Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [378,2,Mod(67,378)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([8, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("378.67");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.v (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 | 0.766044 | − | 0.642788i | −1.73077 | + | 0.0664993i | 0.173648 | − | 0.984808i | −0.294369 | + | 1.66945i | −1.28310 | + | 1.16346i | −2.64575 | − | 0.00486080i | −0.500000 | − | 0.866025i | 2.99116 | − | 0.230191i | 0.847602 | + | 1.46809i |
67.2 | 0.766044 | − | 0.642788i | −1.69832 | − | 0.340165i | 0.173648 | − | 0.984808i | −0.294026 | + | 1.66751i | −1.51964 | + | 0.831077i | 1.80729 | − | 1.93228i | −0.500000 | − | 0.866025i | 2.76858 | + | 1.15542i | 0.846615 | + | 1.46638i |
67.3 | 0.766044 | − | 0.642788i | −1.42742 | + | 0.981051i | 0.173648 | − | 0.984808i | 0.343656 | − | 1.94897i | −0.462863 | + | 1.66906i | 1.84248 | + | 1.89876i | −0.500000 | − | 0.866025i | 1.07508 | − | 2.80075i | −0.989519 | − | 1.71390i |
67.4 | 0.766044 | − | 0.642788i | −1.07856 | − | 1.35526i | 0.173648 | − | 0.984808i | 0.620533 | − | 3.51922i | −1.69736 | − | 0.344903i | −0.670349 | − | 2.55942i | −0.500000 | − | 0.866025i | −0.673434 | + | 2.92344i | −1.78675 | − | 3.09475i |
67.5 | 0.766044 | − | 0.642788i | −0.402772 | + | 1.68457i | 0.173648 | − | 0.984808i | −0.366960 | + | 2.08113i | 0.774279 | + | 1.54935i | 1.84638 | + | 1.89496i | −0.500000 | − | 0.866025i | −2.67555 | − | 1.35699i | 1.05662 | + | 1.83012i |
67.6 | 0.766044 | − | 0.642788i | −0.389111 | − | 1.68778i | 0.173648 | − | 0.984808i | −0.0926928 | + | 0.525687i | −1.38296 | − | 1.04280i | −2.63702 | + | 0.214772i | −0.500000 | − | 0.866025i | −2.69718 | + | 1.31347i | 0.266898 | + | 0.462282i |
67.7 | 0.766044 | − | 0.642788i | 0.586306 | + | 1.62980i | 0.173648 | − | 0.984808i | 0.483736 | − | 2.74340i | 1.49675 | + | 0.871628i | 0.286196 | − | 2.63023i | −0.500000 | − | 0.866025i | −2.31249 | + | 1.91112i | −1.39286 | − | 2.41251i |
67.8 | 0.766044 | − | 0.642788i | 0.654437 | − | 1.60366i | 0.173648 | − | 0.984808i | 0.190866 | − | 1.08246i | −0.529482 | − | 1.64914i | 2.53672 | + | 0.751691i | −0.500000 | − | 0.866025i | −2.14342 | − | 2.09898i | −0.549577 | − | 0.951896i |
67.9 | 0.766044 | − | 0.642788i | 1.40163 | + | 1.01757i | 0.173648 | − | 0.984808i | −0.289065 | + | 1.63937i | 1.72779 | − | 0.121449i | 1.93330 | − | 1.80620i | −0.500000 | − | 0.866025i | 0.929121 | + | 2.85250i | 0.832330 | + | 1.44164i |
67.10 | 0.766044 | − | 0.642788i | 1.58806 | − | 0.691418i | 0.173648 | − | 0.984808i | −0.0337396 | + | 0.191347i | 0.772092 | − | 1.55044i | −1.90403 | − | 1.83703i | −0.500000 | − | 0.866025i | 2.04388 | − | 2.19603i | 0.0971494 | + | 0.168268i |
67.11 | 0.766044 | − | 0.642788i | 1.71536 | − | 0.239862i | 0.173648 | − | 0.984808i | −0.604303 | + | 3.42717i | 1.15986 | − | 1.28636i | −0.0661038 | + | 2.64493i | −0.500000 | − | 0.866025i | 2.88493 | − | 0.822900i | 1.74002 | + | 3.01380i |
67.12 | 0.766044 | − | 0.642788i | 1.72085 | + | 0.196628i | 0.173648 | − | 0.984808i | 0.683660 | − | 3.87723i | 1.44464 | − | 0.955517i | −1.15546 | + | 2.38011i | −0.500000 | − | 0.866025i | 2.92267 | + | 0.676737i | −1.96852 | − | 3.40958i |
79.1 | 0.766044 | + | 0.642788i | −1.73077 | − | 0.0664993i | 0.173648 | + | 0.984808i | −0.294369 | − | 1.66945i | −1.28310 | − | 1.16346i | −2.64575 | + | 0.00486080i | −0.500000 | + | 0.866025i | 2.99116 | + | 0.230191i | 0.847602 | − | 1.46809i |
79.2 | 0.766044 | + | 0.642788i | −1.69832 | + | 0.340165i | 0.173648 | + | 0.984808i | −0.294026 | − | 1.66751i | −1.51964 | − | 0.831077i | 1.80729 | + | 1.93228i | −0.500000 | + | 0.866025i | 2.76858 | − | 1.15542i | 0.846615 | − | 1.46638i |
79.3 | 0.766044 | + | 0.642788i | −1.42742 | − | 0.981051i | 0.173648 | + | 0.984808i | 0.343656 | + | 1.94897i | −0.462863 | − | 1.66906i | 1.84248 | − | 1.89876i | −0.500000 | + | 0.866025i | 1.07508 | + | 2.80075i | −0.989519 | + | 1.71390i |
79.4 | 0.766044 | + | 0.642788i | −1.07856 | + | 1.35526i | 0.173648 | + | 0.984808i | 0.620533 | + | 3.51922i | −1.69736 | + | 0.344903i | −0.670349 | + | 2.55942i | −0.500000 | + | 0.866025i | −0.673434 | − | 2.92344i | −1.78675 | + | 3.09475i |
79.5 | 0.766044 | + | 0.642788i | −0.402772 | − | 1.68457i | 0.173648 | + | 0.984808i | −0.366960 | − | 2.08113i | 0.774279 | − | 1.54935i | 1.84638 | − | 1.89496i | −0.500000 | + | 0.866025i | −2.67555 | + | 1.35699i | 1.05662 | − | 1.83012i |
79.6 | 0.766044 | + | 0.642788i | −0.389111 | + | 1.68778i | 0.173648 | + | 0.984808i | −0.0926928 | − | 0.525687i | −1.38296 | + | 1.04280i | −2.63702 | − | 0.214772i | −0.500000 | + | 0.866025i | −2.69718 | − | 1.31347i | 0.266898 | − | 0.462282i |
79.7 | 0.766044 | + | 0.642788i | 0.586306 | − | 1.62980i | 0.173648 | + | 0.984808i | 0.483736 | + | 2.74340i | 1.49675 | − | 0.871628i | 0.286196 | + | 2.63023i | −0.500000 | + | 0.866025i | −2.31249 | − | 1.91112i | −1.39286 | + | 2.41251i |
79.8 | 0.766044 | + | 0.642788i | 0.654437 | + | 1.60366i | 0.173648 | + | 0.984808i | 0.190866 | + | 1.08246i | −0.529482 | + | 1.64914i | 2.53672 | − | 0.751691i | −0.500000 | + | 0.866025i | −2.14342 | + | 2.09898i | −0.549577 | + | 0.951896i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.u | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 378.2.v.b | ✓ | 72 |
7.c | even | 3 | 1 | 378.2.w.a | yes | 72 | |
27.e | even | 9 | 1 | 378.2.w.a | yes | 72 | |
189.u | even | 9 | 1 | inner | 378.2.v.b | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
378.2.v.b | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
378.2.v.b | ✓ | 72 | 189.u | even | 9 | 1 | inner |
378.2.w.a | yes | 72 | 7.c | even | 3 | 1 | |
378.2.w.a | yes | 72 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{72} - 3 T_{5}^{70} + 41 T_{5}^{69} + 105 T_{5}^{68} - 57 T_{5}^{67} + 5130 T_{5}^{66} + \cdots + 18\!\cdots\!89 \) acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\).