Properties

Label 378.2.v.b.67.10
Level $378$
Weight $2$
Character 378.67
Analytic conductor $3.018$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(67,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 67.10
Character \(\chi\) \(=\) 378.67
Dual form 378.2.v.b.79.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 0.642788i) q^{2} +(1.58806 - 0.691418i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.0337396 + 0.191347i) q^{5} +(0.772092 - 1.55044i) q^{6} +(-1.90403 - 1.83703i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(2.04388 - 2.19603i) q^{9} +O(q^{10})\) \(q+(0.766044 - 0.642788i) q^{2} +(1.58806 - 0.691418i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.0337396 + 0.191347i) q^{5} +(0.772092 - 1.55044i) q^{6} +(-1.90403 - 1.83703i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(2.04388 - 2.19603i) q^{9} +(0.0971494 + 0.168268i) q^{10} +(-0.802209 - 4.54955i) q^{11} +(-0.405149 - 1.68400i) q^{12} +(-0.896734 + 5.08563i) q^{13} +(-2.63939 - 0.183356i) q^{14} +(0.0787201 + 0.327199i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(2.45343 + 4.24947i) q^{17} +(0.154126 - 2.99604i) q^{18} +(2.61284 - 4.52557i) q^{19} +(0.182581 + 0.0664541i) q^{20} +(-4.29387 - 1.60083i) q^{21} +(-3.53892 - 2.96951i) q^{22} +(4.12504 + 3.46132i) q^{23} +(-1.39282 - 1.02959i) q^{24} +(4.66299 + 1.69719i) q^{25} +(2.58204 + 4.47223i) q^{26} +(1.72744 - 4.90061i) q^{27} +(-2.13975 + 1.55611i) q^{28} +(0.702296 + 3.98292i) q^{29} +(0.270623 + 0.200049i) q^{30} +(-1.28435 + 7.28392i) q^{31} +(-0.939693 + 0.342020i) q^{32} +(-4.41960 - 6.67031i) q^{33} +(4.61094 + 1.67825i) q^{34} +(0.415751 - 0.302350i) q^{35} +(-1.80775 - 2.39417i) q^{36} -8.94278 q^{37} +(-0.907430 - 5.14629i) q^{38} +(2.09223 + 8.69632i) q^{39} +(0.182581 - 0.0664541i) q^{40} +(0.766737 - 4.34838i) q^{41} +(-4.31829 + 1.53374i) q^{42} +(-9.22420 + 7.74002i) q^{43} -4.61973 q^{44} +(0.351244 + 0.465184i) q^{45} +5.38485 q^{46} +(-0.715807 - 4.05954i) q^{47} +(-1.72877 + 0.106571i) q^{48} +(0.250669 + 6.99551i) q^{49} +(4.66299 - 1.69719i) q^{50} +(6.83436 + 5.05207i) q^{51} +(4.85265 + 1.76622i) q^{52} +(3.60328 - 6.24106i) q^{53} +(-1.82675 - 4.86446i) q^{54} +0.897609 q^{55} +(-0.638896 + 2.56745i) q^{56} +(1.02029 - 8.99345i) q^{57} +(3.09816 + 2.59966i) q^{58} +(4.07621 - 1.48362i) q^{59} +(0.335898 - 0.0207066i) q^{60} +(1.33303 + 7.56001i) q^{61} +(3.69814 + 6.40537i) q^{62} +(-7.92578 + 0.426639i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-0.942865 - 0.343175i) q^{65} +(-7.67320 - 2.26889i) q^{66} +(-9.94542 - 8.34520i) q^{67} +(4.61094 - 1.67825i) q^{68} +(8.94403 + 2.64466i) q^{69} +(0.124137 - 0.498853i) q^{70} +(4.19642 - 7.26842i) q^{71} +(-2.92376 - 0.672041i) q^{72} +4.16401 q^{73} +(-6.85057 + 5.74831i) q^{74} +(8.57858 - 0.528831i) q^{75} +(-4.00310 - 3.35900i) q^{76} +(-6.83021 + 10.1362i) q^{77} +(7.19262 + 5.31691i) q^{78} +(-4.54942 + 3.81742i) q^{79} +(0.0971494 - 0.168268i) q^{80} +(-0.645082 - 8.97685i) q^{81} +(-2.20773 - 3.82390i) q^{82} +(1.24531 + 7.06248i) q^{83} +(-2.32213 + 3.95066i) q^{84} +(-0.895901 + 0.326081i) q^{85} +(-2.09096 + 11.8584i) q^{86} +(3.86915 + 5.83954i) q^{87} +(-3.53892 + 2.96951i) q^{88} +(-4.02206 + 6.96641i) q^{89} +(0.568083 + 0.130577i) q^{90} +(11.0499 - 8.03588i) q^{91} +(4.12504 - 3.46132i) q^{92} +(2.99660 + 12.4553i) q^{93} +(-3.15776 - 2.64968i) q^{94} +(0.777798 + 0.652650i) q^{95} +(-1.25581 + 1.19287i) q^{96} +(-6.79587 + 5.70241i) q^{97} +(4.68865 + 5.19774i) q^{98} +(-11.6306 - 7.53708i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 3 q^{6} + 6 q^{7} - 36 q^{8} + 24 q^{9} - 6 q^{10} + 12 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{15} - 12 q^{17} - 18 q^{19} - 30 q^{21} - 6 q^{22} + 30 q^{23} + 6 q^{25} - 18 q^{26} - 6 q^{27} + 3 q^{29} + 3 q^{30} + 9 q^{31} - 18 q^{33} + 9 q^{34} - 18 q^{35} + 9 q^{36} - 24 q^{39} - 6 q^{41} + 12 q^{42} + 24 q^{43} + 51 q^{45} + 45 q^{47} - 6 q^{48} - 12 q^{49} + 6 q^{50} - 51 q^{51} + 6 q^{52} - 15 q^{53} + 27 q^{54} + 72 q^{55} - 3 q^{56} - 63 q^{57} + 3 q^{58} - 30 q^{59} - 3 q^{60} + 9 q^{61} - 24 q^{62} - 39 q^{63} - 36 q^{64} + 9 q^{65} - 6 q^{67} + 9 q^{68} - 21 q^{69} - 33 q^{70} + 12 q^{71} - 12 q^{72} + 132 q^{73} - 18 q^{74} - 30 q^{75} - 33 q^{77} + 30 q^{78} - 9 q^{79} - 6 q^{80} + 36 q^{81} - 33 q^{82} - 18 q^{83} + 15 q^{84} + 21 q^{85} - 12 q^{86} - 39 q^{87} - 6 q^{88} - 36 q^{89} + 69 q^{90} + 39 q^{91} + 30 q^{92} - 66 q^{93} - 9 q^{94} - 33 q^{95} - 48 q^{97} - 12 q^{98} - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 0.642788i 0.541675 0.454519i
\(3\) 1.58806 0.691418i 0.916868 0.399190i
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −0.0337396 + 0.191347i −0.0150888 + 0.0855730i −0.991422 0.130698i \(-0.958278\pi\)
0.976333 + 0.216271i \(0.0693894\pi\)
\(6\) 0.772092 1.55044i 0.315205 0.632966i
\(7\) −1.90403 1.83703i −0.719656 0.694331i
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) 2.04388 2.19603i 0.681294 0.732009i
\(10\) 0.0971494 + 0.168268i 0.0307214 + 0.0532109i
\(11\) −0.802209 4.54955i −0.241875 1.37174i −0.827640 0.561260i \(-0.810317\pi\)
0.585765 0.810481i \(-0.300794\pi\)
\(12\) −0.405149 1.68400i −0.116957 0.486129i
\(13\) −0.896734 + 5.08563i −0.248709 + 1.41050i 0.563009 + 0.826451i \(0.309644\pi\)
−0.811718 + 0.584050i \(0.801467\pi\)
\(14\) −2.63939 0.183356i −0.705407 0.0490040i
\(15\) 0.0787201 + 0.327199i 0.0203254 + 0.0844825i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) 2.45343 + 4.24947i 0.595044 + 1.03065i 0.993541 + 0.113477i \(0.0361988\pi\)
−0.398496 + 0.917170i \(0.630468\pi\)
\(18\) 0.154126 2.99604i 0.0363278 0.706173i
\(19\) 2.61284 4.52557i 0.599427 1.03824i −0.393479 0.919334i \(-0.628729\pi\)
0.992906 0.118904i \(-0.0379380\pi\)
\(20\) 0.182581 + 0.0664541i 0.0408264 + 0.0148596i
\(21\) −4.29387 1.60083i −0.937000 0.349330i
\(22\) −3.53892 2.96951i −0.754501 0.633101i
\(23\) 4.12504 + 3.46132i 0.860130 + 0.721735i 0.961996 0.273063i \(-0.0880369\pi\)
−0.101866 + 0.994798i \(0.532481\pi\)
\(24\) −1.39282 1.02959i −0.284307 0.210165i
\(25\) 4.66299 + 1.69719i 0.932598 + 0.339438i
\(26\) 2.58204 + 4.47223i 0.506380 + 0.877077i
\(27\) 1.72744 4.90061i 0.332446 0.943122i
\(28\) −2.13975 + 1.55611i −0.404375 + 0.294077i
\(29\) 0.702296 + 3.98292i 0.130413 + 0.739609i 0.977945 + 0.208864i \(0.0669766\pi\)
−0.847532 + 0.530745i \(0.821912\pi\)
\(30\) 0.270623 + 0.200049i 0.0494087 + 0.0365238i
\(31\) −1.28435 + 7.28392i −0.230676 + 1.30823i 0.620854 + 0.783926i \(0.286786\pi\)
−0.851531 + 0.524305i \(0.824325\pi\)
\(32\) −0.939693 + 0.342020i −0.166116 + 0.0604612i
\(33\) −4.41960 6.67031i −0.769353 1.16115i
\(34\) 4.61094 + 1.67825i 0.790770 + 0.287817i
\(35\) 0.415751 0.302350i 0.0702747 0.0511065i
\(36\) −1.80775 2.39417i −0.301292 0.399028i
\(37\) −8.94278 −1.47018 −0.735092 0.677967i \(-0.762861\pi\)
−0.735092 + 0.677967i \(0.762861\pi\)
\(38\) −0.907430 5.14629i −0.147205 0.834839i
\(39\) 2.09223 + 8.69632i 0.335024 + 1.39253i
\(40\) 0.182581 0.0664541i 0.0288686 0.0105073i
\(41\) 0.766737 4.34838i 0.119744 0.679103i −0.864547 0.502552i \(-0.832395\pi\)
0.984291 0.176552i \(-0.0564942\pi\)
\(42\) −4.31829 + 1.53374i −0.666327 + 0.236661i
\(43\) −9.22420 + 7.74002i −1.40668 + 1.18034i −0.448634 + 0.893715i \(0.648089\pi\)
−0.958042 + 0.286627i \(0.907466\pi\)
\(44\) −4.61973 −0.696451
\(45\) 0.351244 + 0.465184i 0.0523603 + 0.0693456i
\(46\) 5.38485 0.793953
\(47\) −0.715807 4.05954i −0.104411 0.592145i −0.991454 0.130458i \(-0.958355\pi\)
0.887043 0.461687i \(-0.152756\pi\)
\(48\) −1.72877 + 0.106571i −0.249526 + 0.0153822i
\(49\) 0.250669 + 6.99551i 0.0358098 + 0.999359i
\(50\) 4.66299 1.69719i 0.659446 0.240019i
\(51\) 6.83436 + 5.05207i 0.957001 + 0.707432i
\(52\) 4.85265 + 1.76622i 0.672942 + 0.244931i
\(53\) 3.60328 6.24106i 0.494949 0.857276i −0.505034 0.863099i \(-0.668520\pi\)
0.999983 + 0.00582304i \(0.00185354\pi\)
\(54\) −1.82675 4.86446i −0.248590 0.661969i
\(55\) 0.897609 0.121034
\(56\) −0.638896 + 2.56745i −0.0853761 + 0.343090i
\(57\) 1.02029 8.99345i 0.135141 1.19121i
\(58\) 3.09816 + 2.59966i 0.406808 + 0.341353i
\(59\) 4.07621 1.48362i 0.530677 0.193151i −0.0627638 0.998028i \(-0.519991\pi\)
0.593440 + 0.804878i \(0.297769\pi\)
\(60\) 0.335898 0.0207066i 0.0433642 0.00267321i
\(61\) 1.33303 + 7.56001i 0.170677 + 0.967960i 0.943016 + 0.332748i \(0.107976\pi\)
−0.772338 + 0.635212i \(0.780913\pi\)
\(62\) 3.69814 + 6.40537i 0.469665 + 0.813483i
\(63\) −7.92578 + 0.426639i −0.998554 + 0.0537515i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −0.942865 0.343175i −0.116948 0.0425656i
\(66\) −7.67320 2.26889i −0.944506 0.279281i
\(67\) −9.94542 8.34520i −1.21503 1.01953i −0.999070 0.0431252i \(-0.986269\pi\)
−0.215957 0.976403i \(-0.569287\pi\)
\(68\) 4.61094 1.67825i 0.559159 0.203517i
\(69\) 8.94403 + 2.64466i 1.07674 + 0.318380i
\(70\) 0.124137 0.498853i 0.0148372 0.0596244i
\(71\) 4.19642 7.26842i 0.498024 0.862602i −0.501974 0.864883i \(-0.667393\pi\)
0.999997 + 0.00228062i \(0.000725944\pi\)
\(72\) −2.92376 0.672041i −0.344568 0.0792008i
\(73\) 4.16401 0.487361 0.243680 0.969856i \(-0.421645\pi\)
0.243680 + 0.969856i \(0.421645\pi\)
\(74\) −6.85057 + 5.74831i −0.796362 + 0.668227i
\(75\) 8.57858 0.528831i 0.990569 0.0610641i
\(76\) −4.00310 3.35900i −0.459187 0.385304i
\(77\) −6.83021 + 10.1362i −0.778375 + 1.15512i
\(78\) 7.19262 + 5.31691i 0.814404 + 0.602021i
\(79\) −4.54942 + 3.81742i −0.511850 + 0.429493i −0.861780 0.507283i \(-0.830650\pi\)
0.349930 + 0.936776i \(0.386206\pi\)
\(80\) 0.0971494 0.168268i 0.0108616 0.0188129i
\(81\) −0.645082 8.97685i −0.0716757 0.997428i
\(82\) −2.20773 3.82390i −0.243803 0.422279i
\(83\) 1.24531 + 7.06248i 0.136690 + 0.775208i 0.973668 + 0.227971i \(0.0732092\pi\)
−0.836978 + 0.547237i \(0.815680\pi\)
\(84\) −2.32213 + 3.95066i −0.253366 + 0.431052i
\(85\) −0.895901 + 0.326081i −0.0971741 + 0.0353685i
\(86\) −2.09096 + 11.8584i −0.225474 + 1.27872i
\(87\) 3.86915 + 5.83954i 0.414816 + 0.626064i
\(88\) −3.53892 + 2.96951i −0.377250 + 0.316551i
\(89\) −4.02206 + 6.96641i −0.426337 + 0.738438i −0.996544 0.0830631i \(-0.973530\pi\)
0.570207 + 0.821501i \(0.306863\pi\)
\(90\) 0.568083 + 0.130577i 0.0598812 + 0.0137640i
\(91\) 11.0499 8.03588i 1.15834 0.842389i
\(92\) 4.12504 3.46132i 0.430065 0.360867i
\(93\) 2.99660 + 12.4553i 0.310733 + 1.29156i
\(94\) −3.15776 2.64968i −0.325698 0.273293i
\(95\) 0.777798 + 0.652650i 0.0798004 + 0.0669605i
\(96\) −1.25581 + 1.19287i −0.128171 + 0.121747i
\(97\) −6.79587 + 5.70241i −0.690016 + 0.578992i −0.918914 0.394458i \(-0.870932\pi\)
0.228898 + 0.973450i \(0.426488\pi\)
\(98\) 4.68865 + 5.19774i 0.473625 + 0.525052i
\(99\) −11.6306 7.53708i −1.16892 0.757505i
\(100\) 2.48112 4.29743i 0.248112 0.429743i
\(101\) 13.1678 11.0491i 1.31025 1.09943i 0.321970 0.946750i \(-0.395655\pi\)
0.988276 0.152677i \(-0.0487895\pi\)
\(102\) 8.48283 0.522928i 0.839925 0.0517776i
\(103\) −0.132329 + 0.750475i −0.0130388 + 0.0739465i −0.990633 0.136552i \(-0.956398\pi\)
0.977594 + 0.210499i \(0.0675089\pi\)
\(104\) 4.85265 1.76622i 0.475842 0.173192i
\(105\) 0.451188 0.767608i 0.0440314 0.0749109i
\(106\) −1.25141 7.09708i −0.121547 0.689329i
\(107\) 6.61899 + 11.4644i 0.639882 + 1.10831i 0.985458 + 0.169918i \(0.0543501\pi\)
−0.345576 + 0.938391i \(0.612317\pi\)
\(108\) −4.52619 2.55218i −0.435533 0.245584i
\(109\) 2.77831 4.81218i 0.266114 0.460923i −0.701741 0.712432i \(-0.747594\pi\)
0.967855 + 0.251509i \(0.0809268\pi\)
\(110\) 0.687609 0.576972i 0.0655609 0.0550121i
\(111\) −14.2017 + 6.18320i −1.34797 + 0.586883i
\(112\) 1.16090 + 2.37746i 0.109695 + 0.224649i
\(113\) −13.3324 11.1872i −1.25421 1.05241i −0.996274 0.0862457i \(-0.972513\pi\)
−0.257937 0.966162i \(-0.583043\pi\)
\(114\) −4.99929 7.54522i −0.468226 0.706674i
\(115\) −0.801490 + 0.672530i −0.0747393 + 0.0627138i
\(116\) 4.04436 0.375509
\(117\) 9.33537 + 12.3637i 0.863056 + 1.14302i
\(118\) 2.16890 3.75665i 0.199664 0.345828i
\(119\) 3.13497 12.5981i 0.287383 1.15487i
\(120\) 0.244003 0.231773i 0.0222743 0.0211579i
\(121\) −9.71825 + 3.53716i −0.883478 + 0.321560i
\(122\) 5.88064 + 4.93445i 0.532408 + 0.446744i
\(123\) −1.78892 7.43564i −0.161302 0.670449i
\(124\) 6.95024 + 2.52968i 0.624150 + 0.227172i
\(125\) −0.967827 + 1.67633i −0.0865651 + 0.149935i
\(126\) −5.79726 + 5.42142i −0.516461 + 0.482978i
\(127\) 4.54867 + 7.87853i 0.403630 + 0.699107i 0.994161 0.107908i \(-0.0344151\pi\)
−0.590531 + 0.807015i \(0.701082\pi\)
\(128\) 0.173648 + 0.984808i 0.0153485 + 0.0870455i
\(129\) −9.29701 + 18.6694i −0.818556 + 1.64375i
\(130\) −0.942865 + 0.343175i −0.0826948 + 0.0300984i
\(131\) −2.55113 2.14065i −0.222893 0.187029i 0.524502 0.851409i \(-0.324251\pi\)
−0.747395 + 0.664380i \(0.768696\pi\)
\(132\) −7.33643 + 3.19417i −0.638554 + 0.278016i
\(133\) −13.2885 + 3.81697i −1.15226 + 0.330974i
\(134\) −12.9828 −1.12155
\(135\) 0.879433 + 0.495886i 0.0756896 + 0.0426790i
\(136\) 2.45343 4.24947i 0.210380 0.364389i
\(137\) −8.69485 3.16467i −0.742851 0.270376i −0.0572567 0.998359i \(-0.518235\pi\)
−0.685594 + 0.727984i \(0.740458\pi\)
\(138\) 8.55148 3.72318i 0.727951 0.316938i
\(139\) 8.88551 3.23406i 0.753659 0.274309i 0.0635142 0.997981i \(-0.479769\pi\)
0.690145 + 0.723672i \(0.257547\pi\)
\(140\) −0.225562 0.461937i −0.0190635 0.0390408i
\(141\) −3.94359 5.95189i −0.332110 0.501239i
\(142\) −1.45740 8.26534i −0.122302 0.693612i
\(143\) 23.8567 1.99500
\(144\) −2.67171 + 1.36454i −0.222642 + 0.113712i
\(145\) −0.785814 −0.0652583
\(146\) 3.18982 2.67658i 0.263991 0.221515i
\(147\) 5.23490 + 10.9360i 0.431767 + 0.901985i
\(148\) −1.55290 + 8.80692i −0.127647 + 0.723924i
\(149\) −7.45350 + 2.71285i −0.610615 + 0.222246i −0.628772 0.777590i \(-0.716442\pi\)
0.0181574 + 0.999835i \(0.494220\pi\)
\(150\) 6.23165 5.91931i 0.508812 0.483310i
\(151\) −1.06392 6.03379i −0.0865806 0.491023i −0.997004 0.0773459i \(-0.975355\pi\)
0.910424 0.413677i \(-0.135756\pi\)
\(152\) −5.22568 −0.423859
\(153\) 14.3465 + 3.29761i 1.15984 + 0.266596i
\(154\) 1.28315 + 12.1551i 0.103399 + 0.979488i
\(155\) −1.35042 0.491514i −0.108469 0.0394794i
\(156\) 8.92751 0.550341i 0.714773 0.0440625i
\(157\) 2.74504 0.999112i 0.219078 0.0797378i −0.230150 0.973155i \(-0.573922\pi\)
0.449227 + 0.893417i \(0.351699\pi\)
\(158\) −1.03127 + 5.84863i −0.0820435 + 0.465292i
\(159\) 1.40705 12.4026i 0.111586 0.983588i
\(160\) −0.0337396 0.191347i −0.00266735 0.0151273i
\(161\) −1.49567 14.1683i −0.117875 1.11662i
\(162\) −6.26437 6.46202i −0.492175 0.507704i
\(163\) −5.96193 10.3264i −0.466974 0.808823i 0.532314 0.846547i \(-0.321323\pi\)
−0.999288 + 0.0377239i \(0.987989\pi\)
\(164\) −4.14918 1.51018i −0.323996 0.117925i
\(165\) 1.42546 0.620623i 0.110972 0.0483154i
\(166\) 5.49364 + 4.60971i 0.426389 + 0.357783i
\(167\) −3.21514 2.69782i −0.248795 0.208763i 0.509858 0.860258i \(-0.329698\pi\)
−0.758653 + 0.651495i \(0.774142\pi\)
\(168\) 0.760575 + 4.51902i 0.0586797 + 0.348650i
\(169\) −12.8435 4.67466i −0.987963 0.359589i
\(170\) −0.476699 + 0.825666i −0.0365611 + 0.0633257i
\(171\) −4.59794 14.9876i −0.351614 1.14613i
\(172\) 6.02067 + 10.4281i 0.459072 + 0.795135i
\(173\) −4.24383 1.54463i −0.322652 0.117436i 0.175616 0.984459i \(-0.443808\pi\)
−0.498268 + 0.867023i \(0.666031\pi\)
\(174\) 6.71752 + 1.98631i 0.509254 + 0.150582i
\(175\) −5.76069 11.7975i −0.435467 0.891810i
\(176\) −0.802209 + 4.54955i −0.0604687 + 0.342935i
\(177\) 5.44747 5.17444i 0.409457 0.388934i
\(178\) 1.39685 + 7.92191i 0.104698 + 0.593772i
\(179\) 9.81363 + 16.9977i 0.733505 + 1.27047i 0.955376 + 0.295392i \(0.0954502\pi\)
−0.221871 + 0.975076i \(0.571216\pi\)
\(180\) 0.519110 0.265129i 0.0386922 0.0197616i
\(181\) −4.03731 6.99282i −0.300091 0.519772i 0.676066 0.736842i \(-0.263684\pi\)
−0.976156 + 0.217069i \(0.930350\pi\)
\(182\) 3.29931 13.2585i 0.244561 0.982789i
\(183\) 7.34406 + 11.0841i 0.542889 + 0.819359i
\(184\) 0.935070 5.30305i 0.0689343 0.390946i
\(185\) 0.301726 1.71117i 0.0221834 0.125808i
\(186\) 10.3017 + 7.61517i 0.755355 + 0.558371i
\(187\) 17.3650 14.5710i 1.26985 1.06553i
\(188\) −4.12217 −0.300640
\(189\) −12.2916 + 6.15755i −0.894086 + 0.447896i
\(190\) 1.01534 0.0736608
\(191\) 2.60459 2.18551i 0.188461 0.158138i −0.543675 0.839296i \(-0.682968\pi\)
0.732137 + 0.681158i \(0.238523\pi\)
\(192\) −0.195246 + 1.72101i −0.0140907 + 0.124203i
\(193\) 0.458322 2.59927i 0.0329907 0.187100i −0.963859 0.266413i \(-0.914162\pi\)
0.996850 + 0.0793131i \(0.0252727\pi\)
\(194\) −1.54050 + 8.73660i −0.110601 + 0.627251i
\(195\) −1.73461 + 0.106931i −0.124218 + 0.00765746i
\(196\) 6.93276 + 0.967897i 0.495197 + 0.0691355i
\(197\) −1.63189 2.82651i −0.116267 0.201381i 0.802018 0.597299i \(-0.203760\pi\)
−0.918286 + 0.395919i \(0.870426\pi\)
\(198\) −13.7543 + 1.70225i −0.977473 + 0.120973i
\(199\) −5.35016 9.26675i −0.379263 0.656902i 0.611692 0.791096i \(-0.290489\pi\)
−0.990955 + 0.134193i \(0.957156\pi\)
\(200\) −0.861685 4.88686i −0.0609304 0.345553i
\(201\) −21.5640 6.37626i −1.52100 0.449746i
\(202\) 2.98490 16.9282i 0.210017 1.19106i
\(203\) 5.97953 8.87373i 0.419681 0.622814i
\(204\) 6.16209 5.85324i 0.431433 0.409809i
\(205\) 0.806181 + 0.293426i 0.0563061 + 0.0204937i
\(206\) 0.381026 + 0.659957i 0.0265474 + 0.0459814i
\(207\) 16.0322 1.98417i 1.11432 0.137909i
\(208\) 2.58204 4.47223i 0.179032 0.310093i
\(209\) −22.6854 8.25680i −1.56918 0.571135i
\(210\) −0.147779 0.878040i −0.0101977 0.0605905i
\(211\) −15.8841 13.3284i −1.09351 0.917563i −0.0965376 0.995329i \(-0.530777\pi\)
−0.996972 + 0.0777662i \(0.975221\pi\)
\(212\) −5.52055 4.63229i −0.379153 0.318147i
\(213\) 1.63867 14.4442i 0.112280 0.989699i
\(214\) 12.4396 + 4.52766i 0.850356 + 0.309504i
\(215\) −1.16981 2.02617i −0.0797803 0.138184i
\(216\) −5.10777 + 0.954295i −0.347540 + 0.0649316i
\(217\) 15.8262 11.5094i 1.07435 0.781311i
\(218\) −0.964898 5.47221i −0.0653512 0.370625i
\(219\) 6.61271 2.87907i 0.446846 0.194550i
\(220\) 0.155868 0.883973i 0.0105086 0.0595974i
\(221\) −23.8113 + 8.66660i −1.60172 + 0.582979i
\(222\) −6.90465 + 13.8653i −0.463410 + 0.930577i
\(223\) 6.07337 + 2.21053i 0.406703 + 0.148028i 0.537267 0.843412i \(-0.319457\pi\)
−0.130564 + 0.991440i \(0.541679\pi\)
\(224\) 2.41750 + 1.07502i 0.161526 + 0.0718280i
\(225\) 13.2577 6.77120i 0.883845 0.451413i
\(226\) −17.4043 −1.15771
\(227\) 1.07201 + 6.07969i 0.0711520 + 0.403523i 0.999494 + 0.0317967i \(0.0101229\pi\)
−0.928342 + 0.371726i \(0.878766\pi\)
\(228\) −8.67965 2.56649i −0.574824 0.169970i
\(229\) −15.3853 + 5.59979i −1.01669 + 0.370045i −0.795998 0.605299i \(-0.793054\pi\)
−0.220691 + 0.975344i \(0.570831\pi\)
\(230\) −0.181683 + 1.03038i −0.0119798 + 0.0679410i
\(231\) −3.83848 + 20.8194i −0.252554 + 1.36982i
\(232\) 3.09816 2.59966i 0.203404 0.170676i
\(233\) −4.61671 −0.302451 −0.151225 0.988499i \(-0.548322\pi\)
−0.151225 + 0.988499i \(0.548322\pi\)
\(234\) 15.0985 + 3.47048i 0.987022 + 0.226872i
\(235\) 0.800933 0.0522471
\(236\) −0.753252 4.27191i −0.0490325 0.278077i
\(237\) −4.58534 + 9.20785i −0.297850 + 0.598114i
\(238\) −5.69639 11.6659i −0.369242 0.756185i
\(239\) −3.79727 + 1.38209i −0.245625 + 0.0894002i −0.461899 0.886932i \(-0.652832\pi\)
0.216274 + 0.976333i \(0.430610\pi\)
\(240\) 0.0379361 0.334391i 0.00244876 0.0215848i
\(241\) 22.2754 + 8.10759i 1.43489 + 0.522256i 0.938328 0.345747i \(-0.112375\pi\)
0.496559 + 0.868003i \(0.334597\pi\)
\(242\) −5.17098 + 8.95639i −0.332403 + 0.575739i
\(243\) −7.23118 13.8098i −0.463881 0.885898i
\(244\) 7.67664 0.491446
\(245\) −1.34703 0.188061i −0.0860584 0.0120148i
\(246\) −6.14993 4.54613i −0.392105 0.289851i
\(247\) 20.6724 + 17.3462i 1.31535 + 1.10371i
\(248\) 6.95024 2.52968i 0.441341 0.160635i
\(249\) 6.86075 + 10.3546i 0.434782 + 0.656198i
\(250\) 0.336123 + 1.90625i 0.0212583 + 0.120562i
\(251\) −12.0184 20.8164i −0.758592 1.31392i −0.943569 0.331177i \(-0.892554\pi\)
0.184976 0.982743i \(-0.440779\pi\)
\(252\) −0.956140 + 7.87945i −0.0602311 + 0.496359i
\(253\) 12.4383 21.5438i 0.781989 1.35445i
\(254\) 8.54871 + 3.11148i 0.536394 + 0.195231i
\(255\) −1.19729 + 1.13728i −0.0749771 + 0.0712192i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) −4.91964 + 1.79060i −0.306879 + 0.111695i −0.490869 0.871233i \(-0.663321\pi\)
0.183990 + 0.982928i \(0.441098\pi\)
\(258\) 4.87854 + 20.2776i 0.303725 + 1.26243i
\(259\) 17.0273 + 16.4281i 1.05803 + 1.02079i
\(260\) −0.501688 + 0.868949i −0.0311134 + 0.0538899i
\(261\) 10.1820 + 6.59835i 0.630250 + 0.408428i
\(262\) −3.33026 −0.205744
\(263\) 4.31245 3.61858i 0.265917 0.223131i −0.500073 0.865983i \(-0.666693\pi\)
0.765990 + 0.642852i \(0.222249\pi\)
\(264\) −3.56686 + 7.16264i −0.219525 + 0.440830i
\(265\) 1.07264 + 0.900048i 0.0658915 + 0.0552895i
\(266\) −7.72610 + 11.4657i −0.473717 + 0.703005i
\(267\) −1.57058 + 13.8440i −0.0961180 + 0.847240i
\(268\) −9.94542 + 8.34520i −0.607513 + 0.509764i
\(269\) 0.645983 1.11888i 0.0393863 0.0682190i −0.845660 0.533722i \(-0.820793\pi\)
0.885047 + 0.465503i \(0.154126\pi\)
\(270\) 0.992434 0.185419i 0.0603976 0.0112842i
\(271\) 3.54979 + 6.14842i 0.215634 + 0.373490i 0.953469 0.301492i \(-0.0974847\pi\)
−0.737834 + 0.674982i \(0.764151\pi\)
\(272\) −0.852067 4.83231i −0.0516642 0.293002i
\(273\) 11.9917 20.4015i 0.725771 1.23476i
\(274\) −8.69485 + 3.16467i −0.525275 + 0.191184i
\(275\) 3.98076 22.5760i 0.240049 1.36138i
\(276\) 4.15760 8.34891i 0.250258 0.502545i
\(277\) −7.94393 + 6.66575i −0.477305 + 0.400506i −0.849451 0.527668i \(-0.823067\pi\)
0.372146 + 0.928174i \(0.378622\pi\)
\(278\) 4.72788 8.18893i 0.283559 0.491139i
\(279\) 13.3706 + 17.7080i 0.800479 + 1.06015i
\(280\) −0.469718 0.208876i −0.0280710 0.0124827i
\(281\) 0.712587 0.597931i 0.0425094 0.0356696i −0.621285 0.783584i \(-0.713389\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(282\) −6.84676 2.02452i −0.407719 0.120558i
\(283\) −5.37136 4.50710i −0.319294 0.267920i 0.469027 0.883184i \(-0.344605\pi\)
−0.788321 + 0.615264i \(0.789049\pi\)
\(284\) −6.42929 5.39482i −0.381508 0.320123i
\(285\) 1.68645 + 0.498666i 0.0998965 + 0.0295384i
\(286\) 18.2753 15.3348i 1.08064 0.906766i
\(287\) −9.44798 + 6.87094i −0.557697 + 0.405579i
\(288\) −1.16954 + 2.76264i −0.0689156 + 0.162790i
\(289\) −3.53864 + 6.12911i −0.208155 + 0.360536i
\(290\) −0.601969 + 0.505112i −0.0353488 + 0.0296612i
\(291\) −6.84952 + 13.7546i −0.401526 + 0.806307i
\(292\) 0.723073 4.10075i 0.0423147 0.239978i
\(293\) −21.1293 + 7.69042i −1.23438 + 0.449279i −0.875097 0.483948i \(-0.839202\pi\)
−0.359287 + 0.933227i \(0.616980\pi\)
\(294\) 11.0397 + 5.01253i 0.643847 + 0.292336i
\(295\) 0.146356 + 0.830027i 0.00852118 + 0.0483260i
\(296\) 4.47139 + 7.74468i 0.259894 + 0.450150i
\(297\) −23.6813 3.92777i −1.37413 0.227912i
\(298\) −3.96593 + 6.86919i −0.229740 + 0.397921i
\(299\) −21.3021 + 17.8745i −1.23193 + 1.03371i
\(300\) 0.968859 8.54008i 0.0559371 0.493062i
\(301\) 31.7818 + 2.20785i 1.83187 + 0.127259i
\(302\) −4.69346 3.93828i −0.270078 0.226622i
\(303\) 13.2718 26.6511i 0.762443 1.53107i
\(304\) −4.00310 + 3.35900i −0.229594 + 0.192652i
\(305\) −1.49156 −0.0854066
\(306\) 13.1097 6.69562i 0.749432 0.382763i
\(307\) −2.99691 + 5.19080i −0.171043 + 0.296255i −0.938785 0.344504i \(-0.888047\pi\)
0.767742 + 0.640759i \(0.221380\pi\)
\(308\) 8.79612 + 8.48657i 0.501205 + 0.483567i
\(309\) 0.308745 + 1.28330i 0.0175639 + 0.0730042i
\(310\) −1.35042 + 0.491514i −0.0766989 + 0.0279161i
\(311\) −16.9118 14.1906i −0.958978 0.804678i 0.0218088 0.999762i \(-0.493057\pi\)
−0.980786 + 0.195084i \(0.937502\pi\)
\(312\) 6.48512 6.16008i 0.367148 0.348746i
\(313\) 2.09458 + 0.762365i 0.118393 + 0.0430914i 0.400537 0.916281i \(-0.368824\pi\)
−0.282144 + 0.959372i \(0.591046\pi\)
\(314\) 1.46060 2.52984i 0.0824267 0.142767i
\(315\) 0.185777 1.53097i 0.0104673 0.0862603i
\(316\) 2.96943 + 5.14320i 0.167043 + 0.289327i
\(317\) 1.71943 + 9.75137i 0.0965727 + 0.547691i 0.994254 + 0.107046i \(0.0341392\pi\)
−0.897681 + 0.440645i \(0.854750\pi\)
\(318\) −6.89435 10.4054i −0.386616 0.583503i
\(319\) 17.5571 6.39026i 0.983008 0.357786i
\(320\) −0.148842 0.124893i −0.00832050 0.00698173i
\(321\) 18.4381 + 13.6297i 1.02911 + 0.760738i
\(322\) −10.2529 9.89212i −0.571373 0.551266i
\(323\) 25.6417 1.42674
\(324\) −8.95249 0.923532i −0.497361 0.0513074i
\(325\) −12.8127 + 22.1923i −0.710723 + 1.23101i
\(326\) −11.2048 4.07820i −0.620574 0.225871i
\(327\) 1.08491 9.56302i 0.0599956 0.528836i
\(328\) −4.14918 + 1.51018i −0.229100 + 0.0833856i
\(329\) −6.09457 + 9.04445i −0.336004 + 0.498637i
\(330\) 0.693037 1.39169i 0.0381504 0.0766101i
\(331\) −4.77377 27.0734i −0.262390 1.48809i −0.776365 0.630283i \(-0.782939\pi\)
0.513975 0.857805i \(-0.328172\pi\)
\(332\) 7.17143 0.393583
\(333\) −18.2780 + 19.6386i −1.00163 + 1.07619i
\(334\) −4.19706 −0.229653
\(335\) 1.93238 1.62146i 0.105577 0.0885900i
\(336\) 3.48740 + 2.97288i 0.190253 + 0.162184i
\(337\) −4.06682 + 23.0641i −0.221534 + 1.25638i 0.647667 + 0.761923i \(0.275745\pi\)
−0.869201 + 0.494458i \(0.835366\pi\)
\(338\) −12.8435 + 4.67466i −0.698596 + 0.254268i
\(339\) −28.9078 8.54776i −1.57006 0.464251i
\(340\) 0.165556 + 0.938913i 0.00897852 + 0.0509197i
\(341\) 34.1689 1.85035
\(342\) −13.1561 8.52568i −0.711399 0.461016i
\(343\) 12.3737 13.7802i 0.668115 0.744058i
\(344\) 11.3152 + 4.11838i 0.610072 + 0.222048i
\(345\) −0.807817 + 1.62218i −0.0434914 + 0.0873355i
\(346\) −4.24383 + 1.54463i −0.228150 + 0.0830397i
\(347\) −1.23690 + 7.01482i −0.0664004 + 0.376576i 0.933440 + 0.358733i \(0.116791\pi\)
−0.999841 + 0.0178429i \(0.994320\pi\)
\(348\) 6.42269 2.79634i 0.344293 0.149900i
\(349\) 3.49456 + 19.8186i 0.187059 + 1.06087i 0.923281 + 0.384126i \(0.125497\pi\)
−0.736221 + 0.676741i \(0.763392\pi\)
\(350\) −11.9963 5.33453i −0.641227 0.285143i
\(351\) 23.3736 + 13.1797i 1.24759 + 0.703479i
\(352\) 2.30987 + 4.00081i 0.123116 + 0.213244i
\(353\) 32.6050 + 11.8673i 1.73539 + 0.631631i 0.998991 0.0449150i \(-0.0143017\pi\)
0.736401 + 0.676546i \(0.236524\pi\)
\(354\) 0.846939 7.46541i 0.0450143 0.396782i
\(355\) 1.24920 + 1.04821i 0.0663009 + 0.0556330i
\(356\) 6.16215 + 5.17066i 0.326593 + 0.274044i
\(357\) −3.73204 22.1742i −0.197520 1.17358i
\(358\) 18.4436 + 6.71292i 0.974774 + 0.354789i
\(359\) −7.54823 + 13.0739i −0.398380 + 0.690015i −0.993526 0.113603i \(-0.963761\pi\)
0.595146 + 0.803618i \(0.297094\pi\)
\(360\) 0.227240 0.536778i 0.0119766 0.0282907i
\(361\) −4.15387 7.19471i −0.218625 0.378669i
\(362\) −7.58766 2.76168i −0.398798 0.145151i
\(363\) −12.9875 + 12.3366i −0.681669 + 0.647503i
\(364\) −5.99501 12.2774i −0.314224 0.643510i
\(365\) −0.140492 + 0.796772i −0.00735371 + 0.0417049i
\(366\) 12.7506 + 3.77023i 0.666484 + 0.197073i
\(367\) 3.27205 + 18.5567i 0.170800 + 0.968653i 0.942881 + 0.333130i \(0.108105\pi\)
−0.772081 + 0.635524i \(0.780784\pi\)
\(368\) −2.69243 4.66342i −0.140352 0.243098i
\(369\) −7.98205 10.5714i −0.415529 0.550323i
\(370\) −0.868786 1.50478i −0.0451660 0.0782299i
\(371\) −18.3258 + 5.26386i −0.951426 + 0.273286i
\(372\) 12.7865 0.788228i 0.662948 0.0408677i
\(373\) 2.65396 15.0513i 0.137417 0.779329i −0.835730 0.549141i \(-0.814955\pi\)
0.973146 0.230188i \(-0.0739340\pi\)
\(374\) 3.93633 22.3240i 0.203543 1.15435i
\(375\) −0.377928 + 3.33128i −0.0195161 + 0.172027i
\(376\) −3.15776 + 2.64968i −0.162849 + 0.136647i
\(377\) −20.8854 −1.07565
\(378\) −5.45795 + 12.6179i −0.280727 + 0.648994i
\(379\) −3.19239 −0.163982 −0.0819910 0.996633i \(-0.526128\pi\)
−0.0819910 + 0.996633i \(0.526128\pi\)
\(380\) 0.777798 0.652650i 0.0399002 0.0334803i
\(381\) 12.6709 + 9.36657i 0.649152 + 0.479864i
\(382\) 0.590412 3.34840i 0.0302081 0.171319i
\(383\) −5.99079 + 33.9754i −0.306115 + 1.73606i 0.312095 + 0.950051i \(0.398969\pi\)
−0.618210 + 0.786013i \(0.712142\pi\)
\(384\) 0.956678 + 1.44387i 0.0488202 + 0.0736823i
\(385\) −1.70908 1.64893i −0.0871026 0.0840374i
\(386\) −1.31968 2.28576i −0.0671702 0.116342i
\(387\) −1.85588 + 36.0763i −0.0943396 + 1.83386i
\(388\) 4.43569 + 7.68284i 0.225188 + 0.390037i
\(389\) −4.13420 23.4462i −0.209612 1.18877i −0.890015 0.455932i \(-0.849306\pi\)
0.680403 0.732838i \(-0.261805\pi\)
\(390\) −1.26005 + 1.19690i −0.0638052 + 0.0606072i
\(391\) −4.58826 + 26.0213i −0.232038 + 1.31595i
\(392\) 5.93296 3.71484i 0.299659 0.187628i
\(393\) −5.53143 1.63559i −0.279024 0.0825046i
\(394\) −3.06695 1.11628i −0.154511 0.0562373i
\(395\) −0.576956 0.999317i −0.0290298 0.0502811i
\(396\) −9.44220 + 10.1451i −0.474488 + 0.509809i
\(397\) −5.27600 + 9.13830i −0.264795 + 0.458638i −0.967510 0.252833i \(-0.918638\pi\)
0.702715 + 0.711472i \(0.251971\pi\)
\(398\) −10.0550 3.65972i −0.504012 0.183445i
\(399\) −18.4639 + 15.2495i −0.924350 + 0.763430i
\(400\) −3.80130 3.18967i −0.190065 0.159484i
\(401\) 14.3582 + 12.0479i 0.717012 + 0.601645i 0.926557 0.376154i \(-0.122754\pi\)
−0.209545 + 0.977799i \(0.567198\pi\)
\(402\) −20.6175 + 8.97655i −1.02831 + 0.447710i
\(403\) −35.8916 13.0635i −1.78789 0.650739i
\(404\) −8.59468 14.8864i −0.427601 0.740627i
\(405\) 1.73946 + 0.179441i 0.0864344 + 0.00891651i
\(406\) −1.12334 10.6412i −0.0557504 0.528116i
\(407\) 7.17398 + 40.6856i 0.355601 + 2.01671i
\(408\) 0.958044 8.44476i 0.0474303 0.418078i
\(409\) −1.13755 + 6.45139i −0.0562484 + 0.319001i −0.999930 0.0118552i \(-0.996226\pi\)
0.943681 + 0.330856i \(0.107337\pi\)
\(410\) 0.806181 0.293426i 0.0398144 0.0144913i
\(411\) −15.9961 + 0.986085i −0.789028 + 0.0486400i
\(412\) 0.716095 + 0.260637i 0.0352795 + 0.0128407i
\(413\) −10.4867 4.66324i −0.516015 0.229463i
\(414\) 11.0060 11.8253i 0.540916 0.581181i
\(415\) −1.39340 −0.0683994
\(416\) −0.896734 5.08563i −0.0439660 0.249344i
\(417\) 11.8747 11.2795i 0.581504 0.552359i
\(418\) −22.6854 + 8.25680i −1.10958 + 0.403853i
\(419\) 1.56895 8.89798i 0.0766484 0.434695i −0.922200 0.386714i \(-0.873610\pi\)
0.998848 0.0479810i \(-0.0152787\pi\)
\(420\) −0.677599 0.577627i −0.0330634 0.0281853i
\(421\) 5.74301 4.81896i 0.279897 0.234862i −0.492021 0.870583i \(-0.663742\pi\)
0.771919 + 0.635721i \(0.219297\pi\)
\(422\) −20.7353 −1.00938
\(423\) −10.3779 6.72530i −0.504591 0.326995i
\(424\) −7.20656 −0.349982
\(425\) 4.22817 + 23.9791i 0.205096 + 1.16316i
\(426\) −8.02924 12.1182i −0.389018 0.587129i
\(427\) 11.3498 16.8433i 0.549255 0.815105i
\(428\) 12.4396 4.52766i 0.601292 0.218853i
\(429\) 37.8859 16.4950i 1.82915 0.796384i
\(430\) −2.19852 0.800196i −0.106022 0.0385889i
\(431\) 9.43335 16.3390i 0.454388 0.787024i −0.544264 0.838914i \(-0.683191\pi\)
0.998653 + 0.0518899i \(0.0165245\pi\)
\(432\) −3.29937 + 4.01424i −0.158741 + 0.193135i
\(433\) 30.3589 1.45896 0.729478 0.684004i \(-0.239763\pi\)
0.729478 + 0.684004i \(0.239763\pi\)
\(434\) 4.72546 18.9896i 0.226829 0.911531i
\(435\) −1.24792 + 0.543326i −0.0598333 + 0.0260505i
\(436\) −4.25662 3.57173i −0.203855 0.171055i
\(437\) 26.4425 9.62428i 1.26492 0.460392i
\(438\) 3.21500 6.45607i 0.153619 0.308483i
\(439\) −1.30017 7.37361i −0.0620536 0.351923i −0.999987 0.00510790i \(-0.998374\pi\)
0.937933 0.346816i \(-0.112737\pi\)
\(440\) −0.448805 0.777352i −0.0213959 0.0370588i
\(441\) 15.8747 + 13.7475i 0.755937 + 0.654644i
\(442\) −12.6697 + 21.9446i −0.602637 + 1.04380i
\(443\) 36.3535 + 13.2316i 1.72721 + 0.628651i 0.998425 0.0560964i \(-0.0178654\pi\)
0.728780 + 0.684748i \(0.240088\pi\)
\(444\) 3.62316 + 15.0596i 0.171948 + 0.714699i
\(445\) −1.19730 1.00465i −0.0567574 0.0476251i
\(446\) 6.07337 2.21053i 0.287582 0.104671i
\(447\) −9.96091 + 9.46166i −0.471135 + 0.447521i
\(448\) 2.54293 0.730426i 0.120142 0.0345094i
\(449\) 1.03306 1.78931i 0.0487529 0.0844426i −0.840619 0.541627i \(-0.817809\pi\)
0.889372 + 0.457184i \(0.151142\pi\)
\(450\) 5.80353 13.7089i 0.273581 0.646244i
\(451\) −20.3983 −0.960517
\(452\) −13.3324 + 11.1872i −0.627105 + 0.526204i
\(453\) −5.86144 8.84642i −0.275394 0.415641i
\(454\) 4.72916 + 3.96823i 0.221950 + 0.186238i
\(455\) 1.16482 + 2.38548i 0.0546078 + 0.111833i
\(456\) −8.29871 + 3.61313i −0.388622 + 0.169200i
\(457\) 8.66541 7.27115i 0.405351 0.340130i −0.417207 0.908812i \(-0.636991\pi\)
0.822558 + 0.568682i \(0.192546\pi\)
\(458\) −8.18635 + 14.1792i −0.382523 + 0.662549i
\(459\) 25.0631 4.68259i 1.16985 0.218565i
\(460\) 0.523136 + 0.906097i 0.0243913 + 0.0422470i
\(461\) −0.284378 1.61279i −0.0132448 0.0751151i 0.977469 0.211079i \(-0.0676979\pi\)
−0.990714 + 0.135964i \(0.956587\pi\)
\(462\) 10.4420 + 18.4159i 0.485806 + 0.856786i
\(463\) −14.4848 + 5.27205i −0.673168 + 0.245013i −0.655911 0.754838i \(-0.727715\pi\)
−0.0172565 + 0.999851i \(0.505493\pi\)
\(464\) 0.702296 3.98292i 0.0326033 0.184902i
\(465\) −2.48440 + 0.153152i −0.115211 + 0.00710225i
\(466\) −3.53660 + 2.96756i −0.163830 + 0.137470i
\(467\) 3.42982 5.94062i 0.158713 0.274899i −0.775692 0.631112i \(-0.782599\pi\)
0.934405 + 0.356213i \(0.115932\pi\)
\(468\) 13.7969 7.04662i 0.637763 0.325730i
\(469\) 3.60604 + 34.1595i 0.166511 + 1.57734i
\(470\) 0.613550 0.514830i 0.0283009 0.0237473i
\(471\) 3.66849 3.48462i 0.169035 0.160563i
\(472\) −3.32295 2.78829i −0.152951 0.128341i
\(473\) 42.6133 + 35.7568i 1.95936 + 1.64410i
\(474\) 2.40612 + 10.0010i 0.110517 + 0.459362i
\(475\) 19.8644 16.6682i 0.911441 0.764790i
\(476\) −11.8624 5.27499i −0.543710 0.241779i
\(477\) −6.34087 20.6689i −0.290329 0.946365i
\(478\) −2.02049 + 3.49958i −0.0924149 + 0.160067i
\(479\) −19.4943 + 16.3577i −0.890718 + 0.747401i −0.968354 0.249581i \(-0.919707\pi\)
0.0776359 + 0.996982i \(0.475263\pi\)
\(480\) −0.185881 0.280543i −0.00848429 0.0128050i
\(481\) 8.01930 45.4797i 0.365649 2.07370i
\(482\) 22.2754 8.10759i 1.01462 0.369291i
\(483\) −12.1714 21.4659i −0.553818 0.976734i
\(484\) 1.79586 + 10.1848i 0.0816300 + 0.462947i
\(485\) −0.861849 1.49277i −0.0391346 0.0677830i
\(486\) −14.4162 5.93079i −0.653930 0.269026i
\(487\) −3.74032 + 6.47842i −0.169490 + 0.293565i −0.938241 0.345983i \(-0.887545\pi\)
0.768751 + 0.639549i \(0.220879\pi\)
\(488\) 5.88064 4.93445i 0.266204 0.223372i
\(489\) −16.6077 12.2767i −0.751028 0.555173i
\(490\) −1.15277 + 0.721789i −0.0520767 + 0.0326071i
\(491\) 2.79606 + 2.34618i 0.126185 + 0.105881i 0.703696 0.710501i \(-0.251532\pi\)
−0.577511 + 0.816383i \(0.695976\pi\)
\(492\) −7.63332 + 0.470559i −0.344136 + 0.0212144i
\(493\) −15.2022 + 12.7562i −0.684674 + 0.574510i
\(494\) 26.9859 1.21415
\(495\) 1.83461 1.97118i 0.0824595 0.0885978i
\(496\) 3.69814 6.40537i 0.166052 0.287610i
\(497\) −21.3424 + 6.13035i −0.957337 + 0.274984i
\(498\) 11.9115 + 3.52211i 0.533766 + 0.157829i
\(499\) −12.4158 + 4.51900i −0.555809 + 0.202298i −0.604626 0.796510i \(-0.706677\pi\)
0.0488164 + 0.998808i \(0.484455\pi\)
\(500\) 1.48280 + 1.24421i 0.0663127 + 0.0556429i
\(501\) −6.97115 2.06130i −0.311448 0.0920922i
\(502\) −22.5871 8.22104i −1.00811 0.366923i
\(503\) −0.209877 + 0.363518i −0.00935797 + 0.0162085i −0.870666 0.491874i \(-0.836312\pi\)
0.861308 + 0.508082i \(0.169645\pi\)
\(504\) 4.33237 + 6.65061i 0.192979 + 0.296242i
\(505\) 1.66994 + 2.89241i 0.0743112 + 0.128711i
\(506\) −4.31978 24.4987i −0.192037 1.08910i
\(507\) −23.6285 + 1.45659i −1.04938 + 0.0646893i
\(508\) 8.54871 3.11148i 0.379288 0.138049i
\(509\) −28.6008 23.9989i −1.26771 1.06373i −0.994816 0.101690i \(-0.967575\pi\)
−0.272893 0.962044i \(-0.587980\pi\)
\(510\) −0.186147 + 1.64081i −0.00824273 + 0.0726562i
\(511\) −7.92841 7.64940i −0.350732 0.338390i
\(512\) 1.00000 0.0441942
\(513\) −17.6645 20.6222i −0.779908 0.910491i
\(514\) −2.61769 + 4.53397i −0.115461 + 0.199985i
\(515\) −0.139136 0.0506415i −0.00613109 0.00223153i
\(516\) 16.7714 + 12.3977i 0.738318 + 0.545777i
\(517\) −17.8949 + 6.51320i −0.787015 + 0.286450i
\(518\) 23.6035 + 1.63971i 1.03708 + 0.0720449i
\(519\) −7.80745 + 0.481294i −0.342709 + 0.0211264i
\(520\) 0.174234 + 0.988133i 0.00764069 + 0.0433325i
\(521\) −42.7727 −1.87391 −0.936953 0.349455i \(-0.886367\pi\)
−0.936953 + 0.349455i \(0.886367\pi\)
\(522\) 12.0412 1.49024i 0.527029 0.0652258i
\(523\) 27.2302 1.19069 0.595347 0.803468i \(-0.297014\pi\)
0.595347 + 0.803468i \(0.297014\pi\)
\(524\) −2.55113 + 2.14065i −0.111446 + 0.0935147i
\(525\) −17.3054 14.7522i −0.755268 0.643837i
\(526\) 0.977554 5.54398i 0.0426234 0.241729i
\(527\) −34.1039 + 12.4128i −1.48559 + 0.540710i
\(528\) 1.87168 + 7.77963i 0.0814545 + 0.338565i
\(529\) 1.04131 + 5.90555i 0.0452743 + 0.256763i
\(530\) 1.40023 0.0608220
\(531\) 5.07322 11.9838i 0.220159 0.520053i
\(532\) 1.45146 + 13.7495i 0.0629287 + 0.596114i
\(533\) 21.4267 + 7.79869i 0.928094 + 0.337799i
\(534\) 7.69563 + 11.6147i 0.333022 + 0.502616i
\(535\) −2.41701 + 0.879719i −0.104496 + 0.0380336i
\(536\) −2.25444 + 12.7856i −0.0973771 + 0.552253i
\(537\) 27.3372 + 20.2081i 1.17969 + 0.872044i
\(538\) −0.224348 1.27234i −0.00967231 0.0548544i
\(539\) 31.6253 6.75229i 1.36220 0.290842i
\(540\) 0.641064 0.779963i 0.0275870 0.0335643i
\(541\) −8.82208 15.2803i −0.379291 0.656951i 0.611668 0.791114i \(-0.290499\pi\)
−0.990959 + 0.134163i \(0.957165\pi\)
\(542\) 6.67142 + 2.42820i 0.286562 + 0.104300i
\(543\) −11.2465 8.31357i −0.482632 0.356769i
\(544\) −3.75887 3.15407i −0.161160 0.135230i
\(545\) 0.827057 + 0.693983i 0.0354272 + 0.0297270i
\(546\) −3.92768 23.3366i −0.168089 0.998714i
\(547\) 12.2415 + 4.45553i 0.523408 + 0.190505i 0.590192 0.807263i \(-0.299052\pi\)
−0.0667847 + 0.997767i \(0.521274\pi\)
\(548\) −4.62643 + 8.01321i −0.197631 + 0.342308i
\(549\) 19.3266 + 12.5244i 0.824838 + 0.534528i
\(550\) −11.4621 19.8530i −0.488747 0.846535i
\(551\) 19.8600 + 7.22843i 0.846063 + 0.307942i
\(552\) −2.18167 9.06809i −0.0928580 0.385964i
\(553\) 15.6749 + 1.08892i 0.666566 + 0.0463058i
\(554\) −1.80074 + 10.2125i −0.0765063 + 0.433889i
\(555\) −0.703976 2.92607i −0.0298821 0.124205i
\(556\) −1.64198 9.31210i −0.0696353 0.394921i
\(557\) −15.5586 26.9482i −0.659237 1.14183i −0.980813 0.194949i \(-0.937546\pi\)
0.321576 0.946884i \(-0.395787\pi\)
\(558\) 21.6250 + 4.97061i 0.915458 + 0.210423i
\(559\) −31.0912 53.8516i −1.31502 2.27768i
\(560\) −0.494088 + 0.141921i −0.0208790 + 0.00599726i
\(561\) 17.5021 35.1461i 0.738938 1.48387i
\(562\) 0.161530 0.916084i 0.00681375 0.0386427i
\(563\) 7.57153 42.9403i 0.319102 1.80972i −0.229137 0.973394i \(-0.573590\pi\)
0.548238 0.836322i \(-0.315299\pi\)
\(564\) −6.54626 + 2.85014i −0.275647 + 0.120013i
\(565\) 2.59048 2.17367i 0.108982 0.0914470i
\(566\) −7.01181 −0.294728
\(567\) −15.2625 + 18.2772i −0.640963 + 0.767572i
\(568\) −8.39284 −0.352156
\(569\) 25.4043 21.3168i 1.06500 0.893645i 0.0704140 0.997518i \(-0.477568\pi\)
0.994591 + 0.103873i \(0.0331235\pi\)
\(570\) 1.61243 0.702027i 0.0675372 0.0294047i
\(571\) 2.26116 12.8237i 0.0946267 0.536655i −0.900234 0.435406i \(-0.856605\pi\)
0.994861 0.101249i \(-0.0322839\pi\)
\(572\) 4.14267 23.4943i 0.173214 0.982345i
\(573\) 2.62515 5.27158i 0.109667 0.220224i
\(574\) −2.82102 + 11.3365i −0.117747 + 0.473176i
\(575\) 13.3605 + 23.1410i 0.557171 + 0.965048i
\(576\) 0.879875 + 2.86807i 0.0366614 + 0.119503i
\(577\) −3.14064 5.43974i −0.130746 0.226459i 0.793218 0.608938i \(-0.208404\pi\)
−0.923965 + 0.382478i \(0.875071\pi\)
\(578\) 1.22896 + 6.96976i 0.0511179 + 0.289904i
\(579\) −1.06934 4.44470i −0.0444402 0.184715i
\(580\) −0.136455 + 0.773876i −0.00566600 + 0.0321335i
\(581\) 10.6029 15.7348i 0.439881 0.652791i
\(582\) 3.59423 + 14.9394i 0.148986 + 0.619258i
\(583\) −31.2846 11.3867i −1.29568 0.471588i
\(584\) −2.08201 3.60614i −0.0861540 0.149223i
\(585\) −2.68073 + 1.36915i −0.110834 + 0.0566074i
\(586\) −11.2426 + 19.4728i −0.464429 + 0.804415i
\(587\) 27.0214 + 9.83500i 1.11529 + 0.405934i 0.832933 0.553374i \(-0.186660\pi\)
0.282361 + 0.959308i \(0.408882\pi\)
\(588\) 11.6789 3.25635i 0.481629 0.134290i
\(589\) 29.6081 + 24.8442i 1.21998 + 1.02369i
\(590\) 0.645646 + 0.541761i 0.0265808 + 0.0223040i
\(591\) −4.54584 3.36036i −0.186991 0.138227i
\(592\) 8.40347 + 3.05861i 0.345380 + 0.125708i
\(593\) 4.87366 + 8.44142i 0.200137 + 0.346648i 0.948572 0.316560i \(-0.102528\pi\)
−0.748435 + 0.663208i \(0.769195\pi\)
\(594\) −20.6657 + 12.2132i −0.847923 + 0.501114i
\(595\) 2.30484 + 1.02492i 0.0944893 + 0.0420178i
\(596\) 1.37735 + 7.81135i 0.0564185 + 0.319965i
\(597\) −14.9036 11.0170i −0.609963 0.450895i
\(598\) −4.82878 + 27.3854i −0.197464 + 1.11987i
\(599\) 27.8629 10.1413i 1.13845 0.414361i 0.297096 0.954848i \(-0.403982\pi\)
0.841353 + 0.540486i \(0.181760\pi\)
\(600\) −4.74727 7.16485i −0.193807 0.292504i
\(601\) 11.8191 + 4.30182i 0.482113 + 0.175475i 0.571632 0.820510i \(-0.306311\pi\)
−0.0895186 + 0.995985i \(0.528533\pi\)
\(602\) 25.7654 18.7376i 1.05012 0.763688i
\(603\) −38.6536 + 4.78381i −1.57409 + 0.194812i
\(604\) −6.12687 −0.249299
\(605\) −0.348934 1.97890i −0.0141862 0.0804538i
\(606\) −6.96426 28.9469i −0.282904 1.17589i
\(607\) −19.0006 + 6.91565i −0.771210 + 0.280697i −0.697502 0.716582i \(-0.745705\pi\)
−0.0737076 + 0.997280i \(0.523483\pi\)
\(608\) −0.907430 + 5.14629i −0.0368011 + 0.208710i
\(609\) 3.36041 18.2264i 0.136171 0.738571i
\(610\) −1.14260 + 0.958757i −0.0462626 + 0.0388190i
\(611\) 21.2872 0.861189
\(612\) 5.73875 13.5559i 0.231975 0.547965i
\(613\) 24.3288 0.982629 0.491315 0.870982i \(-0.336517\pi\)
0.491315 + 0.870982i \(0.336517\pi\)
\(614\) 1.04082 + 5.90276i 0.0420039 + 0.238216i
\(615\) 1.48314 0.0914291i 0.0598062 0.00368678i
\(616\) 12.1933 + 0.847057i 0.491281 + 0.0341289i
\(617\) 31.1297 11.3303i 1.25324 0.456141i 0.371742 0.928336i \(-0.378761\pi\)
0.881494 + 0.472195i \(0.156538\pi\)
\(618\) 1.06140 + 0.784604i 0.0426957 + 0.0315614i
\(619\) 14.4316 + 5.25266i 0.580054 + 0.211122i 0.615349 0.788255i \(-0.289015\pi\)
−0.0352956 + 0.999377i \(0.511237\pi\)
\(620\) −0.718545 + 1.24456i −0.0288575 + 0.0499826i
\(621\) 24.0883 14.2360i 0.966631 0.571270i
\(622\) −22.0767 −0.885196
\(623\) 20.4556 5.87563i 0.819537 0.235402i
\(624\) 1.00827 8.88745i 0.0403630 0.355783i
\(625\) 18.7184 + 15.7066i 0.748736 + 0.628264i
\(626\) 2.09458 0.762365i 0.0837163 0.0304702i
\(627\) −41.7347 + 2.57275i −1.66672 + 0.102746i
\(628\) −0.507263 2.87683i −0.0202420 0.114798i
\(629\) −21.9405 38.0021i −0.874825 1.51524i
\(630\) −0.841775 1.29221i −0.0335371 0.0514827i
\(631\) −7.34071 + 12.7145i −0.292229 + 0.506155i −0.974336 0.225096i \(-0.927730\pi\)
0.682108 + 0.731252i \(0.261064\pi\)
\(632\) 5.58069 + 2.03121i 0.221988 + 0.0807971i
\(633\) −34.4405 10.1837i −1.36889 0.404766i
\(634\) 7.58522 + 6.36475i 0.301247 + 0.252777i
\(635\) −1.66100 + 0.604556i −0.0659150 + 0.0239911i
\(636\) −11.9698 3.53936i −0.474634 0.140345i
\(637\) −35.8014 4.99830i −1.41850 0.198040i
\(638\) 9.34193 16.1807i 0.369851 0.640600i
\(639\) −7.38465 24.0713i −0.292132 0.952244i
\(640\) −0.194299 −0.00768034
\(641\) 2.57030 2.15674i 0.101521 0.0851862i −0.590614 0.806954i \(-0.701115\pi\)
0.692135 + 0.721768i \(0.256670\pi\)
\(642\) 22.8854 1.41078i 0.903215 0.0556791i
\(643\) −15.5818 13.0746i −0.614484 0.515614i 0.281580 0.959538i \(-0.409142\pi\)
−0.896064 + 0.443924i \(0.853586\pi\)
\(644\) −14.2127 0.987346i −0.560060 0.0389069i
\(645\) −3.25866 2.40885i −0.128310 0.0948486i
\(646\) 19.6427 16.4822i 0.772831 0.648482i
\(647\) 8.36839 14.4945i 0.328995 0.569836i −0.653318 0.757084i \(-0.726623\pi\)
0.982313 + 0.187248i \(0.0599567\pi\)
\(648\) −7.45164 + 5.04708i −0.292728 + 0.198268i
\(649\) −10.0198 17.3547i −0.393310 0.681233i
\(650\) 4.44982 + 25.2362i 0.174536 + 0.989844i
\(651\) 17.1752 29.2202i 0.673148 1.14523i
\(652\) −11.2048 + 4.07820i −0.438812 + 0.159715i
\(653\) 1.00621 5.70650i 0.0393760 0.223312i −0.958770 0.284185i \(-0.908277\pi\)
0.998146 + 0.0608722i \(0.0193882\pi\)
\(654\) −5.31590 8.02306i −0.207868 0.313727i
\(655\) 0.495681 0.415926i 0.0193679 0.0162516i
\(656\) −2.20773 + 3.82390i −0.0861974 + 0.149298i
\(657\) 8.51076 9.14429i 0.332036 0.356753i
\(658\) 1.14495 + 10.8460i 0.0446349 + 0.422820i
\(659\) −17.9962 + 15.1006i −0.701032 + 0.588236i −0.922067 0.387030i \(-0.873501\pi\)
0.221035 + 0.975266i \(0.429057\pi\)
\(660\) −0.363666 1.51157i −0.0141557 0.0588379i
\(661\) 16.4717 + 13.8214i 0.640674 + 0.537589i 0.904225 0.427056i \(-0.140449\pi\)
−0.263551 + 0.964645i \(0.584894\pi\)
\(662\) −21.0594 17.6709i −0.818495 0.686799i
\(663\) −31.8216 + 30.2267i −1.23585 + 1.17391i
\(664\) 5.49364 4.60971i 0.213194 0.178891i
\(665\) −0.282017 2.67150i −0.0109361 0.103596i
\(666\) −1.37831 + 26.7929i −0.0534085 + 1.03820i
\(667\) −10.8891 + 18.8605i −0.421629 + 0.730283i
\(668\) −3.21514 + 2.69782i −0.124397 + 0.104382i
\(669\) 11.1733 0.688782i 0.431984 0.0266299i
\(670\) 0.438036 2.48422i 0.0169228 0.0959740i
\(671\) 33.3253 12.1294i 1.28651 0.468251i
\(672\) 4.58244 + 0.0356987i 0.176771 + 0.00137711i
\(673\) −1.38186 7.83694i −0.0532669 0.302092i 0.946522 0.322639i \(-0.104570\pi\)
−0.999789 + 0.0205476i \(0.993459\pi\)
\(674\) 11.7100 + 20.2822i 0.451050 + 0.781242i
\(675\) 16.3723 19.9197i 0.630170 0.766709i
\(676\) −6.83390 + 11.8367i −0.262842 + 0.455256i
\(677\) −16.1037 + 13.5126i −0.618917 + 0.519333i −0.897463 0.441090i \(-0.854592\pi\)
0.278546 + 0.960423i \(0.410147\pi\)
\(678\) −27.6391 + 12.0336i −1.06147 + 0.462148i
\(679\) 23.4150 + 1.62662i 0.898586 + 0.0624240i
\(680\) 0.730345 + 0.612832i 0.0280074 + 0.0235010i
\(681\) 5.90603 + 8.91371i 0.226319 + 0.341574i
\(682\) 26.1749 21.9633i 1.00229 0.841020i
\(683\) −6.61908 −0.253272 −0.126636 0.991949i \(-0.540418\pi\)
−0.126636 + 0.991949i \(0.540418\pi\)
\(684\) −15.5583 + 1.92552i −0.594888 + 0.0736241i
\(685\) 0.898910 1.55696i 0.0343456 0.0594883i
\(686\) 0.621057 18.5098i 0.0237121 0.706709i
\(687\) −20.5610 + 19.5305i −0.784452 + 0.745135i
\(688\) 11.3152 4.11838i 0.431386 0.157012i
\(689\) 28.5086 + 23.9215i 1.08609 + 0.911338i
\(690\) 0.423896 + 1.76192i 0.0161374 + 0.0670751i
\(691\) −23.0643 8.39470i −0.877406 0.319350i −0.136243 0.990675i \(-0.543503\pi\)
−0.741162 + 0.671326i \(0.765725\pi\)
\(692\) −2.25809 + 3.91113i −0.0858399 + 0.148679i
\(693\) 8.29914 + 35.7165i 0.315258 + 1.35676i
\(694\) 3.56152 + 6.16873i 0.135193 + 0.234162i
\(695\) 0.319034 + 1.80933i 0.0121016 + 0.0686318i
\(696\) 3.12262 6.27055i 0.118362 0.237685i
\(697\) 20.3594 7.41023i 0.771169 0.280682i
\(698\) 15.4162 + 12.9357i 0.583510 + 0.489623i
\(699\) −7.33162 + 3.19207i −0.277307 + 0.120735i
\(700\) −12.6186 + 3.62456i −0.476940 + 0.136995i
\(701\) 13.8025 0.521315 0.260657 0.965431i \(-0.416061\pi\)
0.260657 + 0.965431i \(0.416061\pi\)
\(702\) 26.3770 4.92806i 0.995535 0.185998i
\(703\) −23.3661 + 40.4712i −0.881268 + 1.52640i
\(704\) 4.34113 + 1.58004i 0.163613 + 0.0595501i
\(705\) 1.27193 0.553779i 0.0479037 0.0208565i
\(706\) 32.6050 11.8673i 1.22711 0.446630i
\(707\) −45.3694 3.15177i −1.70629 0.118535i
\(708\) −4.14988 6.26324i −0.155962 0.235387i
\(709\) −4.42032 25.0689i −0.166009 0.941482i −0.948018 0.318216i \(-0.896916\pi\)
0.782010 0.623266i \(-0.214195\pi\)
\(710\) 1.63072 0.0611998
\(711\) −0.915329 + 17.7930i −0.0343275 + 0.667291i
\(712\) 8.04412 0.301466
\(713\) −30.5100 + 25.6009i −1.14261 + 0.958761i
\(714\) −17.1122 14.5875i −0.640408 0.545924i
\(715\) −0.804917 + 4.56491i −0.0301022 + 0.170718i
\(716\) 18.4436 6.71292i 0.689269 0.250873i
\(717\) −5.07470 + 4.82035i −0.189518 + 0.180019i
\(718\) 2.62147 + 14.8671i 0.0978325 + 0.554836i
\(719\) −18.9461 −0.706571 −0.353285 0.935516i \(-0.614936\pi\)
−0.353285 + 0.935516i \(0.614936\pi\)
\(720\) −0.170959 0.557263i −0.00637125 0.0207680i
\(721\) 1.63060 1.18584i 0.0607268 0.0441629i
\(722\) −7.80671 2.84141i −0.290536 0.105746i
\(723\) 40.9805 2.52626i 1.52408 0.0939527i
\(724\) −7.58766 + 2.76168i −0.281993 + 0.102637i
\(725\) −3.48496 + 19.7642i −0.129428 + 0.734025i
\(726\) −2.01922 + 17.7986i −0.0749404 + 0.660568i
\(727\) 2.22934 + 12.6432i 0.0826816 + 0.468911i 0.997833 + 0.0658000i \(0.0209599\pi\)
−0.915151 + 0.403111i \(0.867929\pi\)
\(728\) −12.4842 5.55151i −0.462695 0.205753i
\(729\) −21.0319 16.9310i −0.778959 0.627075i
\(730\) 0.404532 + 0.700669i 0.0149724 + 0.0259329i
\(731\) −55.5219 20.2083i −2.05355 0.747431i
\(732\) 12.1910 5.30776i 0.450591 0.196180i
\(733\) 17.5366 + 14.7150i 0.647729 + 0.543509i 0.906381 0.422461i \(-0.138834\pi\)
−0.258652 + 0.965971i \(0.583278\pi\)
\(734\) 14.4346 + 12.1120i 0.532790 + 0.447064i
\(735\) −2.26919 + 0.632706i −0.0837004 + 0.0233377i
\(736\) −5.06011 1.84173i −0.186518 0.0678870i
\(737\) −29.9886 + 51.9418i −1.10464 + 1.91330i
\(738\) −12.9097 2.96737i −0.475214 0.109230i
\(739\) 11.0298 + 19.1042i 0.405739 + 0.702761i 0.994407 0.105614i \(-0.0336808\pi\)
−0.588668 + 0.808375i \(0.700347\pi\)
\(740\) −1.63278 0.594285i −0.0600223 0.0218463i
\(741\) 44.8225 + 13.2536i 1.64659 + 0.486882i
\(742\) −10.6548 + 15.8119i −0.391150 + 0.580474i
\(743\) −4.08079 + 23.1433i −0.149709 + 0.849045i 0.813755 + 0.581208i \(0.197420\pi\)
−0.963464 + 0.267836i \(0.913691\pi\)
\(744\) 9.28835 8.82281i 0.340527 0.323460i
\(745\) −0.267618 1.51774i −0.00980476 0.0556056i
\(746\) −7.64176 13.2359i −0.279785 0.484602i
\(747\) 18.0547 + 11.7002i 0.660586 + 0.428087i
\(748\) −11.3342 19.6314i −0.414419 0.717795i
\(749\) 8.45769 33.9879i 0.309037 1.24189i
\(750\) 1.85180 + 2.79484i 0.0676180 + 0.102053i
\(751\) 1.62507 9.21624i 0.0592997 0.336305i −0.940696 0.339251i \(-0.889826\pi\)
0.999996 + 0.00294541i \(0.000937554\pi\)
\(752\) −0.715807 + 4.05954i −0.0261028 + 0.148036i
\(753\) −33.4787 24.7480i −1.22003 0.901869i
\(754\) −15.9992 + 13.4249i −0.582655 + 0.488906i
\(755\) 1.19044 0.0433247
\(756\) 3.92958 + 13.1742i 0.142918 + 0.479139i
\(757\) −1.31192 −0.0476824 −0.0238412 0.999716i \(-0.507590\pi\)
−0.0238412 + 0.999716i \(0.507590\pi\)
\(758\) −2.44551 + 2.05203i −0.0888250 + 0.0745330i
\(759\) 4.85705 42.8129i 0.176300 1.55401i
\(760\) 0.176313 0.999918i 0.00639553 0.0362709i
\(761\) 0.571869 3.24323i 0.0207302 0.117567i −0.972687 0.232122i \(-0.925433\pi\)
0.993417 + 0.114555i \(0.0365442\pi\)
\(762\) 15.7272 0.969511i 0.569737 0.0351217i
\(763\) −14.1301 + 4.05871i −0.511544 + 0.146935i
\(764\) −1.70002 2.94453i −0.0615047 0.106529i
\(765\) −1.11503 + 2.63390i −0.0403141 + 0.0952287i
\(766\) 17.2498 + 29.8775i 0.623260 + 1.07952i
\(767\) 3.88986 + 22.0605i 0.140455 + 0.796558i
\(768\) 1.66096 + 0.491130i 0.0599348 + 0.0177221i
\(769\) −6.14587 +