Properties

Label 378.2.u.a.295.1
Level $378$
Weight $2$
Character 378.295
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(43,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 295.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 378.295
Dual form 378.2.u.a.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(-1.70574 - 0.300767i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-1.03209 + 0.866025i) q^{5} +(-0.592396 + 1.62760i) q^{6} +(-0.939693 + 0.342020i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(2.81908 + 1.02606i) q^{9} +O(q^{10})\) \(q+(0.173648 - 0.984808i) q^{2} +(-1.70574 - 0.300767i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-1.03209 + 0.866025i) q^{5} +(-0.592396 + 1.62760i) q^{6} +(-0.939693 + 0.342020i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(2.81908 + 1.02606i) q^{9} +(0.673648 + 1.16679i) q^{10} +(3.64543 + 3.05888i) q^{11} +(1.50000 + 0.866025i) q^{12} +(0.266044 + 1.50881i) q^{13} +(0.173648 + 0.984808i) q^{14} +(2.02094 - 1.16679i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-1.11334 - 1.92836i) q^{17} +(1.50000 - 2.59808i) q^{18} +(2.79813 - 4.84651i) q^{19} +(1.26604 - 0.460802i) q^{20} +(1.70574 - 0.300767i) q^{21} +(3.64543 - 3.05888i) q^{22} +(7.57785 + 2.75811i) q^{23} +(1.11334 - 1.32683i) q^{24} +(-0.553033 + 3.13641i) q^{25} +1.53209 q^{26} +(-4.50000 - 2.59808i) q^{27} +1.00000 q^{28} +(-1.85844 + 10.5397i) q^{29} +(-0.798133 - 2.19285i) q^{30} +(1.37939 + 0.502055i) q^{31} +(0.766044 - 0.642788i) q^{32} +(-5.29813 - 6.31407i) q^{33} +(-2.09240 + 0.761570i) q^{34} +(0.673648 - 1.16679i) q^{35} +(-2.29813 - 1.92836i) q^{36} +(0.815207 + 1.41198i) q^{37} +(-4.28699 - 3.59721i) q^{38} -2.65366i q^{39} +(-0.233956 - 1.32683i) q^{40} +(1.75877 + 9.97448i) q^{41} -1.73205i q^{42} +(-6.70961 - 5.63003i) q^{43} +(-2.37939 - 4.12122i) q^{44} +(-3.79813 + 1.38241i) q^{45} +(4.03209 - 6.98378i) q^{46} +(8.35117 - 3.03958i) q^{47} +(-1.11334 - 1.32683i) q^{48} +(0.766044 - 0.642788i) q^{49} +(2.99273 + 1.08926i) q^{50} +(1.31908 + 3.62414i) q^{51} +(0.266044 - 1.50881i) q^{52} +1.32770 q^{53} +(-3.34002 + 3.98048i) q^{54} -6.41147 q^{55} +(0.173648 - 0.984808i) q^{56} +(-6.23055 + 7.42528i) q^{57} +(10.0569 + 3.66041i) q^{58} +(-7.16637 + 6.01330i) q^{59} +(-2.29813 + 0.405223i) q^{60} +(3.08512 - 1.12289i) q^{61} +(0.733956 - 1.27125i) q^{62} -3.00000 q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.58125 - 1.32683i) q^{65} +(-7.13816 + 4.12122i) q^{66} +(-0.470437 - 2.66798i) q^{67} +(0.386659 + 2.19285i) q^{68} +(-12.0963 - 6.98378i) q^{69} +(-1.03209 - 0.866025i) q^{70} +(-2.10220 - 3.64111i) q^{71} +(-2.29813 + 1.92836i) q^{72} +(-4.54576 + 7.87349i) q^{73} +(1.53209 - 0.557635i) q^{74} +(1.88666 - 5.18355i) q^{75} +(-4.28699 + 3.59721i) q^{76} +(-4.47178 - 1.62760i) q^{77} +(-2.61334 - 0.460802i) q^{78} +(0.556437 - 3.15571i) q^{79} -1.34730 q^{80} +(6.89440 + 5.78509i) q^{81} +10.1284 q^{82} +(-2.22668 + 12.6281i) q^{83} +(-1.70574 - 0.300767i) q^{84} +(2.81908 + 1.02606i) q^{85} +(-6.70961 + 5.63003i) q^{86} +(6.34002 - 17.4191i) q^{87} +(-4.47178 + 1.62760i) q^{88} +(-0.779715 + 1.35051i) q^{89} +(0.701867 + 3.98048i) q^{90} +(-0.766044 - 1.32683i) q^{91} +(-6.17752 - 5.18355i) q^{92} +(-2.20187 - 1.27125i) q^{93} +(-1.54323 - 8.75211i) q^{94} +(1.30928 + 7.42528i) q^{95} +(-1.50000 + 0.866025i) q^{96} +(-9.91534 - 8.31996i) q^{97} +(-0.500000 - 0.866025i) q^{98} +(7.13816 + 12.3636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} - 3 q^{8} + 3 q^{10} + 6 q^{11} + 9 q^{12} - 3 q^{13} + 9 q^{15} + 9 q^{18} + 3 q^{19} + 3 q^{20} + 6 q^{22} + 6 q^{23} + 9 q^{25} - 27 q^{27} + 6 q^{28} - 3 q^{29} + 9 q^{30} - 3 q^{31} - 18 q^{33} - 9 q^{34} + 3 q^{35} + 12 q^{37} - 18 q^{38} - 6 q^{40} - 12 q^{41} - 6 q^{43} - 3 q^{44} - 9 q^{45} + 15 q^{46} + 24 q^{47} - 9 q^{51} - 3 q^{52} - 18 q^{55} + 24 q^{58} - 24 q^{59} - 3 q^{61} + 9 q^{62} - 18 q^{63} - 3 q^{64} - 12 q^{65} - 9 q^{66} + 3 q^{67} + 9 q^{68} - 45 q^{69} + 3 q^{70} - 12 q^{71} + 3 q^{73} + 18 q^{75} - 18 q^{76} - 12 q^{77} - 9 q^{78} + 33 q^{79} - 6 q^{80} + 24 q^{82} - 6 q^{86} + 18 q^{87} - 12 q^{88} + 21 q^{89} + 18 q^{90} - 12 q^{92} - 27 q^{93} + 6 q^{94} - 12 q^{95} - 9 q^{96} - 15 q^{97} - 3 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.122788 0.696364i
\(3\) −1.70574 0.300767i −0.984808 0.173648i
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) −1.03209 + 0.866025i −0.461564 + 0.387298i −0.843706 0.536805i \(-0.819631\pi\)
0.382142 + 0.924104i \(0.375187\pi\)
\(6\) −0.592396 + 1.62760i −0.241845 + 0.664463i
\(7\) −0.939693 + 0.342020i −0.355170 + 0.129271i
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 2.81908 + 1.02606i 0.939693 + 0.342020i
\(10\) 0.673648 + 1.16679i 0.213026 + 0.368972i
\(11\) 3.64543 + 3.05888i 1.09914 + 0.922287i 0.997367 0.0725212i \(-0.0231045\pi\)
0.101772 + 0.994808i \(0.467549\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) 0.266044 + 1.50881i 0.0737875 + 0.418469i 0.999218 + 0.0395511i \(0.0125928\pi\)
−0.925430 + 0.378918i \(0.876296\pi\)
\(14\) 0.173648 + 0.984808i 0.0464094 + 0.263201i
\(15\) 2.02094 1.16679i 0.521806 0.301265i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −1.11334 1.92836i −0.270025 0.467697i 0.698843 0.715275i \(-0.253699\pi\)
−0.968868 + 0.247578i \(0.920365\pi\)
\(18\) 1.50000 2.59808i 0.353553 0.612372i
\(19\) 2.79813 4.84651i 0.641936 1.11187i −0.343064 0.939312i \(-0.611465\pi\)
0.985000 0.172554i \(-0.0552018\pi\)
\(20\) 1.26604 0.460802i 0.283096 0.103039i
\(21\) 1.70574 0.300767i 0.372222 0.0656328i
\(22\) 3.64543 3.05888i 0.777208 0.652155i
\(23\) 7.57785 + 2.75811i 1.58009 + 0.575106i 0.975224 0.221221i \(-0.0710041\pi\)
0.604867 + 0.796327i \(0.293226\pi\)
\(24\) 1.11334 1.32683i 0.227260 0.270838i
\(25\) −0.553033 + 3.13641i −0.110607 + 0.627282i
\(26\) 1.53209 0.300467
\(27\) −4.50000 2.59808i −0.866025 0.500000i
\(28\) 1.00000 0.188982
\(29\) −1.85844 + 10.5397i −0.345104 + 1.95718i −0.0620658 + 0.998072i \(0.519769\pi\)
−0.283038 + 0.959109i \(0.591342\pi\)
\(30\) −0.798133 2.19285i −0.145719 0.400358i
\(31\) 1.37939 + 0.502055i 0.247745 + 0.0901718i 0.462908 0.886406i \(-0.346806\pi\)
−0.215163 + 0.976578i \(0.569028\pi\)
\(32\) 0.766044 0.642788i 0.135419 0.113630i
\(33\) −5.29813 6.31407i −0.922287 1.09914i
\(34\) −2.09240 + 0.761570i −0.358843 + 0.130608i
\(35\) 0.673648 1.16679i 0.113867 0.197224i
\(36\) −2.29813 1.92836i −0.383022 0.321394i
\(37\) 0.815207 + 1.41198i 0.134019 + 0.232128i 0.925222 0.379425i \(-0.123878\pi\)
−0.791203 + 0.611553i \(0.790545\pi\)
\(38\) −4.28699 3.59721i −0.695441 0.583545i
\(39\) 2.65366i 0.424925i
\(40\) −0.233956 1.32683i −0.0369916 0.209790i
\(41\) 1.75877 + 9.97448i 0.274674 + 1.55775i 0.739996 + 0.672611i \(0.234827\pi\)
−0.465322 + 0.885141i \(0.654062\pi\)
\(42\) 1.73205i 0.267261i
\(43\) −6.70961 5.63003i −1.02321 0.858571i −0.0331786 0.999449i \(-0.510563\pi\)
−0.990027 + 0.140878i \(0.955007\pi\)
\(44\) −2.37939 4.12122i −0.358706 0.621297i
\(45\) −3.79813 + 1.38241i −0.566192 + 0.206077i
\(46\) 4.03209 6.98378i 0.594499 1.02970i
\(47\) 8.35117 3.03958i 1.21814 0.443368i 0.348622 0.937264i \(-0.386650\pi\)
0.869521 + 0.493896i \(0.164428\pi\)
\(48\) −1.11334 1.32683i −0.160697 0.191511i
\(49\) 0.766044 0.642788i 0.109435 0.0918268i
\(50\) 2.99273 + 1.08926i 0.423235 + 0.154045i
\(51\) 1.31908 + 3.62414i 0.184708 + 0.507481i
\(52\) 0.266044 1.50881i 0.0368937 0.209235i
\(53\) 1.32770 0.182373 0.0911865 0.995834i \(-0.470934\pi\)
0.0911865 + 0.995834i \(0.470934\pi\)
\(54\) −3.34002 + 3.98048i −0.454519 + 0.541675i
\(55\) −6.41147 −0.864523
\(56\) 0.173648 0.984808i 0.0232047 0.131600i
\(57\) −6.23055 + 7.42528i −0.825257 + 0.983503i
\(58\) 10.0569 + 3.66041i 1.32054 + 0.480636i
\(59\) −7.16637 + 6.01330i −0.932982 + 0.782865i −0.976350 0.216194i \(-0.930636\pi\)
0.0433680 + 0.999059i \(0.486191\pi\)
\(60\) −2.29813 + 0.405223i −0.296688 + 0.0523141i
\(61\) 3.08512 1.12289i 0.395009 0.143772i −0.136876 0.990588i \(-0.543706\pi\)
0.531885 + 0.846817i \(0.321484\pi\)
\(62\) 0.733956 1.27125i 0.0932124 0.161449i
\(63\) −3.00000 −0.377964
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −1.58125 1.32683i −0.196130 0.164573i
\(66\) −7.13816 + 4.12122i −0.878646 + 0.507287i
\(67\) −0.470437 2.66798i −0.0574731 0.325946i 0.942493 0.334227i \(-0.108475\pi\)
−0.999966 + 0.00828093i \(0.997364\pi\)
\(68\) 0.386659 + 2.19285i 0.0468893 + 0.265923i
\(69\) −12.0963 6.98378i −1.45622 0.840749i
\(70\) −1.03209 0.866025i −0.123358 0.103510i
\(71\) −2.10220 3.64111i −0.249485 0.432120i 0.713898 0.700250i \(-0.246928\pi\)
−0.963383 + 0.268129i \(0.913595\pi\)
\(72\) −2.29813 + 1.92836i −0.270838 + 0.227260i
\(73\) −4.54576 + 7.87349i −0.532041 + 0.921522i 0.467259 + 0.884120i \(0.345241\pi\)
−0.999300 + 0.0374016i \(0.988092\pi\)
\(74\) 1.53209 0.557635i 0.178102 0.0648237i
\(75\) 1.88666 5.18355i 0.217853 0.598545i
\(76\) −4.28699 + 3.59721i −0.491751 + 0.412628i
\(77\) −4.47178 1.62760i −0.509607 0.185482i
\(78\) −2.61334 0.460802i −0.295903 0.0521756i
\(79\) 0.556437 3.15571i 0.0626041 0.355045i −0.937373 0.348326i \(-0.886750\pi\)
0.999977 0.00671900i \(-0.00213874\pi\)
\(80\) −1.34730 −0.150632
\(81\) 6.89440 + 5.78509i 0.766044 + 0.642788i
\(82\) 10.1284 1.11849
\(83\) −2.22668 + 12.6281i −0.244410 + 1.38612i 0.577449 + 0.816427i \(0.304048\pi\)
−0.821859 + 0.569691i \(0.807063\pi\)
\(84\) −1.70574 0.300767i −0.186111 0.0328164i
\(85\) 2.81908 + 1.02606i 0.305772 + 0.111292i
\(86\) −6.70961 + 5.63003i −0.723516 + 0.607102i
\(87\) 6.34002 17.4191i 0.679722 1.86752i
\(88\) −4.47178 + 1.62760i −0.476694 + 0.173502i
\(89\) −0.779715 + 1.35051i −0.0826496 + 0.143153i −0.904387 0.426713i \(-0.859672\pi\)
0.821738 + 0.569866i \(0.193005\pi\)
\(90\) 0.701867 + 3.98048i 0.0739832 + 0.419580i
\(91\) −0.766044 1.32683i −0.0803033 0.139089i
\(92\) −6.17752 5.18355i −0.644051 0.540423i
\(93\) −2.20187 1.27125i −0.228323 0.131822i
\(94\) −1.54323 8.75211i −0.159172 0.902711i
\(95\) 1.30928 + 7.42528i 0.134329 + 0.761818i
\(96\) −1.50000 + 0.866025i −0.153093 + 0.0883883i
\(97\) −9.91534 8.31996i −1.00675 0.844764i −0.0188454 0.999822i \(-0.505999\pi\)
−0.987905 + 0.155058i \(0.950443\pi\)
\(98\) −0.500000 0.866025i −0.0505076 0.0874818i
\(99\) 7.13816 + 12.3636i 0.717412 + 1.24259i
\(100\) 1.59240 2.75811i 0.159240 0.275811i
\(101\) 3.72668 1.35640i 0.370819 0.134967i −0.149887 0.988703i \(-0.547891\pi\)
0.520706 + 0.853736i \(0.325669\pi\)
\(102\) 3.79813 0.669713i 0.376071 0.0663115i
\(103\) 4.98680 4.18442i 0.491364 0.412303i −0.363151 0.931730i \(-0.618299\pi\)
0.854515 + 0.519427i \(0.173855\pi\)
\(104\) −1.43969 0.524005i −0.141173 0.0513829i
\(105\) −1.50000 + 1.78763i −0.146385 + 0.174455i
\(106\) 0.230552 1.30753i 0.0223932 0.126998i
\(107\) −6.92902 −0.669853 −0.334927 0.942244i \(-0.608712\pi\)
−0.334927 + 0.942244i \(0.608712\pi\)
\(108\) 3.34002 + 3.98048i 0.321394 + 0.383022i
\(109\) 8.30541 0.795514 0.397757 0.917491i \(-0.369789\pi\)
0.397757 + 0.917491i \(0.369789\pi\)
\(110\) −1.11334 + 6.31407i −0.106153 + 0.602023i
\(111\) −0.965852 2.65366i −0.0916746 0.251874i
\(112\) −0.939693 0.342020i −0.0887926 0.0323179i
\(113\) 1.74376 1.46318i 0.164039 0.137645i −0.557073 0.830463i \(-0.688076\pi\)
0.721112 + 0.692819i \(0.243631\pi\)
\(114\) 6.23055 + 7.42528i 0.583545 + 0.695441i
\(115\) −10.2096 + 3.71599i −0.952051 + 0.346518i
\(116\) 5.35117 9.26849i 0.496843 0.860558i
\(117\) −0.798133 + 4.52644i −0.0737875 + 0.418469i
\(118\) 4.67752 + 8.10170i 0.430600 + 0.745822i
\(119\) 1.70574 + 1.43128i 0.156365 + 0.131206i
\(120\) 2.33359i 0.213026i
\(121\) 2.02229 + 11.4690i 0.183844 + 1.04263i
\(122\) −0.570108 3.23324i −0.0516151 0.292724i
\(123\) 17.5428i 1.58178i
\(124\) −1.12449 0.943555i −0.100982 0.0847337i
\(125\) −5.51367 9.54996i −0.493158 0.854174i
\(126\) −0.520945 + 2.95442i −0.0464094 + 0.263201i
\(127\) 10.1454 17.5724i 0.900261 1.55930i 0.0731065 0.997324i \(-0.476709\pi\)
0.827155 0.561974i \(-0.189958\pi\)
\(128\) −0.939693 + 0.342020i −0.0830579 + 0.0302306i
\(129\) 9.75150 + 11.6214i 0.858571 + 1.02321i
\(130\) −1.58125 + 1.32683i −0.138685 + 0.116371i
\(131\) −1.11334 0.405223i −0.0972730 0.0354045i 0.292925 0.956135i \(-0.405371\pi\)
−0.390198 + 0.920731i \(0.627594\pi\)
\(132\) 2.81908 + 7.74535i 0.245369 + 0.674146i
\(133\) −0.971782 + 5.51125i −0.0842641 + 0.477886i
\(134\) −2.70914 −0.234034
\(135\) 6.89440 1.21567i 0.593375 0.104628i
\(136\) 2.22668 0.190936
\(137\) 3.57738 20.2883i 0.305636 1.73335i −0.314858 0.949139i \(-0.601957\pi\)
0.620494 0.784211i \(-0.286932\pi\)
\(138\) −8.97818 + 10.6998i −0.764273 + 0.910825i
\(139\) 16.6694 + 6.06715i 1.41388 + 0.514609i 0.932265 0.361775i \(-0.117829\pi\)
0.481612 + 0.876385i \(0.340051\pi\)
\(140\) −1.03209 + 0.866025i −0.0872274 + 0.0731925i
\(141\) −15.1591 + 2.67296i −1.27663 + 0.225104i
\(142\) −3.95084 + 1.43799i −0.331547 + 0.120673i
\(143\) −3.64543 + 6.31407i −0.304846 + 0.528009i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) −7.20961 12.4874i −0.598725 1.03702i
\(146\) 6.96451 + 5.84392i 0.576387 + 0.483646i
\(147\) −1.50000 + 0.866025i −0.123718 + 0.0714286i
\(148\) −0.283119 1.60565i −0.0232722 0.131983i
\(149\) −1.39734 7.92469i −0.114474 0.649216i −0.987009 0.160664i \(-0.948636\pi\)
0.872535 0.488552i \(-0.162475\pi\)
\(150\) −4.77719 2.75811i −0.390056 0.225199i
\(151\) 9.05169 + 7.59527i 0.736616 + 0.618094i 0.931926 0.362647i \(-0.118127\pi\)
−0.195310 + 0.980741i \(0.562571\pi\)
\(152\) 2.79813 + 4.84651i 0.226959 + 0.393104i
\(153\) −1.15998 6.57856i −0.0937786 0.531845i
\(154\) −2.37939 + 4.12122i −0.191736 + 0.332097i
\(155\) −1.85844 + 0.676417i −0.149274 + 0.0543311i
\(156\) −0.907604 + 2.49362i −0.0726665 + 0.199649i
\(157\) −17.1348 + 14.3778i −1.36750 + 1.14747i −0.393917 + 0.919146i \(0.628880\pi\)
−0.973585 + 0.228324i \(0.926675\pi\)
\(158\) −3.01114 1.09597i −0.239554 0.0871904i
\(159\) −2.26470 0.399328i −0.179602 0.0316688i
\(160\) −0.233956 + 1.32683i −0.0184958 + 0.104895i
\(161\) −8.06418 −0.635546
\(162\) 6.89440 5.78509i 0.541675 0.454519i
\(163\) −10.4611 −0.819377 −0.409688 0.912226i \(-0.634363\pi\)
−0.409688 + 0.912226i \(0.634363\pi\)
\(164\) 1.75877 9.97448i 0.137337 0.778876i
\(165\) 10.9363 + 1.92836i 0.851389 + 0.150123i
\(166\) 12.0496 + 4.38571i 0.935233 + 0.340397i
\(167\) 17.3045 14.5202i 1.33906 1.12361i 0.357200 0.934028i \(-0.383732\pi\)
0.981865 0.189581i \(-0.0607128\pi\)
\(168\) −0.592396 + 1.62760i −0.0457044 + 0.125572i
\(169\) 10.0103 3.64344i 0.770021 0.280265i
\(170\) 1.50000 2.59808i 0.115045 0.199263i
\(171\) 12.8610 10.7916i 0.983503 0.825257i
\(172\) 4.37939 + 7.58532i 0.333925 + 0.578375i
\(173\) 5.48886 + 4.60570i 0.417310 + 0.350165i 0.827139 0.561998i \(-0.189967\pi\)
−0.409829 + 0.912162i \(0.634412\pi\)
\(174\) −16.0535 9.26849i −1.21701 0.702643i
\(175\) −0.553033 3.13641i −0.0418054 0.237090i
\(176\) 0.826352 + 4.68647i 0.0622886 + 0.353256i
\(177\) 14.0326 8.10170i 1.05475 0.608961i
\(178\) 1.19459 + 1.00238i 0.0895385 + 0.0751317i
\(179\) −3.31180 5.73621i −0.247536 0.428745i 0.715306 0.698812i \(-0.246287\pi\)
−0.962842 + 0.270067i \(0.912954\pi\)
\(180\) 4.04189 0.301265
\(181\) 1.67617 2.90322i 0.124589 0.215795i −0.796983 0.604002i \(-0.793572\pi\)
0.921572 + 0.388207i \(0.126905\pi\)
\(182\) −1.43969 + 0.524005i −0.106717 + 0.0388419i
\(183\) −5.60014 + 0.987455i −0.413974 + 0.0729948i
\(184\) −6.17752 + 5.18355i −0.455413 + 0.382137i
\(185\) −2.06418 0.751299i −0.151761 0.0552366i
\(186\) −1.63429 + 1.94767i −0.119832 + 0.142810i
\(187\) 1.84002 10.4353i 0.134556 0.763104i
\(188\) −8.88713 −0.648160
\(189\) 5.11721 + 0.902302i 0.372222 + 0.0656328i
\(190\) 7.53983 0.546997
\(191\) 0.708263 4.01676i 0.0512481 0.290643i −0.948403 0.317068i \(-0.897301\pi\)
0.999651 + 0.0264259i \(0.00841260\pi\)
\(192\) 0.592396 + 1.62760i 0.0427525 + 0.117462i
\(193\) 3.57145 + 1.29990i 0.257079 + 0.0935690i 0.467345 0.884075i \(-0.345211\pi\)
−0.210266 + 0.977644i \(0.567433\pi\)
\(194\) −9.91534 + 8.31996i −0.711880 + 0.597338i
\(195\) 2.29813 + 2.73881i 0.164573 + 0.196130i
\(196\) −0.939693 + 0.342020i −0.0671209 + 0.0244300i
\(197\) −8.52869 + 14.7721i −0.607644 + 1.05247i 0.383984 + 0.923340i \(0.374552\pi\)
−0.991628 + 0.129130i \(0.958782\pi\)
\(198\) 13.4153 4.88279i 0.953387 0.347004i
\(199\) −4.47313 7.74768i −0.317091 0.549219i 0.662788 0.748807i \(-0.269373\pi\)
−0.979880 + 0.199588i \(0.936040\pi\)
\(200\) −2.43969 2.04715i −0.172512 0.144755i
\(201\) 4.69237i 0.330974i
\(202\) −0.688663 3.90560i −0.0484542 0.274797i
\(203\) −1.85844 10.5397i −0.130437 0.739745i
\(204\) 3.85673i 0.270025i
\(205\) −10.4534 8.77141i −0.730095 0.612622i
\(206\) −3.25490 5.63765i −0.226780 0.392794i
\(207\) 18.5326 + 15.5507i 1.28810 + 1.08085i
\(208\) −0.766044 + 1.32683i −0.0531156 + 0.0919990i
\(209\) 25.0253 9.10846i 1.73103 0.630045i
\(210\) 1.50000 + 1.78763i 0.103510 + 0.123358i
\(211\) −16.9440 + 14.2177i −1.16648 + 0.978789i −0.999974 0.00725237i \(-0.997691\pi\)
−0.166501 + 0.986041i \(0.553247\pi\)
\(212\) −1.24763 0.454099i −0.0856873 0.0311876i
\(213\) 2.49067 + 6.84305i 0.170658 + 0.468878i
\(214\) −1.20321 + 6.82375i −0.0822498 + 0.466462i
\(215\) 11.8007 0.804798
\(216\) 4.50000 2.59808i 0.306186 0.176777i
\(217\) −1.46791 −0.0996483
\(218\) 1.44222 8.17923i 0.0976794 0.553967i
\(219\) 10.1220 12.0629i 0.683979 0.815134i
\(220\) 6.02481 + 2.19285i 0.406193 + 0.147842i
\(221\) 2.61334 2.19285i 0.175792 0.147507i
\(222\) −2.78106 + 0.490376i −0.186652 + 0.0329119i
\(223\) −18.5719 + 6.75963i −1.24367 + 0.452658i −0.878257 0.478189i \(-0.841294\pi\)
−0.365410 + 0.930847i \(0.619071\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) −4.77719 + 8.27433i −0.318479 + 0.551622i
\(226\) −1.13816 1.97134i −0.0757090 0.131132i
\(227\) 9.50253 + 7.97357i 0.630705 + 0.529224i 0.901148 0.433512i \(-0.142726\pi\)
−0.270443 + 0.962736i \(0.587170\pi\)
\(228\) 8.39440 4.84651i 0.555933 0.320968i
\(229\) −1.08466 6.15139i −0.0716761 0.406495i −0.999444 0.0333378i \(-0.989386\pi\)
0.927768 0.373157i \(-0.121725\pi\)
\(230\) 1.88666 + 10.6998i 0.124403 + 0.705522i
\(231\) 7.13816 + 4.12122i 0.469656 + 0.271156i
\(232\) −8.19846 6.87933i −0.538255 0.451650i
\(233\) −10.1532 17.5858i −0.665156 1.15208i −0.979243 0.202690i \(-0.935032\pi\)
0.314087 0.949394i \(-0.398302\pi\)
\(234\) 4.31908 + 1.57202i 0.282347 + 0.102766i
\(235\) −5.98680 + 10.3694i −0.390536 + 0.676427i
\(236\) 8.79086 3.19961i 0.572236 0.208277i
\(237\) −1.89827 + 5.21546i −0.123306 + 0.338780i
\(238\) 1.70574 1.43128i 0.110567 0.0927763i
\(239\) 13.8204 + 5.03022i 0.893969 + 0.325378i 0.747833 0.663887i \(-0.231094\pi\)
0.146135 + 0.989265i \(0.453316\pi\)
\(240\) 2.29813 + 0.405223i 0.148344 + 0.0261570i
\(241\) 0.0655219 0.371593i 0.00422064 0.0239364i −0.982625 0.185604i \(-0.940576\pi\)
0.986845 + 0.161667i \(0.0516871\pi\)
\(242\) 11.6459 0.748627
\(243\) −10.0201 11.9415i −0.642788 0.766044i
\(244\) −3.28312 −0.210180
\(245\) −0.233956 + 1.32683i −0.0149469 + 0.0847679i
\(246\) −17.2763 3.04628i −1.10150 0.194224i
\(247\) 8.05690 + 2.93247i 0.512649 + 0.186589i
\(248\) −1.12449 + 0.943555i −0.0714049 + 0.0599158i
\(249\) 7.59627 20.8706i 0.481394 1.32262i
\(250\) −10.3623 + 3.77157i −0.655370 + 0.238535i
\(251\) −0.807934 + 1.39938i −0.0509963 + 0.0883282i −0.890397 0.455185i \(-0.849573\pi\)
0.839400 + 0.543514i \(0.182906\pi\)
\(252\) 2.81908 + 1.02606i 0.177585 + 0.0646357i
\(253\) 19.1878 + 33.2342i 1.20633 + 2.08942i
\(254\) −15.5437 13.0427i −0.975298 0.818373i
\(255\) −4.50000 2.59808i −0.281801 0.162698i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) 2.76382 + 15.6744i 0.172403 + 0.977743i 0.941099 + 0.338130i \(0.109794\pi\)
−0.768697 + 0.639613i \(0.779095\pi\)
\(258\) 13.1382 7.58532i 0.817946 0.472241i
\(259\) −1.24897 1.04801i −0.0776072 0.0651202i
\(260\) 1.03209 + 1.78763i 0.0640074 + 0.110864i
\(261\) −16.0535 + 27.8055i −0.993687 + 1.72112i
\(262\) −0.592396 + 1.02606i −0.0365984 + 0.0633902i
\(263\) 1.40033 0.509678i 0.0863480 0.0314281i −0.298485 0.954414i \(-0.596481\pi\)
0.384833 + 0.922986i \(0.374259\pi\)
\(264\) 8.11721 1.43128i 0.499580 0.0880894i
\(265\) −1.37030 + 1.14982i −0.0841769 + 0.0706328i
\(266\) 5.25877 + 1.91404i 0.322436 + 0.117357i
\(267\) 1.73618 2.06910i 0.106252 0.126627i
\(268\) −0.470437 + 2.66798i −0.0287365 + 0.162973i
\(269\) 7.88444 0.480723 0.240361 0.970683i \(-0.422734\pi\)
0.240361 + 0.970683i \(0.422734\pi\)
\(270\) 7.00076i 0.426053i
\(271\) −3.59533 −0.218401 −0.109200 0.994020i \(-0.534829\pi\)
−0.109200 + 0.994020i \(0.534829\pi\)
\(272\) 0.386659 2.19285i 0.0234447 0.132961i
\(273\) 0.907604 + 2.49362i 0.0549307 + 0.150921i
\(274\) −19.3589 7.04607i −1.16951 0.425668i
\(275\) −11.6099 + 9.74189i −0.700106 + 0.587458i
\(276\) 8.97818 + 10.6998i 0.540423 + 0.644051i
\(277\) 3.99912 1.45556i 0.240284 0.0874562i −0.219071 0.975709i \(-0.570303\pi\)
0.459355 + 0.888253i \(0.348080\pi\)
\(278\) 8.86959 15.3626i 0.531962 0.921386i
\(279\) 3.37346 + 2.83067i 0.201963 + 0.169467i
\(280\) 0.673648 + 1.16679i 0.0402582 + 0.0697292i
\(281\) −5.61515 4.71167i −0.334972 0.281075i 0.459750 0.888048i \(-0.347939\pi\)
−0.794722 + 0.606974i \(0.792383\pi\)
\(282\) 15.3930i 0.916637i
\(283\) 4.90373 + 27.8105i 0.291497 + 1.65316i 0.681110 + 0.732181i \(0.261498\pi\)
−0.389613 + 0.920979i \(0.627391\pi\)
\(284\) 0.730085 + 4.14052i 0.0433226 + 0.245695i
\(285\) 13.0594i 0.773570i
\(286\) 5.58512 + 4.68647i 0.330255 + 0.277117i
\(287\) −5.06418 8.77141i −0.298929 0.517760i
\(288\) 2.81908 1.02606i 0.166116 0.0604612i
\(289\) 6.02094 10.4286i 0.354173 0.613446i
\(290\) −13.5496 + 4.93166i −0.795662 + 0.289597i
\(291\) 14.4106 + 17.1739i 0.844764 + 1.00675i
\(292\) 6.96451 5.84392i 0.407567 0.341989i
\(293\) −18.5954 6.76817i −1.08635 0.395401i −0.264085 0.964499i \(-0.585070\pi\)
−0.822269 + 0.569099i \(0.807292\pi\)
\(294\) 0.592396 + 1.62760i 0.0345493 + 0.0949233i
\(295\) 2.18866 12.4125i 0.127429 0.722685i
\(296\) −1.63041 −0.0947659
\(297\) −8.45723 23.2361i −0.490738 1.34829i
\(298\) −8.04694 −0.466147
\(299\) −2.14543 + 12.1673i −0.124073 + 0.703655i
\(300\) −3.54576 + 4.22567i −0.204715 + 0.243969i
\(301\) 8.23055 + 2.99568i 0.474401 + 0.172668i
\(302\) 9.05169 7.59527i 0.520866 0.437059i
\(303\) −6.76470 + 1.19280i −0.388622 + 0.0685245i
\(304\) 5.25877 1.91404i 0.301611 0.109777i
\(305\) −2.21167 + 3.83072i −0.126640 + 0.219346i
\(306\) −6.68004 −0.381873
\(307\) −12.2849 21.2781i −0.701138 1.21441i −0.968067 0.250690i \(-0.919342\pi\)
0.266929 0.963716i \(-0.413991\pi\)
\(308\) 3.64543 + 3.05888i 0.207718 + 0.174296i
\(309\) −9.76470 + 5.63765i −0.555494 + 0.320715i
\(310\) 0.343426 + 1.94767i 0.0195053 + 0.110620i
\(311\) −1.92468 10.9154i −0.109138 0.618955i −0.989486 0.144626i \(-0.953802\pi\)
0.880348 0.474329i \(-0.157309\pi\)
\(312\) 2.29813 + 1.32683i 0.130106 + 0.0751168i
\(313\) 12.6361 + 10.6029i 0.714234 + 0.599314i 0.925784 0.378053i \(-0.123406\pi\)
−0.211549 + 0.977367i \(0.567851\pi\)
\(314\) 11.1839 + 19.3711i 0.631145 + 1.09317i
\(315\) 3.09627 2.59808i 0.174455 0.146385i
\(316\) −1.60220 + 2.77509i −0.0901306 + 0.156111i
\(317\) 15.1741 5.52293i 0.852263 0.310198i 0.121300 0.992616i \(-0.461294\pi\)
0.730963 + 0.682417i \(0.239071\pi\)
\(318\) −0.786522 + 2.16095i −0.0441060 + 0.121180i
\(319\) −39.0146 + 32.7371i −2.18440 + 1.83293i
\(320\) 1.26604 + 0.460802i 0.0707740 + 0.0257596i
\(321\) 11.8191 + 2.08402i 0.659677 + 0.116319i
\(322\) −1.40033 + 7.94166i −0.0780373 + 0.442572i
\(323\) −12.4611 −0.693354
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) −4.87939 −0.270660
\(326\) −1.81655 + 10.3022i −0.100609 + 0.570585i
\(327\) −14.1668 2.49800i −0.783428 0.138140i
\(328\) −9.51754 3.46410i −0.525518 0.191273i
\(329\) −6.80793 + 5.71253i −0.375334 + 0.314942i
\(330\) 3.79813 10.4353i 0.209080 0.574444i
\(331\) −5.42514 + 1.97459i −0.298193 + 0.108533i −0.486784 0.873522i \(-0.661830\pi\)
0.188591 + 0.982056i \(0.439608\pi\)
\(332\) 6.41147 11.1050i 0.351875 0.609466i
\(333\) 0.849356 + 4.81694i 0.0465444 + 0.263966i
\(334\) −11.2947 19.5630i −0.618020 1.07044i
\(335\) 2.79607 + 2.34618i 0.152766 + 0.128186i
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) −3.60132 20.4241i −0.196176 1.11257i −0.910734 0.412994i \(-0.864483\pi\)
0.714557 0.699577i \(-0.246628\pi\)
\(338\) −1.84982 10.4909i −0.100617 0.570628i
\(339\) −3.41447 + 1.97134i −0.185448 + 0.107069i
\(340\) −2.29813 1.92836i −0.124634 0.104580i
\(341\) 3.49273 + 6.04958i 0.189142 + 0.327603i
\(342\) −8.39440 14.5395i −0.453917 0.786208i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) 8.23055 2.99568i 0.443762 0.161516i
\(345\) 18.5326 3.26779i 0.997759 0.175932i
\(346\) 5.48886 4.60570i 0.295083 0.247604i
\(347\) −2.86571 1.04303i −0.153840 0.0559930i 0.263953 0.964536i \(-0.414974\pi\)
−0.417792 + 0.908543i \(0.637196\pi\)
\(348\) −11.9153 + 14.2002i −0.638730 + 0.761208i
\(349\) −1.09745 + 6.22394i −0.0587451 + 0.333160i −0.999990 0.00456601i \(-0.998547\pi\)
0.941244 + 0.337726i \(0.109658\pi\)
\(350\) −3.18479 −0.170234
\(351\) 2.72281 7.48086i 0.145333 0.399299i
\(352\) 4.75877 0.253643
\(353\) −0.420092 + 2.38246i −0.0223593 + 0.126806i −0.993944 0.109885i \(-0.964952\pi\)
0.971585 + 0.236691i \(0.0760628\pi\)
\(354\) −5.54189 15.2262i −0.294548 0.809264i
\(355\) 5.32295 + 1.93739i 0.282513 + 0.102826i
\(356\) 1.19459 1.00238i 0.0633133 0.0531262i
\(357\) −2.47906 2.95442i −0.131206 0.156365i
\(358\) −6.22416 + 2.26541i −0.328957 + 0.119730i
\(359\) 2.46064 4.26195i 0.129867 0.224937i −0.793758 0.608234i \(-0.791878\pi\)
0.923625 + 0.383297i \(0.125211\pi\)
\(360\) 0.701867 3.98048i 0.0369916 0.209790i
\(361\) −6.15910 10.6679i −0.324163 0.561467i
\(362\) −2.56805 2.15485i −0.134974 0.113256i
\(363\) 20.1713i 1.05872i
\(364\) 0.266044 + 1.50881i 0.0139445 + 0.0790833i
\(365\) −2.12701 12.0629i −0.111333 0.631400i
\(366\) 5.68653i 0.297240i
\(367\) −5.54782 4.65517i −0.289594 0.242998i 0.486403 0.873734i \(-0.338309\pi\)
−0.775997 + 0.630736i \(0.782753\pi\)
\(368\) 4.03209 + 6.98378i 0.210187 + 0.364055i
\(369\) −5.27631 + 29.9234i −0.274674 + 1.55775i
\(370\) −1.09833 + 1.90236i −0.0570993 + 0.0988988i
\(371\) −1.24763 + 0.454099i −0.0647735 + 0.0235756i
\(372\) 1.63429 + 1.94767i 0.0847337 + 0.100982i
\(373\) −11.1814 + 9.38230i −0.578950 + 0.485797i −0.884602 0.466346i \(-0.845570\pi\)
0.305652 + 0.952143i \(0.401126\pi\)
\(374\) −9.95723 3.62414i −0.514876 0.187400i
\(375\) 6.53256 + 17.9480i 0.337340 + 0.926833i
\(376\) −1.54323 + 8.75211i −0.0795862 + 0.451356i
\(377\) −16.3969 −0.844485
\(378\) 1.77719 4.88279i 0.0914087 0.251143i
\(379\) −5.81521 −0.298707 −0.149354 0.988784i \(-0.547719\pi\)
−0.149354 + 0.988784i \(0.547719\pi\)
\(380\) 1.30928 7.42528i 0.0671645 0.380909i
\(381\) −22.5906 + 26.9225i −1.15735 + 1.37928i
\(382\) −3.83275 1.39501i −0.196100 0.0713747i
\(383\) −20.1466 + 16.9050i −1.02944 + 0.863806i −0.990785 0.135447i \(-0.956753\pi\)
−0.0386591 + 0.999252i \(0.512309\pi\)
\(384\) 1.70574 0.300767i 0.0870455 0.0153485i
\(385\) 6.02481 2.19285i 0.307053 0.111758i
\(386\) 1.90033 3.29147i 0.0967242 0.167531i
\(387\) −13.1382 22.7560i −0.667850 1.15675i
\(388\) 6.47178 + 11.2095i 0.328555 + 0.569074i
\(389\) −28.5763 23.9783i −1.44887 1.21575i −0.933397 0.358846i \(-0.883170\pi\)
−0.515477 0.856904i \(-0.672385\pi\)
\(390\) 3.09627 1.78763i 0.156786 0.0905202i
\(391\) −3.11809 17.6836i −0.157689 0.894296i
\(392\) 0.173648 + 0.984808i 0.00877056 + 0.0497403i
\(393\) 1.77719 + 1.02606i 0.0896473 + 0.0517579i
\(394\) 13.0667 + 10.9643i 0.658291 + 0.552372i
\(395\) 2.15863 + 3.73886i 0.108613 + 0.188123i
\(396\) −2.47906 14.0594i −0.124577 0.706513i
\(397\) 14.9256 25.8519i 0.749095 1.29747i −0.199162 0.979967i \(-0.563822\pi\)
0.948257 0.317504i \(-0.102845\pi\)
\(398\) −8.40673 + 3.05980i −0.421391 + 0.153374i
\(399\) 3.31521 9.10846i 0.165968 0.455993i
\(400\) −2.43969 + 2.04715i −0.121985 + 0.102357i
\(401\) −14.9089 5.42641i −0.744517 0.270982i −0.0582205 0.998304i \(-0.518543\pi\)
−0.686297 + 0.727322i \(0.740765\pi\)
\(402\) 4.62108 + 0.814821i 0.230479 + 0.0406396i
\(403\) −0.390530 + 2.21480i −0.0194537 + 0.110327i
\(404\) −3.96585 −0.197308
\(405\) −12.1257 −0.602529
\(406\) −10.7023 −0.531148
\(407\) −1.34730 + 7.64090i −0.0667830 + 0.378745i
\(408\) −3.79813 0.669713i −0.188036 0.0331558i
\(409\) 9.74257 + 3.54601i 0.481739 + 0.175339i 0.571463 0.820628i \(-0.306376\pi\)
−0.0897236 + 0.995967i \(0.528598\pi\)
\(410\) −10.4534 + 8.77141i −0.516255 + 0.433189i
\(411\) −12.2041 + 33.5306i −0.601986 + 1.65394i
\(412\) −6.11721 + 2.22648i −0.301373 + 0.109691i
\(413\) 4.67752 8.10170i 0.230166 0.398659i
\(414\) 18.5326 15.5507i 0.910825 0.764273i
\(415\) −8.63816 14.9617i −0.424030 0.734442i
\(416\) 1.17365 + 0.984808i 0.0575428 + 0.0482842i
\(417\) −26.6088 15.3626i −1.30304 0.752308i
\(418\) −4.62449 26.2268i −0.226191 1.28279i
\(419\) 1.87346 + 10.6249i 0.0915243 + 0.519060i 0.995757 + 0.0920203i \(0.0293325\pi\)
−0.904233 + 0.427040i \(0.859556\pi\)
\(420\) 2.02094 1.16679i 0.0986120 0.0569337i
\(421\) −2.16978 1.82066i −0.105748 0.0887335i 0.588380 0.808584i \(-0.299766\pi\)
−0.694129 + 0.719851i \(0.744210\pi\)
\(422\) 11.0594 + 19.1555i 0.538365 + 0.932475i
\(423\) 26.6614 1.29632
\(424\) −0.663848 + 1.14982i −0.0322393 + 0.0558401i
\(425\) 6.66385 2.42544i 0.323244 0.117651i
\(426\) 7.17159 1.26454i 0.347465 0.0612674i
\(427\) −2.51501 + 2.11035i −0.121710 + 0.102127i
\(428\) 6.51114 + 2.36986i 0.314728 + 0.114552i
\(429\) 8.11721 9.67372i 0.391903 0.467051i
\(430\) 2.04916 11.6214i 0.0988194 0.560433i
\(431\) −19.2044 −0.925043 −0.462522 0.886608i \(-0.653055\pi\)
−0.462522 + 0.886608i \(0.653055\pi\)
\(432\) −1.77719 4.88279i −0.0855050 0.234923i
\(433\) 11.2986 0.542976 0.271488 0.962442i \(-0.412484\pi\)
0.271488 + 0.962442i \(0.412484\pi\)
\(434\) −0.254900 + 1.44561i −0.0122356 + 0.0693915i
\(435\) 8.54189 + 23.4686i 0.409552 + 1.12524i
\(436\) −7.80453 2.84062i −0.373769 0.136041i
\(437\) 34.5710 29.0085i 1.65376 1.38767i
\(438\) −10.1220 12.0629i −0.483646 0.576387i
\(439\) 34.4666 12.5448i 1.64500 0.598732i 0.657099 0.753804i \(-0.271783\pi\)
0.987903 + 0.155072i \(0.0495611\pi\)
\(440\) 3.20574 5.55250i 0.152828 0.264705i
\(441\) 2.81908 1.02606i 0.134242 0.0488600i
\(442\) −1.70574 2.95442i −0.0811336 0.140528i
\(443\) −12.5307 10.5145i −0.595354 0.499561i 0.294595 0.955622i \(-0.404815\pi\)
−0.889948 + 0.456061i \(0.849260\pi\)
\(444\) 2.82396i 0.134019i
\(445\) −0.364837 2.06910i −0.0172949 0.0980845i
\(446\) 3.43195 + 19.4636i 0.162508 + 0.921627i
\(447\) 13.9377i 0.659231i
\(448\) 0.766044 + 0.642788i 0.0361922 + 0.0303689i
\(449\) 14.8491 + 25.7194i 0.700773 + 1.21377i 0.968196 + 0.250195i \(0.0804946\pi\)
−0.267423 + 0.963579i \(0.586172\pi\)
\(450\) 7.31908 + 6.14144i 0.345025 + 0.289510i
\(451\) −24.0993 + 41.7411i −1.13479 + 1.96551i
\(452\) −2.13903 + 0.778544i −0.100612 + 0.0366196i
\(453\) −13.1554 15.6780i −0.618094 0.736616i
\(454\) 9.50253 7.97357i 0.445976 0.374218i
\(455\) 1.93969 + 0.705990i 0.0909342 + 0.0330973i
\(456\) −3.31521 9.10846i −0.155249 0.426543i
\(457\) −5.86783 + 33.2781i −0.274486 + 1.55668i 0.466106 + 0.884729i \(0.345657\pi\)
−0.740591 + 0.671956i \(0.765454\pi\)
\(458\) −6.24628 −0.291870
\(459\) 11.5702i 0.540050i
\(460\) 10.8648 0.506576
\(461\) −1.86942 + 10.6020i −0.0870677 + 0.493785i 0.909824 + 0.414995i \(0.136217\pi\)
−0.996891 + 0.0787901i \(0.974894\pi\)
\(462\) 5.29813 6.31407i 0.246491 0.293757i
\(463\) 31.7656 + 11.5617i 1.47627 + 0.537320i 0.949796 0.312869i \(-0.101290\pi\)
0.526478 + 0.850189i \(0.323512\pi\)
\(464\) −8.19846 + 6.87933i −0.380604 + 0.319365i
\(465\) 3.37346 0.594831i 0.156440 0.0275846i
\(466\) −19.0817 + 6.94518i −0.883944 + 0.321729i
\(467\) 0.798133 1.38241i 0.0369332 0.0639702i −0.846968 0.531644i \(-0.821574\pi\)
0.883901 + 0.467674i \(0.154908\pi\)
\(468\) 2.29813 3.98048i 0.106231 0.183998i
\(469\) 1.35457 + 2.34618i 0.0625482 + 0.108337i
\(470\) 9.17230 + 7.69648i 0.423087 + 0.355012i
\(471\) 33.5517 19.3711i 1.54598 0.892574i
\(472\) −1.62449 9.21291i −0.0747730 0.424059i
\(473\) −7.23783 41.0478i −0.332796 1.88738i
\(474\) 4.80659 + 2.77509i 0.220774 + 0.127464i
\(475\) 13.6532 + 11.4564i 0.626450 + 0.525654i
\(476\) −1.11334 1.92836i −0.0510299 0.0883864i
\(477\) 3.74288 + 1.36230i 0.171375 + 0.0623753i
\(478\) 7.35369 12.7370i 0.336350 0.582575i
\(479\) 6.52734 2.37576i 0.298242 0.108551i −0.188565 0.982061i \(-0.560384\pi\)
0.486807 + 0.873510i \(0.338161\pi\)
\(480\) 0.798133 2.19285i 0.0364296 0.100090i
\(481\) −1.91353 + 1.60565i −0.0872496 + 0.0732111i
\(482\) −0.354570 0.129053i −0.0161502 0.00587820i
\(483\) 13.7554 + 2.42544i 0.625891 + 0.110361i
\(484\) 2.02229 11.4690i 0.0919222 0.521317i
\(485\) 17.4388 0.791856
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) −12.5621 −0.569244 −0.284622 0.958640i \(-0.591868\pi\)
−0.284622 + 0.958640i \(0.591868\pi\)
\(488\) −0.570108 + 3.23324i −0.0258076 + 0.146362i
\(489\) 17.8439 + 3.14636i 0.806929 + 0.142283i
\(490\) 1.26604 + 0.460802i 0.0571941 + 0.0208169i
\(491\) 24.6819 20.7105i 1.11388 0.934653i 0.115598 0.993296i \(-0.463122\pi\)
0.998279 + 0.0586427i \(0.0186773\pi\)
\(492\) −6.00000 + 16.4849i −0.270501 + 0.743195i
\(493\) 22.3935 8.15058i 1.00855 0.367083i
\(494\) 4.28699 7.42528i 0.192881 0.334079i
\(495\) −18.0744 6.57856i −0.812386 0.295684i
\(496\) 0.733956 + 1.27125i 0.0329556 + 0.0570807i
\(497\) 3.22075 + 2.70253i 0.144470 + 0.121225i
\(498\) −19.2344 11.1050i −0.861915 0.497627i
\(499\) −5.18701 29.4170i −0.232203 1.31689i −0.848426 0.529315i \(-0.822449\pi\)
0.616223 0.787572i \(-0.288662\pi\)
\(500\) 1.91488 + 10.8598i 0.0856359 + 0.485666i
\(501\) −33.8842 + 19.5630i −1.51383 + 0.874012i
\(502\) 1.23783 + 1.03866i 0.0552469 + 0.0463576i
\(503\) −8.54710 14.8040i −0.381097 0.660079i 0.610123 0.792307i \(-0.291120\pi\)
−0.991219 + 0.132228i \(0.957787\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) −2.67159 + 4.62733i −0.118884 + 0.205913i
\(506\) 36.0612 13.1252i 1.60312 0.583487i
\(507\) −18.1707 + 3.20399i −0.806990 + 0.142294i
\(508\) −15.5437 + 13.0427i −0.689640 + 0.578677i
\(509\) −10.6061 3.86029i −0.470106 0.171104i 0.0960946 0.995372i \(-0.469365\pi\)
−0.566200 + 0.824268i \(0.691587\pi\)
\(510\) −3.34002 + 3.98048i −0.147899 + 0.176259i
\(511\) 1.57873 8.95340i 0.0698387 0.396075i
\(512\) 1.00000 0.0441942
\(513\) −25.1832 + 14.5395i −1.11187 + 0.641936i
\(514\) 15.9162 0.702034
\(515\) −1.52300 + 8.63738i −0.0671116 + 0.380609i
\(516\) −5.18866 14.2557i −0.228418 0.627574i
\(517\) 39.7413 + 14.4646i 1.74782 + 0.636154i
\(518\) −1.24897 + 1.04801i −0.0548766 + 0.0460469i
\(519\) −7.97730 9.50698i −0.350165 0.417310i
\(520\) 1.93969 0.705990i 0.0850611 0.0309597i
\(521\) −15.8696 + 27.4869i −0.695259 + 1.20422i 0.274834 + 0.961492i \(0.411377\pi\)
−0.970093 + 0.242733i \(0.921956\pi\)
\(522\) 24.5954 + 20.6380i 1.07651 + 0.903300i
\(523\) −10.5988 18.3576i −0.463453 0.802724i 0.535677 0.844423i \(-0.320056\pi\)
−0.999130 + 0.0416988i \(0.986723\pi\)
\(524\) 0.907604 + 0.761570i 0.0396489 + 0.0332693i
\(525\) 5.51622i 0.240748i
\(526\) −0.258770 1.46756i −0.0112829 0.0639887i
\(527\) −0.567581 3.21891i −0.0247242 0.140218i
\(528\) 8.24243i 0.358706i
\(529\) 32.1976 + 27.0170i 1.39990 + 1.17465i
\(530\) 0.894400 + 1.54915i 0.0388503 + 0.0672906i
\(531\) −26.3726 + 9.59883i −1.14447 + 0.416554i
\(532\) 2.79813 4.84651i 0.121314 0.210123i
\(533\) −14.5817 + 5.30731i −0.631604 + 0.229885i
\(534\) −1.73618 2.06910i −0.0751317 0.0895385i
\(535\) 7.15136 6.00070i 0.309180 0.259433i
\(536\) 2.54576 + 0.926581i 0.109960 + 0.0400222i
\(537\) 3.92380 + 10.7806i 0.169324 + 0.465215i
\(538\) 1.36912 7.76466i 0.0590269 0.334758i
\(539\) 4.75877 0.204975
\(540\) −6.89440 1.21567i −0.296688 0.0523141i
\(541\) 38.7033 1.66398 0.831992 0.554788i \(-0.187201\pi\)
0.831992 + 0.554788i \(0.187201\pi\)
\(542\) −0.624323 + 3.54071i −0.0268170 + 0.152087i
\(543\) −3.73231 + 4.44799i −0.160169 + 0.190882i
\(544\) −2.09240 0.761570i −0.0897107 0.0326520i
\(545\) −8.57192 + 7.19269i −0.367181 + 0.308101i
\(546\) 2.61334 0.460802i 0.111841 0.0197205i
\(547\) 38.3264 13.9497i 1.63872 0.596445i 0.651905 0.758301i \(-0.273970\pi\)
0.986814 + 0.161856i \(0.0517481\pi\)
\(548\) −10.3007 + 17.8413i −0.440022 + 0.762141i
\(549\) 9.84936 0.420360
\(550\) 7.57785 + 13.1252i 0.323121 + 0.559661i
\(551\) 45.8808 + 38.4986i 1.95459 + 1.64009i
\(552\) 12.0963 6.98378i 0.514851 0.297250i
\(553\) 0.556437 + 3.15571i 0.0236621 + 0.134194i
\(554\) −0.739008 4.19112i −0.0313974 0.178064i
\(555\) 3.29498 + 1.90236i 0.139864 + 0.0807505i
\(556\) −13.5890 11.4025i −0.576302 0.483575i
\(557\) 3.53936 + 6.13036i 0.149968 + 0.259752i 0.931215 0.364470i \(-0.118750\pi\)
−0.781248 + 0.624221i \(0.785416\pi\)
\(558\) 3.37346 2.83067i 0.142810 0.119832i
\(559\) 6.70961 11.6214i 0.283786 0.491532i
\(560\) 1.26604 0.460802i 0.0535001 0.0194725i
\(561\) −6.27719 + 17.2464i −0.265023 + 0.728145i
\(562\) −5.61515 + 4.71167i −0.236861 + 0.198750i
\(563\) 14.1638 + 5.15522i 0.596935 + 0.217267i 0.622777 0.782399i \(-0.286004\pi\)
−0.0258419 + 0.999666i \(0.508227\pi\)
\(564\) 15.1591 + 2.67296i 0.638313 + 0.112552i
\(565\) −0.532556 + 3.02027i −0.0224048 + 0.127064i
\(566\) 28.2395 1.18699
\(567\) −8.45723 3.07818i −0.355170 0.129271i
\(568\) 4.20439 0.176412
\(569\) −3.09286 + 17.5405i −0.129660 + 0.735336i 0.848771 + 0.528760i \(0.177343\pi\)
−0.978431 + 0.206575i \(0.933768\pi\)
\(570\) −12.8610 2.26774i −0.538687 0.0949850i
\(571\) −18.5719 6.75963i −0.777211 0.282882i −0.0772016 0.997016i \(-0.524598\pi\)
−0.700009 + 0.714134i \(0.746821\pi\)
\(572\) 5.58512 4.68647i 0.233526 0.195951i
\(573\) −2.41622 + 6.63852i −0.100939 + 0.277328i
\(574\) −9.51754 + 3.46410i −0.397254 + 0.144589i
\(575\) −12.8414 + 22.2419i −0.535522 + 0.927551i
\(576\) −0.520945 2.95442i −0.0217060 0.123101i
\(577\) −7.05303 12.2162i −0.293622 0.508568i 0.681042 0.732245i \(-0.261527\pi\)
−0.974663 + 0.223677i \(0.928194\pi\)
\(578\) −9.22462 7.74038i −0.383694 0.321957i
\(579\) −5.70099 3.29147i −0.236925 0.136789i
\(580\) 2.50387 + 14.2002i 0.103968 + 0.589629i
\(581\) −2.22668 12.6281i −0.0923783 0.523903i
\(582\) 19.4153 11.2095i 0.804792 0.464647i
\(583\) 4.84002 + 4.06126i 0.200453 + 0.168200i
\(584\) −4.54576 7.87349i −0.188105 0.325807i
\(585\) −3.09627 5.36289i −0.128015 0.221728i
\(586\) −9.89440 + 17.1376i −0.408734 + 0.707948i
\(587\) −1.74035 + 0.633436i −0.0718320 + 0.0261447i −0.377686 0.925934i \(-0.623280\pi\)
0.305854 + 0.952078i \(0.401058\pi\)
\(588\) 1.70574 0.300767i 0.0703434 0.0124034i
\(589\) 6.29292 5.28039i 0.259295 0.217575i
\(590\) −11.8439 4.31082i −0.487605 0.177474i
\(591\) 18.9907 22.6322i 0.781172 0.930964i
\(592\) −0.283119 + 1.60565i −0.0116361 + 0.0659916i
\(593\) 12.1325 0.498221 0.249111 0.968475i \(-0.419862\pi\)
0.249111 + 0.968475i \(0.419862\pi\)
\(594\) −24.3516 + 4.29385i −0.999160 + 0.176179i
\(595\) −3.00000 −0.122988
\(596\) −1.39734 + 7.92469i −0.0572371 + 0.324608i
\(597\) 5.29973 + 14.5609i 0.216903 + 0.595937i
\(598\) 11.6099 + 4.22567i 0.474766 + 0.172801i
\(599\) −18.8523 + 15.8190i −0.770286 + 0.646347i −0.940782 0.339012i \(-0.889907\pi\)
0.170496 + 0.985358i \(0.445463\pi\)
\(600\) 3.54576 + 4.22567i 0.144755 + 0.172512i
\(601\) 6.14038 2.23491i 0.250471 0.0911641i −0.213734 0.976892i \(-0.568562\pi\)
0.464205 + 0.885728i \(0.346340\pi\)
\(602\) 4.37939 7.58532i 0.178490 0.309154i
\(603\) 1.41131 8.00395i 0.0574731 0.325946i
\(604\) −5.90807 10.2331i −0.240396 0.416378i
\(605\) −12.0196 10.0856i −0.488666 0.410040i
\(606\) 6.86906i 0.279036i
\(607\) −2.79261 15.8377i −0.113349 0.642832i −0.987555 0.157277i \(-0.949728\pi\)
0.874206 0.485556i \(-0.161383\pi\)
\(608\) −0.971782 5.51125i −0.0394109 0.223511i
\(609\) 18.5370i 0.751157i
\(610\) 3.38847 + 2.84326i 0.137195 + 0.115120i
\(611\) 6.80793 + 11.7917i 0.275420 + 0.477041i
\(612\) −1.15998 + 6.57856i −0.0468893 + 0.265923i
\(613\) 21.2540 36.8130i 0.858442 1.48686i −0.0149729 0.999888i \(-0.504766\pi\)
0.873415 0.486977i \(-0.161900\pi\)
\(614\) −23.0881 + 8.40339i −0.931761 + 0.339133i
\(615\) 15.1925 + 18.1058i 0.612622 + 0.730095i
\(616\) 3.64543 3.05888i 0.146879 0.123246i
\(617\) 14.2819 + 5.19820i 0.574969 + 0.209272i 0.613106 0.790001i \(-0.289920\pi\)
−0.0381366 + 0.999273i \(0.512142\pi\)
\(618\) 3.85638 + 10.5953i 0.155126 + 0.426206i
\(619\) 6.40074 36.3004i 0.257267 1.45904i −0.532917 0.846167i \(-0.678904\pi\)
0.790185 0.612869i \(-0.209985\pi\)
\(620\) 1.97771 0.0794268
\(621\) −26.9345 32.0993i −1.08085 1.28810i
\(622\) −11.0838 −0.444419
\(623\) 0.270792 1.53574i 0.0108491 0.0615281i
\(624\) 1.70574 2.03282i 0.0682841 0.0813779i
\(625\) −1.00253 0.364890i −0.0401010 0.0145956i
\(626\) 12.6361 10.6029i 0.505040 0.423779i
\(627\) −45.4261 + 8.00984i −1.81414 + 0.319882i
\(628\) 21.0189 7.65025i 0.838745 0.305278i
\(629\) 1.81521 3.14403i 0.0723771 0.125361i
\(630\) −2.02094 3.50038i −0.0805164 0.139458i
\(631\) 13.5069 + 23.3946i 0.537700 + 0.931323i 0.999027 + 0.0440934i \(0.0140399\pi\)
−0.461328 + 0.887230i \(0.652627\pi\)
\(632\) 2.45471 + 2.05974i 0.0976430 + 0.0819322i
\(633\) 33.1783 19.1555i 1.31872 0.761363i
\(634\) −2.80406 15.9026i −0.111364 0.631574i
\(635\) 4.74716 + 26.9225i 0.188385 + 1.06839i
\(636\) 1.99154 + 1.14982i 0.0789699 + 0.0455933i
\(637\) 1.17365 + 0.984808i 0.0465016 + 0.0390195i
\(638\) 25.4650 + 44.1066i 1.00817 + 1.74620i
\(639\) −2.19026 12.4216i −0.0866452 0.491389i
\(640\) 0.673648 1.16679i 0.0266283 0.0461215i
\(641\) −25.1088 + 9.13884i −0.991736 + 0.360962i −0.786392 0.617727i \(-0.788054\pi\)
−0.205344 + 0.978690i \(0.565831\pi\)
\(642\) 4.10472 11.2776i 0.162000 0.445093i
\(643\) 32.5638 27.3242i 1.28419 1.07756i 0.291538 0.956559i \(-0.405833\pi\)
0.992652 0.121004i \(-0.0386113\pi\)
\(644\) 7.57785 + 2.75811i 0.298609 + 0.108685i
\(645\) −20.1288 3.54925i −0.792572 0.139752i
\(646\) −2.16385 + 12.2718i −0.0851355 + 0.482827i
\(647\) 19.6887 0.774043 0.387022 0.922071i \(-0.373504\pi\)
0.387022 + 0.922071i \(0.373504\pi\)
\(648\) −8.45723 + 3.07818i −0.332232 + 0.120922i
\(649\) −44.5185 −1.74750
\(650\) −0.847296 + 4.80526i −0.0332337 + 0.188478i
\(651\) 2.50387 + 0.441500i 0.0981344 + 0.0173037i
\(652\) 9.83022 + 3.57791i 0.384981 + 0.140122i
\(653\) −3.45652 + 2.90036i −0.135264 + 0.113500i −0.707910 0.706303i \(-0.750362\pi\)
0.572646 + 0.819803i \(0.305917\pi\)
\(654\) −4.92009 + 13.5178i −0.192391 + 0.528589i
\(655\) 1.50000 0.545955i 0.0586098 0.0213322i
\(656\) −5.06418 + 8.77141i −0.197723 + 0.342466i
\(657\) −20.8935 + 17.5317i −0.815134 + 0.683979i
\(658\) 4.44356 + 7.69648i 0.173228 + 0.300040i
\(659\) −24.0260 20.1602i −0.935920 0.785330i 0.0409507 0.999161i \(-0.486961\pi\)
−0.976871 + 0.213831i \(0.931406\pi\)
\(660\) −9.61721 5.55250i −0.374349 0.216131i
\(661\) −7.51754 42.6341i −0.292398 1.65827i −0.677592 0.735438i \(-0.736976\pi\)
0.385193 0.922836i \(-0.374135\pi\)
\(662\) 1.00253 + 5.68561i 0.0389643 + 0.220977i
\(663\) −5.11721 + 2.95442i −0.198736 + 0.114740i
\(664\) −9.82295 8.24243i −0.381204 0.319868i
\(665\) −3.76991 6.52968i −0.146191 0.253210i
\(666\) 4.89124 0.189532
\(667\) −43.1528 + 74.7428i −1.67088 + 2.89405i
\(668\) −21.2271 + 7.72605i −0.821303 + 0.298930i
\(669\) 33.7119 5.94431i 1.30338 0.229820i
\(670\) 2.79607 2.34618i 0.108022 0.0906410i
\(671\) 14.6814 + 5.34359i 0.566769 + 0.206287i
\(672\) 1.11334 1.32683i 0.0429481 0.0511835i
\(673\) 7.77425 44.0900i 0.299675 1.69954i −0.347891 0.937535i \(-0.613102\pi\)
0.647567 0.762009i \(-0.275787\pi\)
\(674\) −20.7392 −0.798843
\(675\) 10.6373 12.6770i 0.409429 0.487939i
\(676\) −10.6527 −0.409719
\(677\) 5.02094 28.4752i 0.192971 1.09439i −0.722309 0.691571i \(-0.756919\pi\)
0.915279 0.402820i \(-0.131970\pi\)
\(678\) 1.34848 + 3.70491i 0.0517880 + 0.142286i
\(679\) 12.1630 + 4.42696i 0.466772 + 0.169891i
\(680\) −2.29813 + 1.92836i −0.0881294 + 0.0739493i
\(681\) −13.8106 16.4589i −0.529224 0.630705i
\(682\) 6.56418 2.38917i 0.251355 0.0914859i
\(683\) −4.69594 + 8.13360i −0.179685 + 0.311224i −0.941773 0.336250i \(-0.890841\pi\)
0.762088 + 0.647474i \(0.224175\pi\)
\(684\) −15.7763 + 5.74211i −0.603222 + 0.219555i
\(685\) 13.8780 + 24.0375i 0.530253 + 0.918425i
\(686\) 0.766044 + 0.642788i 0.0292477 + 0.0245417i
\(687\) 10.8189i 0.412766i
\(688\) −1.52094 8.62571i −0.0579855 0.328852i
\(689\) 0.353226 + 2.00324i 0.0134568 + 0.0763176i
\(690\) 18.8185i 0.716406i
\(691\) −11.4153 9.57861i −0.434260 0.364388i 0.399296 0.916822i \(-0.369255\pi\)
−0.833556 + 0.552434i \(0.813699\pi\)
\(692\) −3.58260 6.20524i −0.136190 0.235888i
\(693\) −10.9363 9.17664i −0.415435 0.348592i
\(694\) −1.52481 + 2.64106i −0.0578812 + 0.100253i
\(695\) −22.4586 + 8.17425i −0.851902 + 0.310067i
\(696\) 11.9153 + 14.2002i 0.451650 + 0.538255i
\(697\) 17.2763 14.4965i 0.654387 0.549096i
\(698\) 5.93882 + 2.16155i 0.224787 + 0.0818159i
\(699\) 12.0294 + 33.0505i 0.454994 + 1.25008i
\(700\) −0.553033 + 3.13641i −0.0209027 + 0.118545i
\(701\) 29.4861 1.11367 0.556837 0.830622i \(-0.312015\pi\)
0.556837 + 0.830622i \(0.312015\pi\)
\(702\) −6.89440 3.98048i −0.260212 0.150234i
\(703\) 9.12424 0.344127
\(704\) 0.826352 4.68647i 0.0311443 0.176628i
\(705\) 13.3307 15.8869i 0.502063 0.598335i
\(706\) 2.27332 + 0.827420i 0.0855575 + 0.0311404i
\(707\) −3.03802 + 2.54920i −0.114256 + 0.0958725i
\(708\) −15.9572 + 2.81369i −0.599710 + 0.105745i
\(709\) −5.88666 + 2.14257i −0.221078 + 0.0804659i −0.450185 0.892936i \(-0.648642\pi\)
0.229106 + 0.973401i \(0.426420\pi\)
\(710\) 2.83228 4.90566i 0.106294 0.184106i
\(711\) 4.80659 8.32526i 0.180261 0.312222i
\(712\) −0.779715 1.35051i −0.0292211 0.0506124i
\(713\) 9.06805 + 7.60900i 0.339601 + 0.284959i
\(714\) −3.34002 + 1.92836i −0.124997 + 0.0721672i
\(715\) −1.70574 9.67372i −0.0637909 0.361776i
\(716\) 1.15018 + 6.52298i 0.0429841 + 0.243775i
\(717\) −22.0611 12.7370i −0.823886 0.475671i
\(718\) −3.76991 3.16333i −0.140692 0.118055i
\(719\) −15.0484 26.0647i −0.561212 0.972048i −0.997391 0.0721883i \(-0.977002\pi\)
0.436179 0.899860i \(-0.356332\pi\)
\(720\) −3.79813 1.38241i −0.141548 0.0515193i
\(721\) −3.25490 + 5.63765i −0.121219 + 0.209957i
\(722\) −11.5753 + 4.21307i −0.430789 + 0.156794i
\(723\) −0.223526 + 0.614134i −0.00831304 + 0.0228399i
\(724\) −2.56805 + 2.15485i −0.0954408 + 0.0800843i
\(725\) −32.0292 11.6577i −1.18953 0.432955i
\(726\) −19.8648 3.50271i −0.737253 0.129998i
\(727\) 4.42824 25.1138i 0.164234 0.931420i −0.785616 0.618715i \(-0.787654\pi\)
0.949850 0.312705i \(-0.101235\pi\)
\(728\) 1.53209 0.0567830
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −12.2490 −0.453355
\(731\) −3.38666 + 19.2067i −0.125260 + 0.710385i
\(732\) 5.60014 + 0.987455i 0.206987 + 0.0364974i
\(733\) 12.2747 + 4.46761i 0.453375 + 0.165015i 0.558607 0.829433i \(-0.311336\pi\)
−0.105232 + 0.994448i \(0.533558\pi\)
\(734\) −5.54782 + 4.65517i −0.204774 + 0.171826i
\(735\) 0.798133 2.19285i 0.0294396 0.0808846i
\(736\) 7.57785 2.75811i 0.279323 0.101665i
\(737\) 6.44609 11.1650i 0.237445 0.411266i
\(738\) 28.5526 + 10.3923i 1.05104 + 0.382546i
\(739\) 6.40554 + 11.0947i 0.235632 + 0.408126i 0.959456 0.281858i \(-0.0909507\pi\)
−0.723824 + 0.689984i \(0.757617\pi\)
\(740\) 1.68273 + 1.41198i 0.0618585 + 0.0519054i
\(741\) −12.8610 7.42528i −0.472459 0.272775i
\(742\) 0.230552 + 1.30753i 0.00846383 + 0.0480008i
\(743\) −7.74494 43.9237i −0.284134 1.61141i −0.708362 0.705850i \(-0.750565\pi\)
0.424228 0.905556i \(-0.360546\pi\)
\(744\) 2.20187 1.27125i 0.0807243 0.0466062i
\(745\) 8.30516 + 6.96886i 0.304277 + 0.255319i
\(746\) 7.29813 + 12.6407i 0.267204 + 0.462810i
\(747\) −19.2344 + 33.3150i −0.703751 + 1.21893i
\(748\) −5.29813 + 9.17664i −0.193719 + 0.335531i
\(749\) 6.51114 2.36986i 0.237912 0.0865929i
\(750\) 18.8097 3.31667i 0.686835 0.121107i
\(751\) −8.34208 + 6.99984i −0.304407 + 0.255428i −0.782176 0.623058i \(-0.785890\pi\)
0.477769 + 0.878486i \(0.341446\pi\)
\(752\) 8.35117 + 3.03958i 0.304536 + 0.110842i
\(753\) 1.79901 2.14398i 0.0655596 0.0781309i
\(754\) −2.84730 + 16.1478i −0.103692 + 0.588069i
\(755\) −15.9198 −0.579382
\(756\) −4.50000 2.59808i −0.163663 0.0944911i
\(757\) 29.8658 1.08549 0.542745 0.839898i \(-0.317385\pi\)
0.542745 + 0.839898i \(0.317385\pi\)
\(758\) −1.00980 + 5.72686i −0.0366776 + 0.208009i
\(759\) −22.7335 62.4599i −0.825175 2.26715i
\(760\) −7.08512 2.57877i −0.257004 0.0935420i
\(761\) 32.1935 27.0135i 1.16701 0.979240i 0.167035 0.985951i \(-0.446581\pi\)
0.999977 + 0.00671144i \(0.00213633\pi\)
\(762\) 22.5906 + 26.9225i 0.818373 + 0.975298i
\(763\) −7.80453 + 2.84062i −0.282543 + 0.102837i
\(764\) −2.03936 + 3.53228i −0.0737816 + 0.127793i
\(765\) 6.89440 + 5.78509i 0.249268 + 0.209160i
\(766\) 13.1498 + 22.7761i 0.475120 + 0.822933i