Properties

Label 378.2.u.a.43.1
Level $378$
Weight $2$
Character 378.43
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(43,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 378.43
Dual form 378.2.u.a.211.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(1.11334 - 1.32683i) q^{3} +(0.173648 + 0.984808i) q^{4} +(2.37939 + 0.866025i) q^{5} +(1.70574 - 0.300767i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.520945 - 2.95442i) q^{9} +O(q^{10})\) \(q+(0.766044 + 0.642788i) q^{2} +(1.11334 - 1.32683i) q^{3} +(0.173648 + 0.984808i) q^{4} +(2.37939 + 0.866025i) q^{5} +(1.70574 - 0.300767i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.520945 - 2.95442i) q^{9} +(1.26604 + 2.19285i) q^{10} +(-0.286989 + 0.104455i) q^{11} +(1.50000 + 0.866025i) q^{12} +(-1.43969 + 1.20805i) q^{13} +(0.766044 - 0.642788i) q^{14} +(3.79813 - 2.19285i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(-0.592396 - 1.02606i) q^{17} +(1.50000 - 2.59808i) q^{18} +(-2.31908 + 4.01676i) q^{19} +(-0.439693 + 2.49362i) q^{20} +(-1.11334 - 1.32683i) q^{21} +(-0.286989 - 0.104455i) q^{22} +(-0.215537 - 1.22237i) q^{23} +(0.592396 + 1.62760i) q^{24} +(1.08125 + 0.907278i) q^{25} -1.87939 q^{26} +(-4.50000 - 2.59808i) q^{27} +1.00000 q^{28} +(2.14543 + 1.80023i) q^{29} +(4.31908 + 0.761570i) q^{30} +(-0.847296 - 4.80526i) q^{31} +(-0.939693 - 0.342020i) q^{32} +(-0.180922 + 0.497079i) q^{33} +(0.205737 - 1.16679i) q^{34} +(1.26604 - 2.19285i) q^{35} +(2.81908 - 1.02606i) q^{36} +(5.41147 + 9.37295i) q^{37} +(-4.35844 + 1.58634i) q^{38} +3.25519i q^{39} +(-1.93969 + 1.62760i) q^{40} +(-2.69459 + 2.26103i) q^{41} -1.73205i q^{42} +(4.04576 - 1.47254i) q^{43} +(-0.152704 - 0.264490i) q^{44} +(1.31908 - 7.48086i) q^{45} +(0.620615 - 1.07494i) q^{46} +(1.59967 - 9.07218i) q^{47} +(-0.592396 + 1.62760i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(0.245100 + 1.39003i) q^{50} +(-2.02094 - 0.356347i) q^{51} +(-1.43969 - 1.20805i) q^{52} -11.4192 q^{53} +(-1.77719 - 4.88279i) q^{54} -0.773318 q^{55} +(0.766044 + 0.642788i) q^{56} +(2.74763 + 7.54904i) q^{57} +(0.486329 + 2.75811i) q^{58} +(-5.01114 - 1.82391i) q^{59} +(2.81908 + 3.35965i) q^{60} +(-1.96064 + 11.1193i) q^{61} +(2.43969 - 4.22567i) q^{62} -3.00000 q^{63} +(-0.500000 - 0.866025i) q^{64} +(-4.47178 + 1.62760i) q^{65} +(-0.458111 + 0.264490i) q^{66} +(-8.10014 + 6.79682i) q^{67} +(0.907604 - 0.761570i) q^{68} +(-1.86184 - 1.07494i) q^{69} +(2.37939 - 0.866025i) q^{70} +(-6.76991 - 11.7258i) q^{71} +(2.81908 + 1.02606i) q^{72} +(-0.163848 + 0.283793i) q^{73} +(-1.87939 + 10.6585i) q^{74} +(2.40760 - 0.424525i) q^{75} +(-4.35844 - 1.58634i) q^{76} +(0.0530334 + 0.300767i) q^{77} +(-2.09240 + 2.49362i) q^{78} +(9.60607 + 8.06045i) q^{79} -2.53209 q^{80} +(-8.45723 + 3.07818i) q^{81} -3.51754 q^{82} +(-1.18479 - 0.994159i) q^{83} +(1.11334 - 1.32683i) q^{84} +(-0.520945 - 2.95442i) q^{85} +(4.04576 + 1.47254i) q^{86} +(4.77719 - 0.842347i) q^{87} +(0.0530334 - 0.300767i) q^{88} +(1.89646 - 3.28476i) q^{89} +(5.81908 - 4.88279i) q^{90} +(0.939693 + 1.62760i) q^{91} +(1.16637 - 0.424525i) q^{92} +(-7.31908 - 4.22567i) q^{93} +(7.05690 - 5.92145i) q^{94} +(-8.99660 + 7.54904i) q^{95} +(-1.50000 + 0.866025i) q^{96} +(3.65910 - 1.33180i) q^{97} +(-0.500000 - 0.866025i) q^{98} +(0.458111 + 0.793471i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} - 3 q^{8} + 3 q^{10} + 6 q^{11} + 9 q^{12} - 3 q^{13} + 9 q^{15} + 9 q^{18} + 3 q^{19} + 3 q^{20} + 6 q^{22} + 6 q^{23} + 9 q^{25} - 27 q^{27} + 6 q^{28} - 3 q^{29} + 9 q^{30} - 3 q^{31} - 18 q^{33} - 9 q^{34} + 3 q^{35} + 12 q^{37} - 18 q^{38} - 6 q^{40} - 12 q^{41} - 6 q^{43} - 3 q^{44} - 9 q^{45} + 15 q^{46} + 24 q^{47} - 9 q^{51} - 3 q^{52} - 18 q^{55} + 24 q^{58} - 24 q^{59} - 3 q^{61} + 9 q^{62} - 18 q^{63} - 3 q^{64} - 12 q^{65} - 9 q^{66} + 3 q^{67} + 9 q^{68} - 45 q^{69} + 3 q^{70} - 12 q^{71} + 3 q^{73} + 18 q^{75} - 18 q^{76} - 12 q^{77} - 9 q^{78} + 33 q^{79} - 6 q^{80} + 24 q^{82} - 6 q^{86} + 18 q^{87} - 12 q^{88} + 21 q^{89} + 18 q^{90} - 12 q^{92} - 27 q^{93} + 6 q^{94} - 12 q^{95} - 9 q^{96} - 15 q^{97} - 3 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.541675 + 0.454519i
\(3\) 1.11334 1.32683i 0.642788 0.766044i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) 2.37939 + 0.866025i 1.06409 + 0.387298i 0.813965 0.580914i \(-0.197305\pi\)
0.250129 + 0.968213i \(0.419527\pi\)
\(6\) 1.70574 0.300767i 0.696364 0.122788i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −0.520945 2.95442i −0.173648 0.984808i
\(10\) 1.26604 + 2.19285i 0.400358 + 0.693441i
\(11\) −0.286989 + 0.104455i −0.0865304 + 0.0314945i −0.384923 0.922949i \(-0.625772\pi\)
0.298392 + 0.954443i \(0.403550\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) −1.43969 + 1.20805i −0.399299 + 0.335052i −0.820223 0.572044i \(-0.806150\pi\)
0.420924 + 0.907096i \(0.361706\pi\)
\(14\) 0.766044 0.642788i 0.204734 0.171792i
\(15\) 3.79813 2.19285i 0.980674 0.566192i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −0.592396 1.02606i −0.143677 0.248856i 0.785201 0.619240i \(-0.212559\pi\)
−0.928879 + 0.370384i \(0.879226\pi\)
\(18\) 1.50000 2.59808i 0.353553 0.612372i
\(19\) −2.31908 + 4.01676i −0.532033 + 0.921508i 0.467268 + 0.884116i \(0.345238\pi\)
−0.999301 + 0.0373922i \(0.988095\pi\)
\(20\) −0.439693 + 2.49362i −0.0983183 + 0.557591i
\(21\) −1.11334 1.32683i −0.242951 0.289538i
\(22\) −0.286989 0.104455i −0.0611863 0.0222700i
\(23\) −0.215537 1.22237i −0.0449426 0.254882i 0.954056 0.299629i \(-0.0968630\pi\)
−0.998998 + 0.0447469i \(0.985752\pi\)
\(24\) 0.592396 + 1.62760i 0.120922 + 0.332232i
\(25\) 1.08125 + 0.907278i 0.216250 + 0.181456i
\(26\) −1.87939 −0.368578
\(27\) −4.50000 2.59808i −0.866025 0.500000i
\(28\) 1.00000 0.188982
\(29\) 2.14543 + 1.80023i 0.398396 + 0.334294i 0.819873 0.572545i \(-0.194044\pi\)
−0.421477 + 0.906839i \(0.638488\pi\)
\(30\) 4.31908 + 0.761570i 0.788552 + 0.139043i
\(31\) −0.847296 4.80526i −0.152179 0.863050i −0.961320 0.275435i \(-0.911178\pi\)
0.809141 0.587615i \(-0.199933\pi\)
\(32\) −0.939693 0.342020i −0.166116 0.0604612i
\(33\) −0.180922 + 0.497079i −0.0314945 + 0.0865304i
\(34\) 0.205737 1.16679i 0.0352836 0.200103i
\(35\) 1.26604 2.19285i 0.214001 0.370660i
\(36\) 2.81908 1.02606i 0.469846 0.171010i
\(37\) 5.41147 + 9.37295i 0.889641 + 1.54090i 0.840300 + 0.542121i \(0.182379\pi\)
0.0493405 + 0.998782i \(0.484288\pi\)
\(38\) −4.35844 + 1.58634i −0.707032 + 0.257339i
\(39\) 3.25519i 0.521248i
\(40\) −1.93969 + 1.62760i −0.306692 + 0.257345i
\(41\) −2.69459 + 2.26103i −0.420825 + 0.353114i −0.828477 0.560024i \(-0.810792\pi\)
0.407652 + 0.913137i \(0.366348\pi\)
\(42\) 1.73205i 0.267261i
\(43\) 4.04576 1.47254i 0.616973 0.224560i −0.0145788 0.999894i \(-0.504641\pi\)
0.631551 + 0.775334i \(0.282419\pi\)
\(44\) −0.152704 0.264490i −0.0230209 0.0398734i
\(45\) 1.31908 7.48086i 0.196637 1.11518i
\(46\) 0.620615 1.07494i 0.0915047 0.158491i
\(47\) 1.59967 9.07218i 0.233336 1.32331i −0.612754 0.790274i \(-0.709938\pi\)
0.846090 0.533040i \(-0.178950\pi\)
\(48\) −0.592396 + 1.62760i −0.0855050 + 0.234923i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) 0.245100 + 1.39003i 0.0346624 + 0.196580i
\(51\) −2.02094 0.356347i −0.282989 0.0498986i
\(52\) −1.43969 1.20805i −0.199649 0.167526i
\(53\) −11.4192 −1.56855 −0.784275 0.620413i \(-0.786965\pi\)
−0.784275 + 0.620413i \(0.786965\pi\)
\(54\) −1.77719 4.88279i −0.241845 0.664463i
\(55\) −0.773318 −0.104274
\(56\) 0.766044 + 0.642788i 0.102367 + 0.0858961i
\(57\) 2.74763 + 7.54904i 0.363932 + 0.999895i
\(58\) 0.486329 + 2.75811i 0.0638582 + 0.362158i
\(59\) −5.01114 1.82391i −0.652395 0.237453i −0.00544570 0.999985i \(-0.501733\pi\)
−0.646950 + 0.762533i \(0.723956\pi\)
\(60\) 2.81908 + 3.35965i 0.363941 + 0.433728i
\(61\) −1.96064 + 11.1193i −0.251034 + 1.42368i 0.555018 + 0.831839i \(0.312711\pi\)
−0.806052 + 0.591845i \(0.798400\pi\)
\(62\) 2.43969 4.22567i 0.309841 0.536661i
\(63\) −3.00000 −0.377964
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −4.47178 + 1.62760i −0.554656 + 0.201878i
\(66\) −0.458111 + 0.264490i −0.0563896 + 0.0325565i
\(67\) −8.10014 + 6.79682i −0.989589 + 0.830364i −0.985508 0.169628i \(-0.945743\pi\)
−0.00408103 + 0.999992i \(0.501299\pi\)
\(68\) 0.907604 0.761570i 0.110063 0.0923539i
\(69\) −1.86184 1.07494i −0.224140 0.129407i
\(70\) 2.37939 0.866025i 0.284391 0.103510i
\(71\) −6.76991 11.7258i −0.803441 1.39160i −0.917338 0.398108i \(-0.869667\pi\)
0.113897 0.993493i \(-0.463666\pi\)
\(72\) 2.81908 + 1.02606i 0.332232 + 0.120922i
\(73\) −0.163848 + 0.283793i −0.0191770 + 0.0332155i −0.875455 0.483300i \(-0.839438\pi\)
0.856278 + 0.516516i \(0.172771\pi\)
\(74\) −1.87939 + 10.6585i −0.218474 + 1.23903i
\(75\) 2.40760 0.424525i 0.278006 0.0490200i
\(76\) −4.35844 1.58634i −0.499947 0.181966i
\(77\) 0.0530334 + 0.300767i 0.00604372 + 0.0342756i
\(78\) −2.09240 + 2.49362i −0.236917 + 0.282347i
\(79\) 9.60607 + 8.06045i 1.08077 + 0.906871i 0.995984 0.0895283i \(-0.0285360\pi\)
0.0847827 + 0.996399i \(0.472980\pi\)
\(80\) −2.53209 −0.283096
\(81\) −8.45723 + 3.07818i −0.939693 + 0.342020i
\(82\) −3.51754 −0.388447
\(83\) −1.18479 0.994159i −0.130048 0.109123i 0.575444 0.817841i \(-0.304829\pi\)
−0.705492 + 0.708718i \(0.749274\pi\)
\(84\) 1.11334 1.32683i 0.121475 0.144769i
\(85\) −0.520945 2.95442i −0.0565044 0.320452i
\(86\) 4.04576 + 1.47254i 0.436265 + 0.158788i
\(87\) 4.77719 0.842347i 0.512168 0.0903091i
\(88\) 0.0530334 0.300767i 0.00565338 0.0320619i
\(89\) 1.89646 3.28476i 0.201024 0.348184i −0.747834 0.663885i \(-0.768906\pi\)
0.948859 + 0.315701i \(0.102240\pi\)
\(90\) 5.81908 4.88279i 0.613385 0.514691i
\(91\) 0.939693 + 1.62760i 0.0985066 + 0.170618i
\(92\) 1.16637 0.424525i 0.121603 0.0442598i
\(93\) −7.31908 4.22567i −0.758953 0.438182i
\(94\) 7.05690 5.92145i 0.727864 0.610750i
\(95\) −8.99660 + 7.54904i −0.923031 + 0.774515i
\(96\) −1.50000 + 0.866025i −0.153093 + 0.0883883i
\(97\) 3.65910 1.33180i 0.371525 0.135224i −0.149508 0.988761i \(-0.547769\pi\)
0.521033 + 0.853536i \(0.325547\pi\)
\(98\) −0.500000 0.866025i −0.0505076 0.0874818i
\(99\) 0.458111 + 0.793471i 0.0460419 + 0.0797469i
\(100\) −0.705737 + 1.22237i −0.0705737 + 0.122237i
\(101\) 2.68479 15.2262i 0.267147 1.51507i −0.495705 0.868491i \(-0.665090\pi\)
0.762851 0.646574i \(-0.223799\pi\)
\(102\) −1.31908 1.57202i −0.130608 0.155653i
\(103\) −12.6630 4.60894i −1.24772 0.454133i −0.368089 0.929791i \(-0.619988\pi\)
−0.879630 + 0.475658i \(0.842210\pi\)
\(104\) −0.326352 1.85083i −0.0320014 0.181489i
\(105\) −1.50000 4.12122i −0.146385 0.402190i
\(106\) −8.74763 7.34013i −0.849645 0.712936i
\(107\) 7.61587 0.736254 0.368127 0.929776i \(-0.379999\pi\)
0.368127 + 0.929776i \(0.379999\pi\)
\(108\) 1.77719 4.88279i 0.171010 0.469846i
\(109\) 5.93582 0.568549 0.284274 0.958743i \(-0.408247\pi\)
0.284274 + 0.958743i \(0.408247\pi\)
\(110\) −0.592396 0.497079i −0.0564828 0.0473947i
\(111\) 18.4611 + 3.25519i 1.75225 + 0.308969i
\(112\) 0.173648 + 0.984808i 0.0164082 + 0.0930556i
\(113\) 10.4153 + 3.79088i 0.979793 + 0.356616i 0.781760 0.623580i \(-0.214322\pi\)
0.198033 + 0.980195i \(0.436545\pi\)
\(114\) −2.74763 + 7.54904i −0.257339 + 0.707032i
\(115\) 0.545759 3.09516i 0.0508923 0.288625i
\(116\) −1.40033 + 2.42544i −0.130017 + 0.225197i
\(117\) 4.31908 + 3.62414i 0.399299 + 0.335052i
\(118\) −2.66637 4.61830i −0.245460 0.425149i
\(119\) −1.11334 + 0.405223i −0.102060 + 0.0371467i
\(120\) 4.38571i 0.400358i
\(121\) −8.35504 + 7.01071i −0.759549 + 0.637337i
\(122\) −8.64930 + 7.25762i −0.783071 + 0.657074i
\(123\) 6.09256i 0.549348i
\(124\) 4.58512 1.66885i 0.411756 0.149867i
\(125\) −4.54323 7.86911i −0.406359 0.703835i
\(126\) −2.29813 1.92836i −0.204734 0.171792i
\(127\) 6.21301 10.7613i 0.551316 0.954907i −0.446864 0.894602i \(-0.647459\pi\)
0.998180 0.0603049i \(-0.0192073\pi\)
\(128\) 0.173648 0.984808i 0.0153485 0.0870455i
\(129\) 2.55051 7.00746i 0.224560 0.616973i
\(130\) −4.47178 1.62760i −0.392201 0.142750i
\(131\) −0.592396 3.35965i −0.0517579 0.293534i 0.947931 0.318476i \(-0.103171\pi\)
−0.999689 + 0.0249421i \(0.992060\pi\)
\(132\) −0.520945 0.0918566i −0.0453424 0.00799509i
\(133\) 3.55303 + 2.98135i 0.308087 + 0.258516i
\(134\) −10.5740 −0.913453
\(135\) −8.45723 10.0789i −0.727883 0.867457i
\(136\) 1.18479 0.101595
\(137\) 14.4042 + 12.0866i 1.23063 + 1.03262i 0.998198 + 0.0600128i \(0.0191142\pi\)
0.232436 + 0.972612i \(0.425330\pi\)
\(138\) −0.735300 2.02022i −0.0625929 0.171972i
\(139\) 0.112159 + 0.636084i 0.00951318 + 0.0539519i 0.989195 0.146607i \(-0.0468353\pi\)
−0.979682 + 0.200559i \(0.935724\pi\)
\(140\) 2.37939 + 0.866025i 0.201095 + 0.0731925i
\(141\) −10.2562 12.2229i −0.863732 1.02936i
\(142\) 2.35117 13.3341i 0.197306 1.11898i
\(143\) 0.286989 0.497079i 0.0239992 0.0415679i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 3.54576 + 6.14144i 0.294459 + 0.510018i
\(146\) −0.307934 + 0.112079i −0.0254848 + 0.00927569i
\(147\) −1.50000 + 0.866025i −0.123718 + 0.0714286i
\(148\) −8.29086 + 6.95686i −0.681504 + 0.571850i
\(149\) −15.3498 + 12.8800i −1.25751 + 1.05517i −0.261564 + 0.965186i \(0.584238\pi\)
−0.995943 + 0.0899869i \(0.971317\pi\)
\(150\) 2.11721 + 1.22237i 0.172870 + 0.0998063i
\(151\) 19.5719 7.12360i 1.59274 0.579710i 0.614816 0.788671i \(-0.289230\pi\)
0.977924 + 0.208961i \(0.0670080\pi\)
\(152\) −2.31908 4.01676i −0.188102 0.325802i
\(153\) −2.72281 + 2.28471i −0.220126 + 0.184708i
\(154\) −0.152704 + 0.264490i −0.0123052 + 0.0213132i
\(155\) 2.14543 12.1673i 0.172325 0.977304i
\(156\) −3.20574 + 0.565258i −0.256664 + 0.0452569i
\(157\) 0.229208 + 0.0834248i 0.0182928 + 0.00665803i 0.351150 0.936319i \(-0.385791\pi\)
−0.332858 + 0.942977i \(0.608013\pi\)
\(158\) 2.17752 + 12.3493i 0.173234 + 0.982459i
\(159\) −12.7135 + 15.1513i −1.00824 + 1.20158i
\(160\) −1.93969 1.62760i −0.153346 0.128673i
\(161\) −1.24123 −0.0978226
\(162\) −8.45723 3.07818i −0.664463 0.241845i
\(163\) 7.49525 0.587073 0.293537 0.955948i \(-0.405168\pi\)
0.293537 + 0.955948i \(0.405168\pi\)
\(164\) −2.69459 2.26103i −0.210412 0.176557i
\(165\) −0.860967 + 1.02606i −0.0670262 + 0.0798787i
\(166\) −0.268571 1.52314i −0.0208451 0.118219i
\(167\) 8.46926 + 3.08256i 0.655371 + 0.238535i 0.648236 0.761439i \(-0.275507\pi\)
0.00713425 + 0.999975i \(0.497729\pi\)
\(168\) 1.70574 0.300767i 0.131600 0.0232047i
\(169\) −1.64409 + 9.32407i −0.126468 + 0.717236i
\(170\) 1.50000 2.59808i 0.115045 0.199263i
\(171\) 13.0753 + 4.75903i 0.999895 + 0.363932i
\(172\) 2.15270 + 3.72859i 0.164142 + 0.284302i
\(173\) 10.6775 3.88630i 0.811797 0.295470i 0.0974309 0.995242i \(-0.468938\pi\)
0.714366 + 0.699772i \(0.246715\pi\)
\(174\) 4.20099 + 2.42544i 0.318476 + 0.183872i
\(175\) 1.08125 0.907278i 0.0817350 0.0685838i
\(176\) 0.233956 0.196312i 0.0176351 0.0147976i
\(177\) −7.99912 + 4.61830i −0.601251 + 0.347132i
\(178\) 3.56418 1.29725i 0.267146 0.0972333i
\(179\) 2.77584 + 4.80790i 0.207476 + 0.359360i 0.950919 0.309440i \(-0.100142\pi\)
−0.743443 + 0.668800i \(0.766808\pi\)
\(180\) 7.59627 0.566192
\(181\) 6.48680 11.2355i 0.482160 0.835125i −0.517631 0.855604i \(-0.673186\pi\)
0.999790 + 0.0204790i \(0.00651914\pi\)
\(182\) −0.326352 + 1.85083i −0.0241908 + 0.137193i
\(183\) 12.5706 + 14.9810i 0.929244 + 1.10743i
\(184\) 1.16637 + 0.424525i 0.0859862 + 0.0312964i
\(185\) 4.75877 + 26.9883i 0.349872 + 1.98422i
\(186\) −2.89053 7.94166i −0.211944 0.582311i
\(187\) 0.277189 + 0.232589i 0.0202701 + 0.0170086i
\(188\) 9.21213 0.671864
\(189\) −3.34002 + 3.98048i −0.242951 + 0.289538i
\(190\) −11.7442 −0.852015
\(191\) 2.10741 + 1.76833i 0.152487 + 0.127952i 0.715839 0.698265i \(-0.246044\pi\)
−0.563353 + 0.826217i \(0.690489\pi\)
\(192\) −1.70574 0.300767i −0.123101 0.0217060i
\(193\) −0.503870 2.85759i −0.0362694 0.205694i 0.961288 0.275546i \(-0.0888585\pi\)
−0.997557 + 0.0698517i \(0.977747\pi\)
\(194\) 3.65910 + 1.33180i 0.262708 + 0.0956179i
\(195\) −2.81908 + 7.74535i −0.201878 + 0.554656i
\(196\) 0.173648 0.984808i 0.0124034 0.0703434i
\(197\) 5.56670 9.64181i 0.396611 0.686951i −0.596694 0.802469i \(-0.703519\pi\)
0.993305 + 0.115518i \(0.0368528\pi\)
\(198\) −0.159100 + 0.902302i −0.0113068 + 0.0641238i
\(199\) 12.2062 + 21.1418i 0.865275 + 1.49870i 0.866774 + 0.498701i \(0.166189\pi\)
−0.00149916 + 0.999999i \(0.500477\pi\)
\(200\) −1.32635 + 0.482753i −0.0937872 + 0.0341358i
\(201\) 18.3147i 1.29182i
\(202\) 11.8439 9.93821i 0.833333 0.699250i
\(203\) 2.14543 1.80023i 0.150580 0.126351i
\(204\) 2.05212i 0.143677i
\(205\) −8.36959 + 3.04628i −0.584557 + 0.212761i
\(206\) −6.73783 11.6703i −0.469447 0.813105i
\(207\) −3.49912 + 1.27358i −0.243206 + 0.0885197i
\(208\) 0.939693 1.62760i 0.0651560 0.112853i
\(209\) 0.245977 1.39501i 0.0170146 0.0964946i
\(210\) 1.50000 4.12122i 0.103510 0.284391i
\(211\) 10.7258 + 3.90387i 0.738395 + 0.268754i 0.683714 0.729750i \(-0.260364\pi\)
0.0546809 + 0.998504i \(0.482586\pi\)
\(212\) −1.98293 11.2457i −0.136188 0.772360i
\(213\) −23.0954 4.07234i −1.58247 0.279032i
\(214\) 5.83409 + 4.89538i 0.398810 + 0.334642i
\(215\) 10.9017 0.743488
\(216\) 4.50000 2.59808i 0.306186 0.176777i
\(217\) −4.87939 −0.331234
\(218\) 4.54710 + 3.81547i 0.307969 + 0.258416i
\(219\) 0.194126 + 0.533356i 0.0131178 + 0.0360409i
\(220\) −0.134285 0.761570i −0.00905352 0.0513450i
\(221\) 2.09240 + 0.761570i 0.140750 + 0.0512287i
\(222\) 12.0496 + 14.3602i 0.808718 + 0.963793i
\(223\) 4.12361 23.3861i 0.276137 1.56605i −0.459189 0.888339i \(-0.651860\pi\)
0.735326 0.677713i \(-0.237029\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) 2.11721 3.66712i 0.141147 0.244474i
\(226\) 5.54189 + 9.59883i 0.368641 + 0.638505i
\(227\) 13.7208 4.99395i 0.910678 0.331460i 0.156155 0.987733i \(-0.450090\pi\)
0.754524 + 0.656273i \(0.227868\pi\)
\(228\) −6.95723 + 4.01676i −0.460754 + 0.266016i
\(229\) −14.6591 + 12.3004i −0.968701 + 0.812836i −0.982346 0.187071i \(-0.940101\pi\)
0.0136459 + 0.999907i \(0.495656\pi\)
\(230\) 2.40760 2.02022i 0.158753 0.133209i
\(231\) 0.458111 + 0.264490i 0.0301415 + 0.0174022i
\(232\) −2.63176 + 0.957882i −0.172783 + 0.0628880i
\(233\) 9.65183 + 16.7175i 0.632312 + 1.09520i 0.987078 + 0.160242i \(0.0512273\pi\)
−0.354766 + 0.934955i \(0.615439\pi\)
\(234\) 0.979055 + 5.55250i 0.0640029 + 0.362978i
\(235\) 11.6630 20.2009i 0.760808 1.31776i
\(236\) 0.926022 5.25173i 0.0602789 0.341859i
\(237\) 21.3897 3.77157i 1.38941 0.244990i
\(238\) −1.11334 0.405223i −0.0721672 0.0262667i
\(239\) −1.67412 9.49438i −0.108289 0.614140i −0.989855 0.142079i \(-0.954621\pi\)
0.881566 0.472061i \(-0.156490\pi\)
\(240\) −2.81908 + 3.35965i −0.181971 + 0.216864i
\(241\) −18.9119 15.8690i −1.21823 1.02221i −0.998916 0.0465570i \(-0.985175\pi\)
−0.219310 0.975655i \(-0.570380\pi\)
\(242\) −10.9067 −0.701111
\(243\) −5.33157 + 14.6484i −0.342020 + 0.939693i
\(244\) −11.2909 −0.722823
\(245\) −1.93969 1.62760i −0.123922 0.103983i
\(246\) −3.91622 + 4.66717i −0.249689 + 0.297568i
\(247\) −1.51367 8.58445i −0.0963126 0.546216i
\(248\) 4.58512 + 1.66885i 0.291156 + 0.105972i
\(249\) −2.63816 + 0.465178i −0.167186 + 0.0294795i
\(250\) 1.57785 8.94842i 0.0997919 0.565948i
\(251\) −2.65657 + 4.60132i −0.167681 + 0.290433i −0.937604 0.347704i \(-0.886961\pi\)
0.769923 + 0.638137i \(0.220295\pi\)
\(252\) −0.520945 2.95442i −0.0328164 0.186111i
\(253\) 0.189540 + 0.328293i 0.0119163 + 0.0206396i
\(254\) 11.6766 4.24995i 0.732658 0.266666i
\(255\) −4.50000 2.59808i −0.281801 0.162698i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 6.74691 5.66133i 0.420861 0.353144i −0.407630 0.913147i \(-0.633645\pi\)
0.828490 + 0.560003i \(0.189200\pi\)
\(258\) 6.45811 3.72859i 0.402064 0.232132i
\(259\) 10.1702 3.70167i 0.631948 0.230010i
\(260\) −2.37939 4.12122i −0.147563 0.255587i
\(261\) 4.20099 7.27633i 0.260035 0.450393i
\(262\) 1.70574 2.95442i 0.105381 0.182525i
\(263\) 0.950837 5.39246i 0.0586311 0.332514i −0.941357 0.337413i \(-0.890448\pi\)
0.999988 + 0.00489894i \(0.00155939\pi\)
\(264\) −0.340022 0.405223i −0.0209269 0.0249397i
\(265\) −27.1707 9.88933i −1.66908 0.607497i
\(266\) 0.805407 + 4.56769i 0.0493827 + 0.280063i
\(267\) −2.24691 6.17334i −0.137509 0.377802i
\(268\) −8.10014 6.79682i −0.494795 0.415182i
\(269\) 14.0942 0.859339 0.429669 0.902986i \(-0.358630\pi\)
0.429669 + 0.902986i \(0.358630\pi\)
\(270\) 13.1571i 0.800717i
\(271\) −30.6013 −1.85890 −0.929449 0.368951i \(-0.879717\pi\)
−0.929449 + 0.368951i \(0.879717\pi\)
\(272\) 0.907604 + 0.761570i 0.0550316 + 0.0461770i
\(273\) 3.20574 + 0.565258i 0.194020 + 0.0342110i
\(274\) 3.26517 + 18.5177i 0.197256 + 1.11869i
\(275\) −0.405078 0.147436i −0.0244271 0.00889073i
\(276\) 0.735300 2.02022i 0.0442598 0.121603i
\(277\) −2.46657 + 13.9886i −0.148202 + 0.840493i 0.816539 + 0.577290i \(0.195890\pi\)
−0.964741 + 0.263203i \(0.915221\pi\)
\(278\) −0.322948 + 0.559363i −0.0193691 + 0.0335484i
\(279\) −13.7554 + 5.00654i −0.823512 + 0.299734i
\(280\) 1.26604 + 2.19285i 0.0756606 + 0.131048i
\(281\) 25.6805 9.34694i 1.53197 0.557592i 0.567868 0.823120i \(-0.307768\pi\)
0.964103 + 0.265528i \(0.0855463\pi\)
\(282\) 15.9559i 0.950159i
\(283\) 15.1382 12.7024i 0.899870 0.755081i −0.0702950 0.997526i \(-0.522394\pi\)
0.970165 + 0.242446i \(0.0779496\pi\)
\(284\) 10.3721 8.70323i 0.615472 0.516442i
\(285\) 20.3416i 1.20493i
\(286\) 0.539363 0.196312i 0.0318932 0.0116082i
\(287\) 1.75877 + 3.04628i 0.103817 + 0.179816i
\(288\) −0.520945 + 2.95442i −0.0306970 + 0.174091i
\(289\) 7.79813 13.5068i 0.458714 0.794515i
\(290\) −1.23143 + 6.98378i −0.0723120 + 0.410102i
\(291\) 2.30675 6.33775i 0.135224 0.371525i
\(292\) −0.307934 0.112079i −0.0180204 0.00655891i
\(293\) −1.89528 10.7487i −0.110723 0.627943i −0.988779 0.149385i \(-0.952271\pi\)
0.878056 0.478558i \(-0.158840\pi\)
\(294\) −1.70574 0.300767i −0.0994806 0.0175411i
\(295\) −10.3439 8.67956i −0.602245 0.505343i
\(296\) −10.8229 −0.629071
\(297\) 1.56283 + 0.275570i 0.0906848 + 0.0159902i
\(298\) −20.0378 −1.16076
\(299\) 1.78699 + 1.49946i 0.103344 + 0.0867161i
\(300\) 0.836152 + 2.29731i 0.0482753 + 0.132635i
\(301\) −0.747626 4.24000i −0.0430925 0.244389i
\(302\) 19.5719 + 7.12360i 1.12624 + 0.409917i
\(303\) −17.2135 20.5142i −0.988888 1.17851i
\(304\) 0.805407 4.56769i 0.0461933 0.261975i
\(305\) −14.2947 + 24.7592i −0.818514 + 1.41771i
\(306\) −3.55438 −0.203190
\(307\) 10.4820 + 18.1554i 0.598242 + 1.03619i 0.993081 + 0.117435i \(0.0374672\pi\)
−0.394838 + 0.918751i \(0.629199\pi\)
\(308\) −0.286989 + 0.104455i −0.0163527 + 0.00595190i
\(309\) −20.2135 + 11.6703i −1.14990 + 0.663898i
\(310\) 9.46451 7.94166i 0.537548 0.451056i
\(311\) −13.9363 + 11.6939i −0.790254 + 0.663102i −0.945808 0.324725i \(-0.894728\pi\)
0.155554 + 0.987827i \(0.450284\pi\)
\(312\) −2.81908 1.62760i −0.159599 0.0921444i
\(313\) −16.8824 + 6.14468i −0.954248 + 0.347318i −0.771777 0.635893i \(-0.780632\pi\)
−0.182471 + 0.983211i \(0.558410\pi\)
\(314\) 0.121959 + 0.211239i 0.00688254 + 0.0119209i
\(315\) −7.13816 2.59808i −0.402190 0.146385i
\(316\) −6.26991 + 10.8598i −0.352710 + 0.610912i
\(317\) −2.85369 + 16.1841i −0.160279 + 0.908989i 0.793520 + 0.608544i \(0.208246\pi\)
−0.953799 + 0.300445i \(0.902865\pi\)
\(318\) −19.4782 + 3.43453i −1.09228 + 0.192599i
\(319\) −0.803758 0.292544i −0.0450018 0.0163793i
\(320\) −0.439693 2.49362i −0.0245796 0.139398i
\(321\) 8.47906 10.1049i 0.473255 0.564003i
\(322\) −0.950837 0.797847i −0.0529881 0.0444623i
\(323\) 5.49525 0.305764
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) −2.65270 −0.147146
\(326\) 5.74170 + 4.81786i 0.318003 + 0.266836i
\(327\) 6.60859 7.87581i 0.365456 0.435534i
\(328\) −0.610815 3.46410i −0.0337266 0.191273i
\(329\) −8.65657 3.15074i −0.477252 0.173706i
\(330\) −1.31908 + 0.232589i −0.0726128 + 0.0128036i
\(331\) 1.18345 6.71167i 0.0650482 0.368907i −0.934855 0.355028i \(-0.884471\pi\)
0.999904 0.0138782i \(-0.00441772\pi\)
\(332\) 0.773318 1.33943i 0.0424414 0.0735106i
\(333\) 24.8726 20.8706i 1.36301 1.14370i
\(334\) 4.50640 + 7.80531i 0.246579 + 0.427087i
\(335\) −25.1596 + 9.15733i −1.37461 + 0.500319i
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) −1.80335 + 1.51319i −0.0982346 + 0.0824286i −0.690582 0.723254i \(-0.742646\pi\)
0.592348 + 0.805682i \(0.298201\pi\)
\(338\) −7.25284 + 6.08586i −0.394503 + 0.331027i
\(339\) 16.6257 9.59883i 0.902982 0.521337i
\(340\) 2.81908 1.02606i 0.152886 0.0556459i
\(341\) 0.745100 + 1.29055i 0.0403494 + 0.0698872i
\(342\) 6.95723 + 12.0503i 0.376204 + 0.651605i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −0.747626 + 4.24000i −0.0403093 + 0.228605i
\(345\) −3.49912 4.17009i −0.188386 0.224510i
\(346\) 10.6775 + 3.88630i 0.574027 + 0.208929i
\(347\) −1.60947 9.12776i −0.0864009 0.490004i −0.997045 0.0768133i \(-0.975525\pi\)
0.910645 0.413191i \(-0.135586\pi\)
\(348\) 1.65910 + 4.55834i 0.0889371 + 0.244353i
\(349\) −7.23577 6.07153i −0.387322 0.325001i 0.428247 0.903662i \(-0.359131\pi\)
−0.815569 + 0.578660i \(0.803576\pi\)
\(350\) 1.41147 0.0754465
\(351\) 9.61721 1.69577i 0.513329 0.0905137i
\(352\) 0.305407 0.0162783
\(353\) 14.6250 + 12.2718i 0.778408 + 0.653162i 0.942847 0.333226i \(-0.108137\pi\)
−0.164439 + 0.986387i \(0.552582\pi\)
\(354\) −9.09627 1.60392i −0.483461 0.0852472i
\(355\) −5.95336 33.7632i −0.315972 1.79196i
\(356\) 3.56418 + 1.29725i 0.188901 + 0.0687544i
\(357\) −0.701867 + 1.92836i −0.0371467 + 0.102060i
\(358\) −0.964041 + 5.46735i −0.0509511 + 0.288958i
\(359\) 3.12449 5.41177i 0.164904 0.285622i −0.771717 0.635966i \(-0.780602\pi\)
0.936621 + 0.350344i \(0.113935\pi\)
\(360\) 5.81908 + 4.88279i 0.306692 + 0.257345i
\(361\) −1.25624 2.17588i −0.0661181 0.114520i
\(362\) 12.1912 4.43723i 0.640755 0.233216i
\(363\) 18.8910i 0.991521i
\(364\) −1.43969 + 1.20805i −0.0754604 + 0.0633188i
\(365\) −0.635630 + 0.533356i −0.0332704 + 0.0279172i
\(366\) 19.5563i 1.02223i
\(367\) −24.0043 + 8.73686i −1.25302 + 0.456061i −0.881420 0.472334i \(-0.843412\pi\)
−0.371596 + 0.928394i \(0.621189\pi\)
\(368\) 0.620615 + 1.07494i 0.0323518 + 0.0560349i
\(369\) 8.08378 + 6.78310i 0.420825 + 0.353114i
\(370\) −13.7023 + 23.7331i −0.712350 + 1.23383i
\(371\) −1.98293 + 11.2457i −0.102948 + 0.583849i
\(372\) 2.89053 7.94166i 0.149867 0.411756i
\(373\) 4.09879 + 1.49184i 0.212227 + 0.0772445i 0.445946 0.895060i \(-0.352867\pi\)
−0.233719 + 0.972304i \(0.575089\pi\)
\(374\) 0.0628336 + 0.356347i 0.00324905 + 0.0184263i
\(375\) −15.4991 2.73291i −0.800371 0.141127i
\(376\) 7.05690 + 5.92145i 0.363932 + 0.305375i
\(377\) −5.26352 −0.271085
\(378\) −5.11721 + 0.902302i −0.263201 + 0.0464094i
\(379\) −10.4115 −0.534802 −0.267401 0.963585i \(-0.586165\pi\)
−0.267401 + 0.963585i \(0.586165\pi\)
\(380\) −8.99660 7.54904i −0.461516 0.387258i
\(381\) −7.36113 20.2245i −0.377122 1.03613i
\(382\) 0.477711 + 2.70924i 0.0244418 + 0.138617i
\(383\) −32.5869 11.8607i −1.66511 0.606052i −0.673960 0.738768i \(-0.735408\pi\)
−0.991154 + 0.132715i \(0.957630\pi\)
\(384\) −1.11334 1.32683i −0.0568149 0.0677094i
\(385\) −0.134285 + 0.761570i −0.00684381 + 0.0388132i
\(386\) 1.45084 2.51292i 0.0738457 0.127904i
\(387\) −6.45811 11.1858i −0.328284 0.568605i
\(388\) 1.94697 + 3.37225i 0.0988423 + 0.171200i
\(389\) 20.6758 7.52536i 1.04830 0.381551i 0.240281 0.970703i \(-0.422760\pi\)
0.808022 + 0.589152i \(0.200538\pi\)
\(390\) −7.13816 + 4.12122i −0.361455 + 0.208686i
\(391\) −1.12654 + 0.945283i −0.0569718 + 0.0478050i
\(392\) 0.766044 0.642788i 0.0386911 0.0324657i
\(393\) −5.11721 2.95442i −0.258129 0.149031i
\(394\) 10.4620 3.80785i 0.527067 0.191837i
\(395\) 15.8760 + 27.4980i 0.798807 + 1.38357i
\(396\) −0.701867 + 0.588936i −0.0352701 + 0.0295952i
\(397\) −10.3032 + 17.8456i −0.517102 + 0.895647i 0.482701 + 0.875785i \(0.339656\pi\)
−0.999803 + 0.0198617i \(0.993677\pi\)
\(398\) −4.23917 + 24.0415i −0.212490 + 1.20509i
\(399\) 7.91147 1.39501i 0.396069 0.0698377i
\(400\) −1.32635 0.482753i −0.0663176 0.0241376i
\(401\) −5.05257 28.6545i −0.252313 1.43094i −0.802876 0.596145i \(-0.796698\pi\)
0.550563 0.834793i \(-0.314413\pi\)
\(402\) −11.7724 + 14.0298i −0.587156 + 0.699745i
\(403\) 7.02481 + 5.89452i 0.349931 + 0.293627i
\(404\) 15.4611 0.769219
\(405\) −22.7888 −1.13238
\(406\) 2.80066 0.138994
\(407\) −2.53209 2.12467i −0.125511 0.105316i
\(408\) 1.31908 1.57202i 0.0653041 0.0778264i
\(409\) 2.04142 + 11.5775i 0.100942 + 0.572470i 0.992764 + 0.120083i \(0.0383161\pi\)
−0.891822 + 0.452386i \(0.850573\pi\)
\(410\) −8.36959 3.04628i −0.413344 0.150445i
\(411\) 32.0736 5.65544i 1.58207 0.278962i
\(412\) 2.34002 13.2709i 0.115285 0.653812i
\(413\) −2.66637 + 4.61830i −0.131204 + 0.227251i
\(414\) −3.49912 1.27358i −0.171972 0.0625929i
\(415\) −1.95811 3.39155i −0.0961199 0.166485i
\(416\) 1.76604 0.642788i 0.0865875 0.0315153i
\(417\) 0.968845 + 0.559363i 0.0474445 + 0.0273921i
\(418\) 1.08512 0.910526i 0.0530751 0.0445353i
\(419\) −15.2554 + 12.8008i −0.745273 + 0.625359i −0.934248 0.356623i \(-0.883928\pi\)
0.188975 + 0.981982i \(0.439484\pi\)
\(420\) 3.79813 2.19285i 0.185330 0.107000i
\(421\) −10.6985 + 3.89392i −0.521411 + 0.189778i −0.589299 0.807915i \(-0.700596\pi\)
0.0678881 + 0.997693i \(0.478374\pi\)
\(422\) 5.70708 + 9.88495i 0.277816 + 0.481192i
\(423\) −27.6364 −1.34373
\(424\) 5.70961 9.88933i 0.277283 0.480268i
\(425\) 0.290393 1.64690i 0.0140861 0.0798863i
\(426\) −15.0744 17.9650i −0.730359 0.870408i
\(427\) 10.6099 + 3.86170i 0.513451 + 0.186881i
\(428\) 1.32248 + 7.50016i 0.0639246 + 0.362534i
\(429\) −0.340022 0.934204i −0.0164164 0.0451038i
\(430\) 8.35117 + 7.00746i 0.402729 + 0.337930i
\(431\) −28.5398 −1.37472 −0.687358 0.726319i \(-0.741229\pi\)
−0.687358 + 0.726319i \(0.741229\pi\)
\(432\) 5.11721 + 0.902302i 0.246202 + 0.0434120i
\(433\) −12.4388 −0.597771 −0.298886 0.954289i \(-0.596615\pi\)
−0.298886 + 0.954289i \(0.596615\pi\)
\(434\) −3.73783 3.13641i −0.179421 0.150552i
\(435\) 12.0963 + 2.13290i 0.579972 + 0.102265i
\(436\) 1.03074 + 5.84564i 0.0493637 + 0.279956i
\(437\) 5.40983 + 1.96902i 0.258787 + 0.0941908i
\(438\) −0.194126 + 0.533356i −0.00927569 + 0.0254848i
\(439\) 6.32651 35.8794i 0.301948 1.71243i −0.335585 0.942010i \(-0.608934\pi\)
0.637533 0.770423i \(-0.279955\pi\)
\(440\) 0.386659 0.669713i 0.0184333 0.0319273i
\(441\) −0.520945 + 2.95442i −0.0248069 + 0.140687i
\(442\) 1.11334 + 1.92836i 0.0529562 + 0.0917229i
\(443\) −21.2738 + 7.74302i −1.01075 + 0.367882i −0.793720 0.608283i \(-0.791859\pi\)
−0.217028 + 0.976165i \(0.569636\pi\)
\(444\) 18.7459i 0.889641i
\(445\) 7.35710 6.17334i 0.348760 0.292644i
\(446\) 18.1912 15.2642i 0.861378 0.722782i
\(447\) 34.7064i 1.64156i
\(448\) −0.939693 + 0.342020i −0.0443963 + 0.0161589i
\(449\) −14.7408 25.5318i −0.695662 1.20492i −0.969957 0.243277i \(-0.921778\pi\)
0.274295 0.961646i \(-0.411556\pi\)
\(450\) 3.97906 1.44826i 0.187574 0.0682715i
\(451\) 0.537141 0.930356i 0.0252930 0.0438088i
\(452\) −1.92468 + 10.9154i −0.0905292 + 0.513417i
\(453\) 12.3384 33.8996i 0.579710 1.59274i
\(454\) 13.7208 + 4.99395i 0.643947 + 0.234377i
\(455\) 0.826352 + 4.68647i 0.0387400 + 0.219705i
\(456\) −7.91147 1.39501i −0.370489 0.0653272i
\(457\) 16.2561 + 13.6405i 0.760427 + 0.638074i 0.938238 0.345990i \(-0.112457\pi\)
−0.177811 + 0.984065i \(0.556901\pi\)
\(458\) −19.1361 −0.894171
\(459\) 6.15636i 0.287354i
\(460\) 3.14290 0.146539
\(461\) −21.2041 17.7924i −0.987575 0.828674i −0.00236055 0.999997i \(-0.500751\pi\)
−0.985215 + 0.171323i \(0.945196\pi\)
\(462\) 0.180922 + 0.497079i 0.00841726 + 0.0231262i
\(463\) 4.97400 + 28.2090i 0.231162 + 1.31098i 0.850549 + 0.525896i \(0.176270\pi\)
−0.619387 + 0.785086i \(0.712619\pi\)
\(464\) −2.63176 0.957882i −0.122176 0.0444686i
\(465\) −13.7554 16.3930i −0.637890 0.760208i
\(466\) −3.35204 + 19.0104i −0.155280 + 0.880639i
\(467\) −4.31908 + 7.48086i −0.199863 + 0.346173i −0.948484 0.316825i \(-0.897383\pi\)
0.748621 + 0.662998i \(0.230716\pi\)
\(468\) −2.81908 + 4.88279i −0.130312 + 0.225707i
\(469\) 5.28699 + 9.15733i 0.244130 + 0.422846i
\(470\) 21.9192 7.97794i 1.01106 0.367995i
\(471\) 0.365877 0.211239i 0.0168587 0.00973338i
\(472\) 4.08512 3.42782i 0.188033 0.157778i
\(473\) −1.00727 + 0.845203i −0.0463145 + 0.0388625i
\(474\) 18.8097 + 10.8598i 0.863960 + 0.498808i
\(475\) −6.15183 + 2.23908i −0.282265 + 0.102736i
\(476\) −0.592396 1.02606i −0.0271524 0.0470294i
\(477\) 5.94878 + 33.7372i 0.272376 + 1.54472i
\(478\) 4.82042 8.34922i 0.220481 0.381884i
\(479\) 4.58647 26.0111i 0.209561 1.18848i −0.680538 0.732713i \(-0.738254\pi\)
0.890099 0.455767i \(-0.150635\pi\)
\(480\) −4.31908 + 0.761570i −0.197138 + 0.0347608i
\(481\) −19.1138 6.95686i −0.871515 0.317205i
\(482\) −4.28699 24.3127i −0.195267 1.10741i
\(483\) −1.38191 + 1.64690i −0.0628791 + 0.0749365i
\(484\) −8.35504 7.01071i −0.379774 0.318669i
\(485\) 9.85978 0.447710
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) 17.0993 0.774841 0.387421 0.921903i \(-0.373366\pi\)
0.387421 + 0.921903i \(0.373366\pi\)
\(488\) −8.64930 7.25762i −0.391535 0.328537i
\(489\) 8.34477 9.94491i 0.377364 0.449724i
\(490\) −0.439693 2.49362i −0.0198633 0.112650i
\(491\) −9.21853 3.35527i −0.416026 0.151421i 0.125522 0.992091i \(-0.459939\pi\)
−0.541548 + 0.840670i \(0.682162\pi\)
\(492\) −6.00000 + 1.05796i −0.270501 + 0.0476966i
\(493\) 0.576199 3.26779i 0.0259507 0.147174i
\(494\) 4.35844 7.54904i 0.196096 0.339647i
\(495\) 0.402856 + 2.28471i 0.0181070 + 0.102690i
\(496\) 2.43969 + 4.22567i 0.109545 + 0.189738i
\(497\) −12.7233 + 4.63089i −0.570717 + 0.207724i
\(498\) −2.31996 1.33943i −0.103960 0.0600211i
\(499\) 5.09808 4.27780i 0.228221 0.191500i −0.521505 0.853248i \(-0.674629\pi\)
0.749727 + 0.661748i \(0.230185\pi\)
\(500\) 6.96064 5.84067i 0.311289 0.261203i
\(501\) 13.5192 7.80531i 0.603993 0.348715i
\(502\) −4.99273 + 1.81720i −0.222836 + 0.0811058i
\(503\) 7.98932 + 13.8379i 0.356226 + 0.617002i 0.987327 0.158699i \(-0.0507299\pi\)
−0.631101 + 0.775701i \(0.717397\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) 19.5744 33.9039i 0.871051 1.50871i
\(506\) −0.0658266 + 0.373321i −0.00292635 + 0.0165962i
\(507\) 10.5410 + 12.5623i 0.468143 + 0.557911i
\(508\) 11.6766 + 4.24995i 0.518067 + 0.188561i
\(509\) −7.33750 41.6130i −0.325229 1.84446i −0.508062 0.861320i \(-0.669638\pi\)
0.182834 0.983144i \(-0.441473\pi\)
\(510\) −1.77719 4.88279i −0.0786952 0.216213i
\(511\) 0.251030 + 0.210639i 0.0111049 + 0.00931812i
\(512\) 1.00000 0.0441942
\(513\) 20.8717 12.0503i 0.921508 0.532033i
\(514\) 8.80747 0.388481
\(515\) −26.1386 21.9329i −1.15181 0.966479i
\(516\) 7.34389 + 1.29493i 0.323297 + 0.0570060i
\(517\) 0.488551 + 2.77071i 0.0214864 + 0.121856i
\(518\) 10.1702 + 3.70167i 0.446855 + 0.162642i
\(519\) 6.73127 18.4940i 0.295470 0.811797i
\(520\) 0.826352 4.68647i 0.0362379 0.205515i
\(521\) −6.67705 + 11.5650i −0.292527 + 0.506672i −0.974407 0.224793i \(-0.927829\pi\)
0.681880 + 0.731464i \(0.261163\pi\)
\(522\) 7.89528 2.87365i 0.345567 0.125776i
\(523\) −4.58260 7.93729i −0.200383 0.347073i 0.748269 0.663396i \(-0.230885\pi\)
−0.948652 + 0.316322i \(0.897552\pi\)
\(524\) 3.20574 1.16679i 0.140043 0.0509716i
\(525\) 2.44474i 0.106697i
\(526\) 4.19459 3.51968i 0.182893 0.153465i
\(527\) −4.42855 + 3.71599i −0.192911 + 0.161871i
\(528\) 0.528981i 0.0230209i
\(529\) 20.1652 7.33953i 0.876747 0.319110i
\(530\) −14.4572 25.0407i −0.627982 1.08770i
\(531\) −2.77807 + 15.7552i −0.120558 + 0.683717i
\(532\) −2.31908 + 4.01676i −0.100545 + 0.174149i
\(533\) 1.14796 6.51038i 0.0497235 0.281996i
\(534\) 2.24691 6.17334i 0.0972333 0.267146i
\(535\) 18.1211 + 6.59553i 0.783443 + 0.285150i
\(536\) −1.83615 10.4133i −0.0793097 0.449788i
\(537\) 9.46972 + 1.66977i 0.408649 + 0.0720558i
\(538\) 10.7968 + 9.05958i 0.465483 + 0.390586i
\(539\) 0.305407 0.0131548
\(540\) 8.45723 10.0789i 0.363941 0.433728i
\(541\) −12.0401 −0.517646 −0.258823 0.965925i \(-0.583335\pi\)
−0.258823 + 0.965925i \(0.583335\pi\)
\(542\) −23.4420 19.6701i −1.00692 0.844905i
\(543\) −7.68551 21.1158i −0.329817 0.906164i
\(544\) 0.205737 + 1.16679i 0.00882090 + 0.0500258i
\(545\) 14.1236 + 5.14057i 0.604989 + 0.220198i
\(546\) 2.09240 + 2.49362i 0.0895463 + 0.106717i
\(547\) −5.97209 + 33.8694i −0.255348 + 1.44815i 0.539830 + 0.841774i \(0.318489\pi\)
−0.795178 + 0.606376i \(0.792623\pi\)
\(548\) −9.40167 + 16.2842i −0.401620 + 0.695626i
\(549\) 33.8726 1.44565
\(550\) −0.215537 0.373321i −0.00919054 0.0159185i
\(551\) −12.2065 + 4.44281i −0.520015 + 0.189270i
\(552\) 1.86184 1.07494i 0.0792454 0.0457523i
\(553\) 9.60607 8.06045i 0.408492 0.342765i
\(554\) −10.8812 + 9.13041i −0.462298 + 0.387914i
\(555\) 41.1070 + 23.7331i 1.74489 + 1.00742i
\(556\) −0.606944 + 0.220910i −0.0257402 + 0.00936865i
\(557\) 2.87551 + 4.98054i 0.121839 + 0.211032i 0.920493 0.390759i \(-0.127787\pi\)
−0.798654 + 0.601791i \(0.794454\pi\)
\(558\) −13.7554 5.00654i −0.582311 0.211944i
\(559\) −4.04576 + 7.00746i −0.171117 + 0.296384i
\(560\) −0.439693 + 2.49362i −0.0185804 + 0.105375i
\(561\) 0.617211 0.108831i 0.0260587 0.00459485i
\(562\) 25.6805 + 9.34694i 1.08327 + 0.394277i
\(563\) 7.79039 + 44.1815i 0.328326 + 1.86203i 0.485190 + 0.874409i \(0.338750\pi\)
−0.156864 + 0.987620i \(0.550139\pi\)
\(564\) 10.2562 12.2229i 0.431866 0.514678i
\(565\) 21.4991 + 18.0399i 0.904475 + 0.758945i
\(566\) 19.7615 0.830636
\(567\) 1.56283 + 8.86327i 0.0656328 + 0.372222i
\(568\) 13.5398 0.568119
\(569\) 17.8255 + 14.9573i 0.747283 + 0.627045i 0.934783 0.355220i \(-0.115594\pi\)
−0.187500 + 0.982265i \(0.560038\pi\)
\(570\) −13.0753 + 15.5826i −0.547665 + 0.652682i
\(571\) 4.12361 + 23.3861i 0.172568 + 0.978680i 0.940914 + 0.338645i \(0.109969\pi\)
−0.768346 + 0.640034i \(0.778920\pi\)
\(572\) 0.539363 + 0.196312i 0.0225519 + 0.00820822i
\(573\) 4.69253 0.827420i 0.196033 0.0345660i
\(574\) −0.610815 + 3.46410i −0.0254949 + 0.144589i
\(575\) 0.875982 1.51724i 0.0365310 0.0632735i
\(576\) −2.29813 + 1.92836i −0.0957556 + 0.0803485i
\(577\) −5.41875 9.38555i −0.225585 0.390725i 0.730909 0.682474i \(-0.239096\pi\)
−0.956495 + 0.291749i \(0.905763\pi\)
\(578\) 14.6557 5.33424i 0.609597 0.221875i
\(579\) −4.35251 2.51292i −0.180884 0.104434i
\(580\) −5.43242 + 4.55834i −0.225569 + 0.189275i
\(581\) −1.18479 + 0.994159i −0.0491535 + 0.0412447i
\(582\) 5.84090 3.37225i 0.242113 0.139784i
\(583\) 3.27719 1.19280i 0.135727 0.0494007i
\(584\) −0.163848 0.283793i −0.00678008 0.0117434i
\(585\) 7.13816 + 12.3636i 0.295126 + 0.511174i
\(586\) 5.45723 9.45221i 0.225436 0.390467i
\(587\) 0.271974 1.54244i 0.0112256 0.0636634i −0.978680 0.205389i \(-0.934154\pi\)
0.989906 + 0.141726i \(0.0452651\pi\)
\(588\) −1.11334 1.32683i −0.0459134 0.0547175i
\(589\) 21.2665 + 7.74038i 0.876271 + 0.318937i
\(590\) −2.34477 13.2979i −0.0965327 0.547464i
\(591\) −6.59539 18.1207i −0.271298 0.745385i
\(592\) −8.29086 6.95686i −0.340752 0.285925i
\(593\) 44.1634 1.81358 0.906788 0.421588i \(-0.138527\pi\)
0.906788 + 0.421588i \(0.138527\pi\)
\(594\) 1.02007 + 1.21567i 0.0418539 + 0.0498795i
\(595\) −3.00000 −0.122988
\(596\) −15.3498 12.8800i −0.628753 0.527587i
\(597\) 41.6411 + 7.34246i 1.70426 + 0.300507i
\(598\) 0.405078 + 2.29731i 0.0165649 + 0.0939439i
\(599\) −28.4736 10.3635i −1.16340 0.423443i −0.313089 0.949724i \(-0.601364\pi\)
−0.850311 + 0.526281i \(0.823586\pi\)
\(600\) −0.836152 + 2.29731i −0.0341358 + 0.0937872i
\(601\) −6.22849 + 35.3235i −0.254066 + 1.44088i 0.544395 + 0.838829i \(0.316759\pi\)
−0.798460 + 0.602048i \(0.794352\pi\)
\(602\) 2.15270 3.72859i 0.0877377 0.151966i
\(603\) 24.3004 + 20.3905i 0.989589 + 0.830364i
\(604\) 10.4140 + 18.0376i 0.423740 + 0.733939i
\(605\) −25.9513 + 9.44550i −1.05507 + 0.384014i
\(606\) 26.7794i 1.08784i
\(607\) −7.85916 + 6.59461i −0.318993 + 0.267667i −0.788197 0.615423i \(-0.788985\pi\)
0.469204 + 0.883090i \(0.344541\pi\)
\(608\) 3.55303 2.98135i 0.144095 0.120910i
\(609\) 4.85088i 0.196568i
\(610\) −26.8653 + 9.77817i −1.08774 + 0.395907i
\(611\) 8.65657 + 14.9936i 0.350208 + 0.606577i
\(612\) −2.72281 2.28471i −0.110063 0.0923539i
\(613\) 18.2713 31.6467i 0.737969 1.27820i −0.215439 0.976517i \(-0.569118\pi\)
0.953408 0.301683i \(-0.0975484\pi\)
\(614\) −3.64038 + 20.6456i −0.146914 + 0.833189i
\(615\) −5.27631 + 14.4965i −0.212761 + 0.584557i
\(616\) −0.286989 0.104455i −0.0115631 0.00420863i
\(617\) 5.91694 + 33.5566i 0.238207 + 1.35094i 0.835754 + 0.549105i \(0.185031\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(618\) −22.9859 4.05304i −0.924629 0.163037i
\(619\) 31.0371 + 26.0433i 1.24749 + 1.04677i 0.996900 + 0.0786728i \(0.0250682\pi\)
0.250588 + 0.968094i \(0.419376\pi\)
\(620\) 12.3550 0.496190
\(621\) −2.20590 + 6.06066i −0.0885197 + 0.243206i
\(622\) −18.1925 −0.729454
\(623\) −2.90554 2.43804i −0.116408 0.0976781i
\(624\) −1.11334 3.05888i −0.0445693 0.122453i
\(625\) −5.22075 29.6084i −0.208830 1.18433i
\(626\) −16.8824 6.14468i −0.674756 0.245591i
\(627\) −1.57708 1.87949i −0.0629824 0.0750595i
\(628\) −0.0423559 + 0.240212i −0.00169018 + 0.00958551i
\(629\) 6.41147 11.1050i 0.255642 0.442785i
\(630\) −3.79813 6.57856i −0.151321 0.262096i
\(631\) −8.83140 15.2964i −0.351573 0.608942i 0.634953 0.772551i \(-0.281020\pi\)
−0.986525 + 0.163609i \(0.947686\pi\)
\(632\) −11.7836 + 4.28887i −0.468726 + 0.170602i
\(633\) 17.1212 9.88495i 0.680508 0.392892i
\(634\) −12.5890 + 10.5634i −0.499973 + 0.419527i
\(635\) 24.1027 20.2245i 0.956485 0.802586i
\(636\) −17.1288 9.88933i −0.679202 0.392137i
\(637\) 1.76604 0.642788i 0.0699732 0.0254682i
\(638\) −0.427671 0.740748i −0.0169317 0.0293265i
\(639\) −31.1163 + 26.1097i −1.23094 + 1.03288i
\(640\) 1.26604 2.19285i 0.0500448 0.0866801i
\(641\) 2.46884 14.0015i 0.0975135 0.553027i −0.896435 0.443176i \(-0.853852\pi\)
0.993948 0.109851i \(-0.0350372\pi\)
\(642\) 12.9907 2.29061i 0.512701 0.0904030i
\(643\) 0.654925 + 0.238373i 0.0258277 + 0.00940052i 0.354902 0.934904i \(-0.384514\pi\)
−0.329074 + 0.944304i \(0.606737\pi\)
\(644\) −0.215537 1.22237i −0.00849336 0.0481682i
\(645\) 12.1373 14.4646i 0.477905 0.569545i
\(646\) 4.20961 + 3.53228i 0.165625 + 0.138976i
\(647\) −36.5499 −1.43693 −0.718463 0.695565i \(-0.755154\pi\)
−0.718463 + 0.695565i \(0.755154\pi\)
\(648\) 1.56283 8.86327i 0.0613939 0.348182i
\(649\) 1.62866 0.0639305
\(650\) −2.03209 1.70513i −0.0797051 0.0668805i
\(651\) −5.43242 + 6.47410i −0.212913 + 0.253740i
\(652\) 1.30154 + 7.38138i 0.0509721 + 0.289077i
\(653\) 41.5565 + 15.1253i 1.62623 + 0.591900i 0.984555 0.175076i \(-0.0560171\pi\)
0.641676 + 0.766976i \(0.278239\pi\)
\(654\) 10.1250 1.78530i 0.395917 0.0698108i
\(655\) 1.50000 8.50692i 0.0586098 0.332393i
\(656\) 1.75877 3.04628i 0.0686685 0.118937i
\(657\) 0.923801 + 0.336236i 0.0360409 + 0.0131178i
\(658\) −4.60607 7.97794i −0.179563 0.311013i
\(659\) −34.2396 + 12.4622i −1.33379 + 0.485459i −0.907850 0.419294i \(-0.862278\pi\)
−0.425937 + 0.904753i \(0.640055\pi\)
\(660\) −1.15998 0.669713i −0.0451521 0.0260686i
\(661\) 1.38919 1.16566i 0.0540331 0.0453391i −0.615371 0.788237i \(-0.710994\pi\)
0.669404 + 0.742898i \(0.266549\pi\)
\(662\) 5.22075 4.38073i 0.202910 0.170262i
\(663\) 3.34002 1.92836i 0.129716 0.0748914i
\(664\) 1.45336 0.528981i 0.0564014 0.0205284i
\(665\) 5.87211 + 10.1708i 0.227711 + 0.394407i
\(666\) 32.4688 1.25814
\(667\) 1.73813 3.01053i 0.0673007 0.116568i
\(668\) −1.56506 + 8.87587i −0.0605538 + 0.343418i
\(669\) −26.4384 31.5081i −1.02217 1.21817i
\(670\) −25.1596 9.15733i −0.971999 0.353779i
\(671\) −0.598793 3.39592i −0.0231161 0.131098i
\(672\) 0.592396 + 1.62760i 0.0228522 + 0.0627859i
\(673\) −28.4243 23.8508i −1.09567 0.919380i −0.0985483 0.995132i \(-0.531420\pi\)
−0.997127 + 0.0757518i \(0.975864\pi\)
\(674\) −2.35410 −0.0906767
\(675\) −2.50846 6.89193i −0.0965505 0.265270i
\(676\) −9.46791 −0.364150
\(677\) 6.79813 + 5.70431i 0.261273 + 0.219234i 0.764009 0.645206i \(-0.223228\pi\)
−0.502735 + 0.864440i \(0.667673\pi\)
\(678\) 18.9060 + 3.33364i 0.726081 + 0.128028i
\(679\) −0.676174 3.83478i −0.0259492 0.147165i
\(680\) 2.81908 + 1.02606i 0.108107 + 0.0393476i
\(681\) 8.64977 23.7650i 0.331460 0.910678i
\(682\) −0.258770 + 1.46756i −0.00990883 + 0.0561958i
\(683\) 5.08899 8.81439i 0.194725 0.337273i −0.752085 0.659066i \(-0.770952\pi\)
0.946810 + 0.321792i \(0.104285\pi\)
\(684\) −2.41622 + 13.7031i −0.0923866 + 0.523950i
\(685\) 23.8059 + 41.2330i 0.909576 + 1.57543i
\(686\) −0.939693 + 0.342020i −0.0358776 + 0.0130584i
\(687\) 33.1447i 1.26455i
\(688\) −3.29813 + 2.76746i −0.125740 + 0.105509i
\(689\) 16.4402 13.7949i 0.626320 0.525545i
\(690\) 5.44367i 0.207237i
\(691\) 2.15910 0.785848i 0.0821360 0.0298951i −0.300625 0.953742i \(-0.597195\pi\)
0.382761 + 0.923847i \(0.374973\pi\)
\(692\) 5.68139 + 9.84045i 0.215974 + 0.374078i
\(693\) 0.860967 0.313366i 0.0327054 0.0119038i
\(694\) 4.63429 8.02682i 0.175915 0.304694i
\(695\) −0.283996 + 1.61062i −0.0107726 + 0.0610943i
\(696\) −1.65910 + 4.55834i −0.0628880 + 0.172783i
\(697\) 3.91622 + 1.42539i 0.148337 + 0.0539904i
\(698\) −1.64022 9.30212i −0.0620831 0.352091i
\(699\) 32.9270 + 5.80591i 1.24541 + 0.219600i
\(700\) 1.08125 + 0.907278i 0.0408675 + 0.0342919i
\(701\) −23.1566 −0.874614 −0.437307 0.899312i \(-0.644068\pi\)
−0.437307 + 0.899312i \(0.644068\pi\)
\(702\) 8.45723 + 4.88279i 0.319198 + 0.184289i
\(703\) −50.1985 −1.89327
\(704\) 0.233956 + 0.196312i 0.00881753 + 0.00739879i
\(705\) −13.8182 37.9652i −0.520424 1.42985i
\(706\) 3.31521 + 18.8015i 0.124769 + 0.707603i
\(707\) −14.5287 5.28801i −0.546407 0.198876i
\(708\) −5.93717 7.07564i −0.223132 0.265919i
\(709\) −6.40760 + 36.3393i −0.240643 + 1.36475i 0.589756 + 0.807582i \(0.299224\pi\)
−0.830398 + 0.557170i \(0.811887\pi\)
\(710\) 17.1420 29.6909i 0.643329 1.11428i
\(711\) 18.8097 32.5794i 0.705421 1.22182i
\(712\) 1.89646 + 3.28476i 0.0710728 + 0.123102i
\(713\) −5.69119 + 2.07142i −0.213137 + 0.0775754i
\(714\) −1.77719 + 1.02606i −0.0665096 + 0.0383993i
\(715\) 1.11334 0.934204i 0.0416366 0.0349372i
\(716\) −4.25284 + 3.56856i −0.158936 + 0.133363i
\(717\) −14.4613 8.34922i −0.540066 0.311807i
\(718\) 5.87211 2.13727i 0.219145 0.0797623i
\(719\) 13.6425 + 23.6295i 0.508779 + 0.881231i 0.999948 + 0.0101671i \(0.00323635\pi\)
−0.491169 + 0.871064i \(0.663430\pi\)
\(720\) 1.31908 + 7.48086i 0.0491591 + 0.278795i
\(721\) −6.73783 + 11.6703i −0.250930 + 0.434623i
\(722\) 0.436289 2.47432i 0.0162370 0.0920846i
\(723\) −42.1109 + 7.42528i −1.56612 + 0.276149i
\(724\) 12.1912 + 4.43723i 0.453082 + 0.164908i
\(725\) 0.686441 + 3.89300i 0.0254938 + 0.144582i
\(726\) −12.1429 + 14.4713i −0.450665 + 0.537082i
\(727\) −1.40348 1.17766i −0.0520524 0.0436771i 0.616390 0.787441i \(-0.288594\pi\)
−0.668443 + 0.743764i \(0.733039\pi\)
\(728\) −1.87939 −0.0696547
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −0.829755 −0.0307106
\(731\) −3.90760 3.27887i −0.144528 0.121273i
\(732\) −12.5706 + 14.9810i −0.464622 + 0.553715i
\(733\) 1.16204 + 6.59024i 0.0429208 + 0.243416i 0.998719 0.0506090i \(-0.0161162\pi\)
−0.955798 + 0.294025i \(0.905005\pi\)
\(734\) −24.0043 8.73686i −0.886016 0.322484i
\(735\) −4.31908 + 0.761570i −0.159312 + 0.0280909i
\(736\) −0.215537 + 1.22237i −0.00794481 + 0.0450572i
\(737\) 1.61468 2.79672i 0.0594777 0.103018i
\(738\) 1.83244 + 10.3923i 0.0674532 + 0.382546i
\(739\) −14.1348 24.4821i −0.519955 0.900589i −0.999731 0.0231977i \(-0.992615\pi\)
0.479776 0.877391i \(-0.340718\pi\)
\(740\) −25.7520 + 9.37295i −0.946661 + 0.344556i
\(741\) −13.0753 7.54904i −0.480334 0.277321i
\(742\) −8.74763 + 7.34013i −0.321135 + 0.269465i
\(743\) −32.7893 + 27.5135i −1.20292 + 1.00937i −0.203380 + 0.979100i \(0.565193\pi\)
−0.999542 + 0.0302711i \(0.990363\pi\)
\(744\) 7.31908 4.22567i 0.268330 0.154921i
\(745\) −47.6776 + 17.3532i −1.74677 + 0.635773i
\(746\) 2.18092 + 3.77747i 0.0798492 + 0.138303i
\(747\) −2.31996 + 4.01828i −0.0848827 + 0.147021i
\(748\) −0.180922 + 0.313366i −0.00661517 + 0.0114578i
\(749\) 1.32248 7.50016i 0.0483224 0.274050i
\(750\) −10.1163 12.0562i −0.369396 0.440229i
\(751\) −29.6177 10.7800i −1.08076 0.393366i −0.260572 0.965454i \(-0.583911\pi\)
−0.820192 + 0.572088i \(0.806133\pi\)
\(752\) 1.59967 + 9.07218i 0.0583340 + 0.330828i
\(753\) 3.14749 + 8.64766i 0.114701 + 0.315138i
\(754\) −4.03209 3.38332i −0.146840 0.123213i
\(755\) 52.7383 1.91935
\(756\) −4.50000 2.59808i −0.163663 0.0944911i
\(757\) −15.0966 −0.548694 −0.274347 0.961631i \(-0.588462\pi\)
−0.274347 + 0.961631i \(0.588462\pi\)
\(758\) −7.97565 6.69237i −0.289689 0.243078i
\(759\) 0.646612 + 0.114015i 0.0234705 + 0.00413849i
\(760\) −2.03936 11.5658i −0.0739755 0.419536i
\(761\) −25.5158 9.28699i −0.924947 0.336653i −0.164742 0.986337i \(-0.552679\pi\)
−0.760205 + 0.649684i \(0.774901\pi\)
\(762\) 7.36113 20.2245i 0.266666 0.732658i
\(763\) 1.03074 5.84564i 0.0373155 0.211627i
\(764\) −1.37551 + 2.38246i −0.0497644 + 0.0861944i
\(765\) −8.45723 + 3.07818i −0.305772 + 0.111292i
\(766\) −17.3391 30.0323i