) 17.8764 0.978152
\(335\) 1.32607 1.11270i 0.0724509 0.0607935i
\(336\) −4.46646 1.02507i −0.243665 0.0559220i
\(337\) −6.23333 + 35.3510i −0.339551 + 1.92569i 0.0370447 + 0.999314i \(0.488206\pi\)
−0.376596 + 0.926378i \(0.622906\pi\)
\(338\) 7.43833 2.70733i 0.404592 0.147259i
\(339\) −2.87123 11.4981i −0.155944 0.624492i
\(340\) −2.06017 11.6838i −0.111729 0.633645i
\(341\) 23.8095 1.28936
\(342\) 9.35219 4.98135i 0.505708 0.269361i
\(343\) −11.6954 14.3603i −0.631494 0.775381i
\(344\) 1.16841 + 0.425268i 0.0629966 + 0.0229289i
\(345\) 7.54465 0.530324i 0.406190 0.0285517i
\(346\) −1.27575 + 0.464335i −0.0685848 + 0.0249628i
\(347\) −2.67501 + 15.1707i −0.143602 + 0.814408i 0.824877 + 0.565312i \(0.191244\pi\)
−0.968479 + 0.249095i \(0.919867\pi\)
\(348\) 12.2770 + 8.91297i 0.658117 + 0.477785i
\(349\) −3.89158 22.0703i −0.208312 1.18139i −0.892143 0.451753i \(-0.850799\pi\)
0.683831 0.729640i \(-0.260312\pi\)
\(350\) 2.67234 5.25688i 0.142842 0.280992i
\(351\) −10.3510 5.48929i −0.552496 0.292997i
\(352\) −1.35924 2.35427i −0.0724477 0.125483i
\(353\) −4.82607 1.75655i −0.256866 0.0934915i 0.210378 0.977620i \(-0.432531\pi\)
−0.467243 + 0.884129i \(0.654753\pi\)
\(354\) −17.1687 + 7.65146i −0.912506 + 0.406670i
\(355\) −1.24049 1.04090i −0.0658384 0.0552450i
\(356\) −5.27188 4.42363i −0.279409 0.234452i
\(357\) −19.6891 26.0580i −1.04206 1.37914i
\(358\) −9.02949 3.28646i −0.477223 0.173695i
\(359\) −16.8381 + 29.1644i −0.888679 + 1.53924i −0.0472402 + 0.998884i \(0.515043\pi\)
−0.841438 + 0.540353i \(0.818291\pi\)
\(360\) 3.07746 + 3.93308i 0.162196 + 0.207291i
\(361\) 3.26237 + 5.65059i 0.171704 + 0.297400i
\(362\) −5.22628 1.90221i −0.274687 0.0999780i
\(363\) 6.01091 + 1.72124i 0.315491 + 0.0903418i
\(364\) 5.48931 2.33612i 0.287718 0.122446i
\(365\) 2.28840 12.9781i 0.119780 0.679307i
\(366\) −3.96214 15.8668i −0.207104 0.829369i
\(367\) −1.24224 7.04510i −0.0648445 0.367751i −0.999912 0.0132812i \(-0.995772\pi\)
0.935067 0.354470i \(-0.115339\pi\)
\(368\) 1.31158 + 2.27172i 0.0683706 + 0.118421i
\(369\) 16.4218 2.32009i 0.854887 0.120779i
\(370\) −8.23804 14.2687i −0.428275 0.741795i
\(371\) 2.65509 + 11.4517i 0.137846 + 0.594543i
\(372\) −8.48752 12.5734i −0.440057 0.651901i
\(373\) 2.66942 15.1390i 0.138217 0.783869i −0.834348 0.551238i \(-0.814156\pi\)
0.972565 0.232631i \(-0.0747333\pi\)
\(374\) 3.36437 19.0803i 0.173968 0.986619i
\(375\) −19.0379 + 8.48449i −0.983112 + 0.438137i
\(376\) 0.462175 0.387811i 0.0238348 0.0199998i
\(377\) −19.7504 −1.01720
\(378\) 12.4714 + 5.78484i 0.641459 + 0.297540i
\(379\) −0.586331 −0.0301178 −0.0150589 0.999887i \(-0.504794\pi\)
−0.0150589 + 0.999887i \(0.504794\pi\)
\(380\) 4.50406 3.77936i 0.231054 0.193877i
\(381\) −1.77506 + 16.9477i −0.0909392 + 0.868258i
\(382\) 2.94909 16.7251i 0.150889 0.855732i
\(383\) −1.06538 + 6.04208i −0.0544385 + 0.308736i −0.999853 0.0171336i \(-0.994546\pi\)
0.945415 + 0.325870i \(0.105657\pi\)
\(384\) −0.758716 + 1.55703i −0.0387181 + 0.0794570i
\(385\) −8.74882 + 8.17369i −0.445881 + 0.416570i
\(386\) −11.1313 19.2800i −0.566570 0.981328i
\(387\) −3.16482 1.97441i −0.160877 0.100365i
\(388\) −8.51337 14.7456i −0.432201 0.748594i
\(389\) −3.91058 22.1780i −0.198274 1.12447i −0.907678 0.419667i \(-0.862147\pi\)
0.709404 0.704803i \(-0.248964\pi\)
\(390\) −6.25012 1.78974i −0.316487 0.0906270i
\(391\) −3.24640 + 18.4112i −0.164177 + 0.931096i
\(392\) −6.28582 + 3.08034i −0.317482 + 0.155581i
\(393\) 9.27774 + 37.1536i 0.468000 + 1.87415i
\(394\) −0.753764 0.274348i −0.0379741 0.0138214i
\(395\) 0.659307 + 1.14195i 0.0331733 + 0.0574579i
\(396\) 2.52579 + 7.75445i 0.126926 + 0.389676i
\(397\) −9.42861 + 16.3308i −0.473209 + 0.819621i −0.999530 0.0306646i \(-0.990238\pi\)
0.526321 + 0.850286i \(0.323571\pi\)
\(398\) 2.24532 + 0.817231i 0.112548 + 0.0409641i
\(399\) 6.30498 14.9073i 0.315644 0.746298i
\(400\) −1.70744 1.43271i −0.0853721 0.0716357i
\(401\) 18.3629 + 15.4083i 0.916998 + 0.769453i 0.973437 0.228953i \(-0.0735302\pi\)
−0.0564391 + 0.998406i \(0.517975\pi\)
\(402\) −1.45754 1.05815i −0.0726952 0.0527759i
\(403\) 18.5578 + 6.75448i 0.924429 + 0.336464i
\(404\) 2.37240 + 4.10912i 0.118031 + 0.204436i
\(405\) −6.58718 13.4561i −0.327320 0.668641i
\(406\) 23.1415 1.23446i 1.14849 0.0612650i
\(407\) −4.67223 26.4975i −0.231594 1.31343i
\(408\) −11.2753 + 5.02500i −0.558211 + 0.248774i
\(409\) 3.81333 21.6265i 0.188557 1.06936i −0.732742 0.680506i \(-0.761760\pi\)
0.921299 0.388854i \(-0.127129\pi\)
\(410\) 8.64776 3.14753i 0.427082 0.155445i
\(411\) 4.41075 + 6.53409i 0.217566 + 0.322303i
\(412\) 13.2148 + 4.80978i 0.651045 + 0.236961i
\(413\) −13.0112 + 25.5949i −0.640237 + 1.25944i
\(414\) −2.43722 7.48253i −0.119783 0.367746i
\(415\) −14.7223 −0.722688
\(416\) −0.391548 2.22058i −0.0191972 0.108873i
\(417\) 17.5852 + 5.03556i 0.861150 + 0.246593i
\(418\) 9.02269 3.28399i 0.441314 0.160625i
\(419\) −1.76140 + 9.98941i −0.0860501 + 0.488014i 0.911075 + 0.412241i \(0.135254\pi\)
−0.997125 + 0.0757736i \(0.975857\pi\)
\(420\) 7.43513 + 1.70639i 0.362797 + 0.0832632i
\(421\) −12.2553 + 10.2834i −0.597289 + 0.501185i −0.890573 0.454841i \(-0.849696\pi\)
0.293284 + 0.956025i \(0.405252\pi\)
\(422\) 10.3941 0.505978
\(423\) −1.59750 + 0.850893i −0.0776731 + 0.0413718i
\(424\) 4.44315 0.215778
\(425\) −2.75848 15.6441i −0.133806 0.758852i
\(426\) −0.738063 + 1.51465i −0.0357593 + 0.0733849i
\(427\) −19.9648 15.0154i −0.966166 0.726645i
\(428\) −11.3224 + 4.12102i −0.547289 + 0.199197i
\(429\) −8.59159 6.23740i −0.414806 0.301144i
\(430\) −1.94501 0.707926i −0.0937968 0.0341392i
\(431\) 10.1894 17.6486i 0.490809 0.850105i −0.509135 0.860686i \(-0.670035\pi\)
0.999944 + 0.0105811i \(0.00336812\pi\)
\(432\) 3.19461 4.09810i 0.153701 0.197170i
\(433\) 9.41053 0.452241 0.226121 0.974099i \(-0.427396\pi\)
0.226121 + 0.974099i \(0.427396\pi\)
\(434\) −22.1663 6.75431i −1.06402 0.324217i
\(435\) −20.4371 14.8371i −0.979882 0.711383i
\(436\) 0.756084 + 0.634430i 0.0362099 + 0.0303837i
\(437\) −8.70630 + 3.16884i −0.416479 + 0.151586i
\(438\) −13.6781 + 0.961452i −0.653565 + 0.0459400i
\(439\) 1.35861 + 7.70504i 0.0648427 + 0.367741i 0.999912 + 0.0132760i \(0.00422601\pi\)
−0.935069 + 0.354465i \(0.884663\pi\)
\(440\) 2.26267 + 3.91906i 0.107869 + 0.186834i
\(441\) 20.3630 5.13316i 0.969665 0.244436i
\(442\) 8.03514 13.9173i 0.382193 0.661977i
\(443\) −16.1126 5.86449i −0.765531 0.278630i −0.0704048 0.997519i \(-0.522429\pi\)
−0.695126 + 0.718888i \(0.744651\pi\)
\(444\) −12.3274 + 11.9131i −0.585032 + 0.565369i
\(445\) 8.77589 + 7.36385i 0.416017 + 0.349080i
\(446\) −2.39329 + 0.871087i −0.113326 + 0.0412472i
\(447\) 12.9846 + 3.71817i 0.614149 + 0.175863i
\(448\) 0.597570 + 2.57738i 0.0282325 + 0.121770i
\(449\) 9.98223 17.2897i 0.471091 0.815953i −0.528363 0.849019i \(-0.677194\pi\)
0.999453 + 0.0330660i \(0.0105272\pi\)
\(450\) 4.12058 + 5.26622i 0.194246 + 0.248252i
\(451\) 15.0286 0.707668
\(452\) −5.24150 + 4.39814i −0.246539 + 0.206871i
\(453\) −12.7482 + 26.1618i −0.598963 + 1.22919i
\(454\) −5.48391 4.60154i −0.257373 0.215961i
\(455\) −9.13784 + 3.88885i −0.428389 + 0.182312i
\(456\) −4.95060 3.59408i −0.231833 0.168308i
\(457\) −25.5689 + 21.4548i −1.19606 + 1.00361i −0.196327 + 0.980538i \(0.562901\pi\)
−0.999734 + 0.0230757i \(0.992654\pi\)
\(458\) −6.51686 + 11.2875i −0.304513 + 0.527432i
\(459\) 36.2154 7.73903i 1.69039 0.361227i
\(460\) −2.18333 3.78163i −0.101798 0.176320i
\(461\) 4.49969 + 25.5190i 0.209571 + 1.18854i 0.890082 + 0.455800i \(0.150647\pi\)
−0.680511 + 0.732738i \(0.738242\pi\)
\(462\) 10.4566 + 6.77136i 0.486486 + 0.315032i
\(463\) 4.50746 1.64058i 0.209480 0.0762443i −0.235149 0.971959i \(-0.575558\pi\)
0.444629 + 0.895715i \(0.353336\pi\)
\(464\) 1.52100 8.62604i 0.0706108 0.400454i
\(465\) 14.1288 + 20.9305i 0.655209 + 0.970627i
\(466\) 13.4576 11.2923i 0.623411 0.523104i
\(467\) −5.01027 + 8.67805i −0.231848 + 0.401572i −0.958352 0.285590i \(-0.907810\pi\)
0.726504 + 0.687162i \(0.241144\pi\)
\(468\) −0.231173 + 6.76056i −0.0106860 + 0.312507i
\(469\) −2.74738 + 0.146555i −0.126862 + 0.00676730i
\(470\) −0.769364 + 0.645573i −0.0354881 + 0.0297781i
\(471\) −17.0168 4.87282i −0.784094 0.224528i
\(472\) 8.31324 + 6.97564i 0.382648 + 0.321080i
\(473\) −2.58935 2.17272i −0.119058 0.0999018i
\(474\) 0.986585 0.953426i 0.0453154 0.0437923i
\(475\) 6.03074 5.06039i 0.276709 0.232187i
\(476\) −8.54491 + 16.8091i −0.391655 + 0.770444i
\(477\) −13.0402 2.76189i −0.597069 0.126458i
\(478\) −0.107368 + 0.185966i −0.00491088 + 0.00850589i
\(479\) 8.33829 6.99666i 0.380986 0.319686i −0.432103 0.901824i \(-0.642228\pi\)
0.813090 + 0.582139i \(0.197784\pi\)
\(480\) 1.26301 2.59193i 0.0576480 0.118305i
\(481\) 3.87537 21.9783i 0.176702 1.00213i
\(482\) 6.03653 2.19712i 0.274956 0.100076i
\(483\) −10.0900 6.53392i −0.459109 0.297304i
\(484\) −0.626850 3.55504i −0.0284932 0.161593i
\(485\) 14.1719 + 24.5464i 0.643511 + 1.11459i
\(486\) −11.9233 + 10.0417i −0.540850 + 0.455501i
\(487\) −6.78837 + 11.7578i −0.307611 + 0.532797i −0.977839 0.209358i \(-0.932863\pi\)
0.670229 + 0.742155i \(0.266196\pi\)
\(488\) −7.23297 + 6.06918i −0.327421 + 0.274739i
\(489\) −3.51484 + 33.5586i −0.158947 + 1.51757i
\(490\) 10.4638 5.12771i 0.472704 0.231647i
\(491\) −14.8751 12.4817i −0.671305 0.563292i 0.242146 0.970240i \(-0.422149\pi\)
−0.913451 + 0.406948i \(0.866593\pi\)
\(492\) −5.35732 7.93635i −0.241527 0.357798i
\(493\) 47.8214 40.1269i 2.15377 1.80722i
\(494\) 7.96416 0.358324
\(495\) −4.20459 12.9085i −0.188982 0.580195i
\(496\) −4.37920 + 7.58500i −0.196632 + 0.340576i
\(497\) 0.581304 + 2.50722i 0.0260750 + 0.112464i
\(498\) 3.71122 + 14.8619i 0.166304 + 0.665978i
\(499\) 14.4165 5.24717i 0.645371 0.234896i 0.00146313 0.999999i \(-0.499534\pi\)
0.643908 + 0.765103i \(0.277312\pi\)
\(500\) 9.21833 + 7.73510i 0.412256 + 0.345924i
\(501\) 7.50148 + 30.0404i 0.335141 + 1.34210i
\(502\) −16.5164 6.01146i −0.737161 0.268305i
\(503\) −10.3416 + 17.9122i −0.461111 + 0.798668i −0.999017 0.0443375i \(-0.985882\pi\)
0.537906 + 0.843005i \(0.319216\pi\)
\(504\) −0.151688 7.93580i −0.00675674 0.353489i
\(505\) −3.94924 6.84028i −0.175739 0.304389i
\(506\) −1.23828 7.02264i −0.0550483 0.312194i
\(507\) 7.67089 + 11.3637i 0.340676 + 0.504678i
\(508\) 9.24497 3.36490i 0.410179 0.149293i
\(509\) −2.43730 2.04514i −0.108032 0.0906492i 0.587172 0.809462i \(-0.300241\pi\)
−0.695203 + 0.718813i \(0.744686\pi\)
\(510\) 18.7696 8.36491i 0.831131 0.370405i
\(511\) −15.3050 + 14.2989i −0.677054 + 0.632545i
\(512\) 1.00000 0.0441942
\(513\) 12.2954 + 13.6256i 0.542854 + 0.601583i
\(514\) 8.20797 14.2166i 0.362038 0.627068i
\(515\) −21.9981 8.00666i −0.969352 0.352815i
\(516\) −0.224339 + 2.14192i −0.00987597 + 0.0942926i
\(517\) −1.54122 + 0.560957i −0.0677827 + 0.0246709i
\(518\) −3.16707 + 25.9943i −0.139153 + 1.14212i
\(519\) −1.31564 1.94899i −0.0577500 0.0855510i
\(520\) 0.651795 + 3.69651i 0.0285831 + 0.162103i
\(521\) −30.1957 −1.32290 −0.661449 0.749990i \(-0.730058\pi\)
−0.661449 + 0.749990i \(0.730058\pi\)
\(522\) −9.82598 + 24.3710i −0.430072 + 1.06669i
\(523\) 33.0749 1.44627 0.723133 0.690709i \(-0.242701\pi\)
0.723133 + 0.690709i \(0.242701\pi\)
\(524\) 16.9367 14.2116i 0.739884 0.620836i
\(525\) 9.95531 + 2.28478i 0.434485 + 0.0997159i
\(526\) −3.66178 + 20.7670i −0.159661 + 0.905484i
\(527\) −58.6569 + 21.3494i −2.55513 + 0.929992i
\(528\) 3.38585 3.27206i 0.147350 0.142398i
\(529\) −2.79905 15.8742i −0.121698 0.690182i
\(530\) −7.39633 −0.321276
\(531\) −20.0624 25.6403i −0.870634 1.11270i
\(532\) −9.33161 + 0.497783i −0.404577 + 0.0215816i
\(533\) 11.7137 + 4.26343i 0.507376 + 0.184670i
\(534\) 5.22145 10.7154i 0.225954 0.463702i
\(535\) 18.8480 6.86010i 0.814869 0.296588i
\(536\) −0.180575 + 1.02409i −0.00779963 + 0.0442339i
\(537\) 1.73369 16.5527i 0.0748142 0.714302i
\(538\) −1.41205 8.00811i −0.0608776 0.345254i
\(539\) 18.9213 2.02443i 0.815000 0.0871984i
\(540\) −5.31795 + 6.82195i −0.228848 + 0.293570i
\(541\) 16.1933 + 28.0475i 0.696202 + 1.20586i 0.969774 + 0.244006i \(0.0784617\pi\)
−0.273571 + 0.961852i \(0.588205\pi\)
\(542\) 0.523576 + 0.190566i 0.0224895 + 0.00818551i
\(543\) 1.00346 9.58073i 0.0430627 0.411149i
\(544\) 5.45962 + 4.58116i 0.234079 + 0.196416i
\(545\) −1.25862 1.05611i −0.0539135 0.0452388i
\(546\) 6.22922 + 8.24420i 0.266586 + 0.352819i
\(547\) −12.8922 4.69236i −0.551229 0.200631i 0.0513635 0.998680i \(-0.483643\pi\)
−0.602592 + 0.798049i \(0.705866\pi\)
\(548\) 2.27576 3.94173i 0.0972157 0.168382i
\(549\) 25.0007 13.3164i 1.06700 0.568328i
\(550\) 3.02961 + 5.24745i 0.129183 + 0.223752i
\(551\) 29.0717 + 10.5812i 1.23850 + 0.450776i
\(552\) −3.26713 + 3.15732i −0.139058 + 0.134384i
\(553\) 0.253467 2.08037i 0.0107785 0.0884665i
\(554\) −4.99848 + 28.3478i −0.212365 + 1.20438i
\(555\) 20.5209 19.8312i 0.871064 0.841787i
\(556\) −1.83387 10.4004i −0.0777736 0.441076i
\(557\) −7.54492 13.0682i −0.319689 0.553717i 0.660734 0.750620i \(-0.270245\pi\)
−0.980423 + 0.196903i \(0.936912\pi\)
\(558\) 17.5674 19.5390i 0.743686 0.827153i
\(559\) −1.40183 2.42804i −0.0592912 0.102695i
\(560\) −0.994752 4.29047i −0.0420359 0.181305i
\(561\) 33.4753 2.35302i 1.41333 0.0993447i
\(562\) −0.427793 + 2.42613i −0.0180453 + 0.102340i
\(563\) 5.74279 32.5690i 0.242030 1.37262i −0.585261 0.810845i \(-0.699008\pi\)
0.827291 0.561774i \(-0.189881\pi\)
\(564\) 0.845639 + 0.613924i 0.0356078 + 0.0258509i
\(565\) 8.72531 7.32141i 0.367077 0.308014i
\(566\) 22.2415 0.934881
\(567\) −4.48775 + 23.3850i −0.188468 + 0.982079i
\(568\) 0.972779 0.0408169
\(569\) 17.7559 14.8990i 0.744367 0.624598i −0.189639 0.981854i \(-0.560732\pi\)
0.934007 + 0.357255i \(0.116287\pi\)
\(570\) 8.24106 + 5.98291i 0.345180 + 0.250597i
\(571\) −4.32321 + 24.5181i −0.180921 + 1.02605i 0.750165 + 0.661251i \(0.229974\pi\)
−0.931086 + 0.364801i \(0.881137\pi\)
\(572\) −1.06442 + 6.03660i −0.0445054 + 0.252403i
\(573\) 29.3432 2.06258i 1.22583 0.0861653i
\(574\) −13.9914 4.26333i −0.583990 0.177948i
\(575\) −2.92338 5.06344i −0.121913 0.211160i
\(576\) −2.93489 0.621606i −0.122287 0.0259003i
\(577\) 5.17950 + 8.97115i 0.215625 + 0.373474i 0.953466 0.301501i \(-0.0974877\pi\)
−0.737841 + 0.674975i \(0.764154\pi\)
\(578\) 5.86835 + 33.2810i 0.244091 + 1.38431i
\(579\) 27.7281 26.7961i 1.15234 1.11361i
\(580\) −2.53195 + 14.3594i −0.105134 + 0.596243i
\(581\) 18.7005 + 14.0645i 0.775825 + 0.583492i
\(582\) 21.2067 20.4940i 0.879048 0.849503i
\(583\) −11.3502 4.13112i −0.470076 0.171094i
\(584\) 3.95827 + 6.85593i 0.163794 + 0.283700i
\(585\) 0.384825 11.2540i 0.0159106 0.465297i
\(586\) −6.90733 + 11.9638i −0.285339 + 0.494222i
\(587\) −9.95343 3.62275i −0.410822 0.149527i 0.128338 0.991731i \(-0.459036\pi\)
−0.539160 + 0.842203i \(0.681258\pi\)
\(588\) −7.81407 9.27040i −0.322247 0.382305i
\(589\) −23.6976 19.8846i −0.976441 0.819331i
\(590\) −13.8387 11.6121i −0.569731 0.478061i
\(591\) 0.144725 1.38179i 0.00595319 0.0568391i
\(592\) 9.30067 + 3.38517i 0.382255 + 0.139129i
\(593\) −18.5963 32.2097i −0.763659 1.32270i −0.940953 0.338538i \(-0.890068\pi\)
0.177294 0.984158i \(-0.443266\pi\)
\(594\) −11.9711 + 7.49847i −0.491178 + 0.307666i
\(595\) 14.2244 27.9814i 0.583142 1.14713i
\(596\) −1.35410 7.67948i −0.0554661 0.314564i
\(597\) −0.431109 + 4.11609i −0.0176441 + 0.168460i
\(598\) 1.02709 5.82492i 0.0420008 0.238199i
\(599\) 0.629100 0.228973i 0.0257043 0.00935560i −0.329136 0.944283i \(-0.606757\pi\)
0.354840 + 0.934927i \(0.384535\pi\)
\(600\) 1.69111 3.47048i 0.0690392 0.141682i
\(601\) 13.9237 + 5.06783i 0.567962 + 0.206721i 0.610009 0.792395i \(-0.291166\pi\)
−0.0420474 + 0.999116i \(0.513388\pi\)
\(602\) 1.79429 + 2.75732i 0.0731297 + 0.112380i
\(603\) 1.16655 2.89335i 0.0475055 0.117826i
\(604\) 16.8023 0.683678
\(605\) 1.04349 + 5.91793i 0.0424240 + 0.240598i
\(606\) −5.90963 + 5.71101i −0.240062 + 0.231994i
\(607\) −27.3847 + 9.96723i −1.11151 + 0.404557i −0.831548 0.555453i \(-0.812545\pi\)
−0.279964 + 0.960010i \(0.590323\pi\)
\(608\) −0.613331 + 3.47837i −0.0248739 + 0.141067i
\(609\) 11.7853 + 38.3701i 0.477566 + 1.55484i
\(610\) 12.0404 10.1031i 0.487503 0.409064i
\(611\) −1.36040 −0.0550360
\(612\) −13.1757 16.8390i −0.532597 0.680675i
\(613\) 42.2199 1.70524 0.852622 0.522528i \(-0.175011\pi\)
0.852622 + 0.522528i \(0.175011\pi\)
\(614\) 0.872130 + 4.94609i 0.0351963 + 0.199608i
\(615\) 8.91812 + 13.2113i 0.359613 + 0.532732i
\(616\) 0.869871 7.13962i 0.0350481 0.287663i
\(617\) −18.0926 + 6.58518i −0.728382 + 0.265109i −0.679480 0.733694i \(-0.737795\pi\)
−0.0489024 + 0.998804i \(0.515572\pi\)
\(618\) −2.53728 + 24.2251i −0.102064 + 0.974476i
\(619\) 21.9392 + 7.98520i 0.881809 + 0.320952i 0.742940 0.669358i \(-0.233431\pi\)
0.138870 + 0.990311i \(0.455653\pi\)
\(620\) 7.28988 12.6264i 0.292769 0.507090i
\(621\) 11.5513 7.23553i 0.463537 0.290352i
\(622\) −19.4862 −0.781324
\(623\) −4.11245 17.7374i −0.164762 0.710635i
\(624\) 3.56727 1.58980i 0.142805 0.0636430i
\(625\) −6.80818 5.71274i −0.272327 0.228510i
\(626\) 3.40421 1.23903i 0.136060 0.0495217i
\(627\) 9.30478 + 13.7841i 0.371597 + 0.550485i
\(628\) 1.77460 + 10.0643i 0.0708144 + 0.401609i
\(629\) 35.2701 + 61.0896i 1.40631 + 2.43580i
\(630\) 0.252510 + 13.2104i 0.0100602 + 0.526316i
\(631\) 22.7548 39.4125i 0.905854 1.56898i 0.0860870 0.996288i \(-0.472564\pi\)
0.819767 0.572697i \(-0.194103\pi\)
\(632\) −0.744351 0.270922i −0.0296087 0.0107767i
\(633\) 4.36170 + 17.4668i 0.173362 + 0.694243i
\(634\) −25.5479 21.4373i −1.01464 0.851383i
\(635\) −15.3897 + 5.60141i −0.610723 + 0.222285i
\(636\) 1.86448 + 7.46649i 0.0739315 + 0.296066i
\(637\) 15.3221 + 3.78987i 0.607084 + 0.150160i
\(638\) −11.9057 + 20.6213i −0.471352 + 0.816405i
\(639\) −2.85500 0.604685i −0.112942 0.0239210i
\(640\) −1.66466 −0.0658015
\(641\) −17.6023 + 14.7701i −0.695248 + 0.583382i −0.920417 0.390938i \(-0.872151\pi\)
0.225170 + 0.974320i \(0.427706\pi\)
\(642\) −11.6764 17.2974i −0.460831 0.682675i
\(643\) −18.5835 15.5934i −0.732862 0.614944i 0.198048 0.980192i \(-0.436540\pi\)
−0.930910 + 0.365248i \(0.880984\pi\)
\(644\) −0.839368 + 6.88926i −0.0330758 + 0.271475i
\(645\) 0.373448 3.56556i 0.0147045 0.140394i
\(646\) −19.2835 + 16.1808i −0.758701 + 0.636626i
\(647\) −12.9724 + 22.4688i −0.509996 + 0.883339i 0.489937 + 0.871758i \(0.337020\pi\)
−0.999933 + 0.0115809i \(0.996314\pi\)
\(648\) 8.22721 + 3.64870i 0.323195 + 0.143334i
\(649\) −14.7507 25.5489i −0.579015 1.00288i
\(650\) 0.872725 + 4.94947i 0.0342311 + 0.194134i
\(651\) 2.04861 40.0837i 0.0802913 1.57100i
\(652\) 18.3062 6.66290i 0.716925 0.260939i
\(653\) 6.12739 34.7501i 0.239783 1.35988i −0.592519 0.805556i \(-0.701867\pi\)
0.832303 0.554322i \(-0.187022\pi\)
\(654\) −0.748851 + 1.53679i −0.0292824 + 0.0600931i
\(655\) −28.1939 + 23.6575i −1.10163 + 0.924374i
\(656\) −2.76415 + 4.78765i −0.107922 + 0.186927i
\(657\) −7.35542 22.5819i −0.286962 0.881004i
\(658\) 1.59399 0.0850291i 0.0621400 0.00331478i
\(659\) 35.1799 29.5194i 1.37041 1.14991i 0.397803 0.917471i \(-0.369773\pi\)
0.972610 0.232442i \(-0.0746716\pi\)
\(660\) −5.63630 + 5.44686i −0.219393 + 0.212019i
\(661\) 6.53202 + 5.48102i 0.254066 + 0.213187i 0.760921 0.648845i \(-0.224747\pi\)
−0.506855 + 0.862031i \(0.669192\pi\)
\(662\) −2.72406 2.28575i −0.105873 0.0888383i
\(663\) 26.7591 + 7.66253i 1.03924 + 0.297588i
\(664\) 6.77491 5.68482i 0.262917 0.220614i
\(665\) 15.5340 0.828640i 0.602381 0.0321333i
\(666\) −25.1922 15.7165i −0.976179 0.609000i
\(667\) 11.4882 19.8982i 0.444826 0.770461i
\(668\) 13.6941 11.4907i 0.529841 0.444589i
\(669\) −2.46812 3.65627i −0.0954229 0.141360i
\(670\) 0.300595 1.70476i 0.0116130 0.0658606i
\(671\) 24.1198 8.77890i 0.931136 0.338906i
\(672\) −4.08040 + 2.08574i −0.157405 + 0.0804590i
\(673\) 7.67594 + 43.5324i 0.295886 + 1.67805i 0.663580 + 0.748105i \(0.269036\pi\)
−0.367695 + 0.929947i \(0.619853\pi\)
\(674\) 17.9482 + 31.0871i 0.691338 + 1.19743i
\(675\) −7.12049 + 9.13429i −0.274068 + 0.351579i
\(676\) 3.95785 6.85521i 0.152225 0.263662i
\(677\) −17.8728 + 14.9970i −0.686906 + 0.576383i −0.918015 0.396545i \(-0.870209\pi\)
0.231109 + 0.972928i \(0.425765\pi\)
\(678\) −9.59034 6.96248i −0.368315 0.267392i
\(679\) 5.44830 44.7178i 0.209087 1.71611i
\(680\) −9.08841 7.62608i −0.348525 0.292447i
\(681\) 5.43145 11.1464i 0.208134 0.427130i
\(682\) 18.2391 15.3045i 0.698413 0.586038i
\(683\) −22.9480 −0.878079 −0.439040 0.898468i \(-0.644681\pi\)
−0.439040 + 0.898468i \(0.644681\pi\)
\(684\) 3.96224 9.82741i 0.151500 0.375760i
\(685\) −3.78837 + 6.56164i −0.144746 + 0.250708i
\(686\) −18.1898 3.48291i −0.694490 0.132978i
\(687\) −21.7028 6.21466i −0.828014 0.237104i
\(688\) 1.16841 0.425268i 0.0445454 0.0162132i
\(689\) −7.67468 6.43982i −0.292382 0.245338i
\(690\) 5.43865 5.25586i 0.207046 0.200087i
\(691\) 16.1468 + 5.87695i 0.614253 + 0.223570i 0.630363 0.776301i \(-0.282906\pi\)
−0.0161103 + 0.999870i \(0.505128\pi\)
\(692\) −0.678813 + 1.17574i −0.0258046 + 0.0446949i
\(693\) −6.99101 + 20.4133i −0.265567 + 0.775437i
\(694\) 7.70239 + 13.3409i 0.292379 + 0.506415i
\(695\) 3.05278 + 17.3132i 0.115798 + 0.656726i
\(696\) 15.1339 1.06378i 0.573648 0.0403225i
\(697\) −37.0242 + 13.4757i −1.40239 + 0.510429i
\(698\) −17.1676 14.4053i −0.649804 0.545250i
\(699\) 24.6233 + 17.8762i 0.931338 + 0.676141i
\(700\) −1.33193 5.74475i −0.0503422 0.217131i
\(701\) 24.0297 0.907588 0.453794 0.891107i \(-0.350070\pi\)
0.453794 + 0.891107i \(0.350070\pi\)
\(702\) −11.4578 + 2.44846i −0.432446 + 0.0924113i
\(703\) −17.4793 + 30.2750i −0.659243 + 1.14184i
\(704\) −2.55453 0.929774i −0.0962776 0.0350422i
\(705\) −1.40770 1.02198i −0.0530171 0.0384898i
\(706\) −4.82607 + 1.75655i −0.181632 + 0.0661085i
\(707\) −1.51826 + 12.4614i −0.0571002 + 0.468660i
\(708\) −8.23372 + 16.8972i −0.309442 + 0.635035i
\(709\) 1.35362 + 7.67678i 0.0508364 + 0.288308i 0.999618 0.0276239i \(-0.00879409\pi\)
−0.948782 + 0.315932i \(0.897683\pi\)
\(710\) −1.61935 −0.0607730
\(711\) 2.01619 + 1.25782i 0.0756129 + 0.0471719i
\(712\) −6.88195 −0.257912
\(713\) −17.5996 + 14.7678i −0.659109 + 0.553058i
\(714\) −31.8325 7.30568i −1.19130 0.273408i
\(715\) 1.77189 10.0489i 0.0662649 0.375807i
\(716\) −9.02949 + 3.28646i −0.337448 + 0.122821i
\(717\) −0.357561 0.102389i −0.0133534 0.00382378i
\(718\) 5.84780 + 33.1645i 0.218238 + 1.23769i
\(719\) −1.05345 −0.0392871 −0.0196436 0.999807i \(-0.506253\pi\)
−0.0196436 + 0.999807i \(0.506253\pi\)
\(720\) 4.88560 + 1.03476i 0.182076 + 0.0385633i
\(721\) 20.2934 + 31.1854i 0.755766 + 1.16140i
\(722\) 6.13125 + 2.23159i 0.228182 + 0.0830513i
\(723\) 6.22526 + 9.22210i 0.231520 + 0.342974i
\(724\) −5.22628 + 1.90221i −0.194233 + 0.0706952i
\(725\) −3.39017 + 19.2266i −0.125908 + 0.714059i
\(726\) 5.71102 2.54519i 0.211956 0.0944610i
\(727\) 3.77605 + 21.4150i 0.140046 + 0.794239i 0.971212 + 0.238216i \(0.0765625\pi\)
−0.831166 + 0.556024i \(0.812326\pi\)
\(728\) 2.70343 5.31804i 0.100196 0.197100i
\(729\) −21.8779 15.8226i −0.810294 0.586023i
\(730\) −6.58918 11.4128i −0.243876 0.422406i
\(731\) 8.32731 + 3.03089i 0.307997 + 0.112102i
\(732\) −13.2341 9.60783i −0.489148 0.355116i
\(733\) −39.0794 32.7915i −1.44343 1.21118i −0.937204 0.348783i \(-0.886595\pi\)
−0.506228 0.862400i \(-0.668960\pi\)
\(734\) −5.48012 4.59836i −0.202275 0.169729i
\(735\) 13.0078 + 15.4321i 0.479799 + 0.569220i
\(736\) 2.46496 + 0.897170i 0.0908595 + 0.0330701i
\(737\) 1.41345 2.44818i 0.0520653 0.0901797i
\(738\) 11.0885 12.3330i 0.408175 0.453986i
\(739\) −19.2835 33.4000i −0.709355 1.22864i −0.965097 0.261894i \(-0.915653\pi\)
0.255741 0.966745i \(-0.417680\pi\)
\(740\) −15.4825 5.63515i −0.569146 0.207152i
\(741\) 3.34201 + 13.3834i 0.122772 + 0.491650i
\(742\) 9.39493 + 7.06585i 0.344899 + 0.259396i
\(743\) 1.59146 9.02561i 0.0583849 0.331117i −0.941599 0.336735i \(-0.890677\pi\)
0.999984 + 0.00561810i \(0.00178831\pi\)
\(744\) −14.5839 4.17613i −0.534670 0.153104i
\(745\) 2.25412 + 12.7837i 0.0825844 + 0.468359i
\(746\) −7.68628 13.3130i −0.281415 0.487425i
\(747\) −23.4174 + 12.4730i −0.856796 + 0.456364i
\(748\) −9.68732 16.7789i −0.354204 0.613499i
\(749\) −30.4945 9.29200i −1.11425 0.339522i
\(750\) −9.13014 + 18.7368i −0.333386 + 0.684172i
\(751\) 0.820318 4.65225i 0.0299338 0.169763i −0.966176 0.257884i \(-0.916975\pi\)
0.996110 + 0.0881204i \(0.0280860\pi\)
\(752\) 0.104767 0.594161i 0.00382044 0.0216668i
\(753\) 3.17119 30.2775i 0.115565 1.10337i
\(754\) −15.1297 + 12.6953i −0.550990 + 0.462335i
\(755\) −27.9702 −1.01794
\(756\) 13.2721 3.58501i 0.482700 0.130386i
\(757\) −7.23189 −0.262848 −0.131424 0.991326i \(-0.541955\pi\)
−0.131424 + 0.991326i \(0.541955\pi\)
\(758\) −0.449156 + 0.376886i −0.0163141 + 0.0136891i
\(759\) 11.2816 5.02778i 0.409495 0.182497i
\(760\) 1.02099 5.79031i 0.0370351 0.210037i
\(761\) 3.19621 18.1266i 0.115863 0.657090i −0.870457 0.492245i \(-0.836176\pi\)
0.986319 0.164845i \(-0.0527124\pi\)
\(762\) 9.53401 + 14.1237i 0.345381 + 0.511648i
\(763\) 0.589801 + 2.54387i 0.0213522 + 0.0920944i
\(764\) −8.49157 14.7078i −0.307214 0.532110i
\(765\) 21.9331 + 28.0311i 0.792993 + 1.01347i
\(766\) 3.06765 + 5.31332i 0.110839 + 0.191978i
\(767\) −4.24915 24.0981i −0.153428 0.870133i
\(768\) 0.419631 + 1.68045i 0.0151421 + 0.0606380i
\(769\) −0.489316 + 2.77505i −0.0176452