Properties

Label 378.2.u.a.169.1
Level $378$
Weight $2$
Character 378.169
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(43,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 169.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 378.169
Dual form 378.2.u.a.85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.592396 + 1.62760i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.152704 + 0.866025i) q^{5} +(-1.11334 - 1.32683i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.29813 + 1.92836i) q^{9} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.592396 + 1.62760i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.152704 + 0.866025i) q^{5} +(-1.11334 - 1.32683i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.29813 + 1.92836i) q^{9} +(-0.439693 - 0.761570i) q^{10} +(-0.358441 + 2.03282i) q^{11} +(1.50000 + 0.866025i) q^{12} +(-0.326352 - 0.118782i) q^{13} +(-0.939693 - 0.342020i) q^{14} +(-1.31908 + 0.761570i) q^{15} +(0.173648 - 0.984808i) q^{16} +(1.70574 + 2.95442i) q^{17} +(1.50000 - 2.59808i) q^{18} +(1.02094 - 1.76833i) q^{19} +(0.673648 + 0.565258i) q^{20} +(-0.592396 + 1.62760i) q^{21} +(-0.358441 - 2.03282i) q^{22} +(-4.36231 + 3.66041i) q^{23} +(-1.70574 - 0.300767i) q^{24} +(3.97178 - 1.44561i) q^{25} +0.347296 q^{26} +(-4.50000 - 2.59808i) q^{27} +1.00000 q^{28} +(-1.78699 + 0.650411i) q^{29} +(0.979055 - 1.16679i) q^{30} +(-2.03209 + 1.70513i) q^{31} +(0.173648 + 0.984808i) q^{32} +(-3.52094 + 0.620838i) q^{33} +(-2.61334 - 2.19285i) q^{34} +(-0.439693 + 0.761570i) q^{35} +(-0.520945 + 2.95442i) q^{36} +(-0.226682 - 0.392624i) q^{37} +(-0.354570 + 2.01087i) q^{38} -0.601535i q^{39} +(-0.826352 - 0.300767i) q^{40} +(-5.06418 - 1.84321i) q^{41} -1.73205i q^{42} +(-0.336152 + 1.90641i) q^{43} +(1.03209 + 1.78763i) q^{44} +(-2.02094 - 1.69577i) q^{45} +(2.84730 - 4.93166i) q^{46} +(2.04916 + 1.71945i) q^{47} +(1.70574 - 0.300767i) q^{48} +(0.173648 + 0.984808i) q^{49} +(-3.23783 + 2.71686i) q^{50} +(-3.79813 + 4.52644i) q^{51} +(-0.326352 + 0.118782i) q^{52} +10.0915 q^{53} +(5.11721 + 0.902302i) q^{54} -1.81521 q^{55} +(-0.939693 + 0.342020i) q^{56} +(3.48293 + 0.614134i) q^{57} +(1.45677 - 1.22237i) q^{58} +(0.177519 + 1.00676i) q^{59} +(-0.520945 + 1.43128i) q^{60} +(-2.62449 - 2.20220i) q^{61} +(1.32635 - 2.29731i) q^{62} -3.00000 q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.0530334 - 0.300767i) q^{65} +(3.09627 - 1.78763i) q^{66} +(10.0706 + 3.66539i) q^{67} +(3.20574 + 1.16679i) q^{68} +(-8.54189 - 4.93166i) q^{69} +(0.152704 - 0.866025i) q^{70} +(2.87211 + 4.97464i) q^{71} +(-0.520945 - 2.95442i) q^{72} +(6.20961 - 10.7554i) q^{73} +(0.347296 + 0.291416i) q^{74} +(4.70574 + 5.60808i) q^{75} +(-0.354570 - 2.01087i) q^{76} +(-1.58125 + 1.32683i) q^{77} +(0.205737 + 0.565258i) q^{78} +(6.33750 - 2.30666i) q^{79} +0.879385 q^{80} +(1.56283 - 8.86327i) q^{81} +5.38919 q^{82} +(3.41147 - 1.24168i) q^{83} +(0.592396 + 1.62760i) q^{84} +(-2.29813 + 1.92836i) q^{85} +(-0.336152 - 1.90641i) q^{86} +(-2.11721 - 2.52319i) q^{87} +(-1.58125 - 1.32683i) q^{88} +(9.38326 - 16.2523i) q^{89} +(2.47906 + 0.902302i) q^{90} +(-0.173648 - 0.300767i) q^{91} +(-0.988856 + 5.60808i) q^{92} +(-3.97906 - 2.29731i) q^{93} +(-2.51367 - 0.914901i) q^{94} +(1.68732 + 0.614134i) q^{95} +(-1.50000 + 0.866025i) q^{96} +(-1.24376 + 7.05369i) q^{97} +(-0.500000 - 0.866025i) q^{98} +(-3.09627 - 5.36289i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} - 3 q^{8} + 3 q^{10} + 6 q^{11} + 9 q^{12} - 3 q^{13} + 9 q^{15} + 9 q^{18} + 3 q^{19} + 3 q^{20} + 6 q^{22} + 6 q^{23} + 9 q^{25} - 27 q^{27} + 6 q^{28} - 3 q^{29} + 9 q^{30} - 3 q^{31} - 18 q^{33} - 9 q^{34} + 3 q^{35} + 12 q^{37} - 18 q^{38} - 6 q^{40} - 12 q^{41} - 6 q^{43} - 3 q^{44} - 9 q^{45} + 15 q^{46} + 24 q^{47} - 9 q^{51} - 3 q^{52} - 18 q^{55} + 24 q^{58} - 24 q^{59} - 3 q^{61} + 9 q^{62} - 18 q^{63} - 3 q^{64} - 12 q^{65} - 9 q^{66} + 3 q^{67} + 9 q^{68} - 45 q^{69} + 3 q^{70} - 12 q^{71} + 3 q^{73} + 18 q^{75} - 18 q^{76} - 12 q^{77} - 9 q^{78} + 33 q^{79} - 6 q^{80} + 24 q^{82} - 6 q^{86} + 18 q^{87} - 12 q^{88} + 21 q^{89} + 18 q^{90} - 12 q^{92} - 27 q^{93} + 6 q^{94} - 12 q^{95} - 9 q^{96} - 15 q^{97} - 3 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.664463 + 0.241845i
\(3\) 0.592396 + 1.62760i 0.342020 + 0.939693i
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) 0.152704 + 0.866025i 0.0682911 + 0.387298i 0.999726 + 0.0233912i \(0.00744633\pi\)
−0.931435 + 0.363907i \(0.881443\pi\)
\(6\) −1.11334 1.32683i −0.454519 0.541675i
\(7\) 0.766044 + 0.642788i 0.289538 + 0.242951i
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −2.29813 + 1.92836i −0.766044 + 0.642788i
\(10\) −0.439693 0.761570i −0.139043 0.240830i
\(11\) −0.358441 + 2.03282i −0.108074 + 0.612918i 0.881874 + 0.471485i \(0.156282\pi\)
−0.989948 + 0.141433i \(0.954829\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) −0.326352 0.118782i −0.0905137 0.0329443i 0.296366 0.955074i \(-0.404225\pi\)
−0.386880 + 0.922130i \(0.626447\pi\)
\(14\) −0.939693 0.342020i −0.251143 0.0914087i
\(15\) −1.31908 + 0.761570i −0.340584 + 0.196637i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 1.70574 + 2.95442i 0.413702 + 0.716553i 0.995291 0.0969297i \(-0.0309022\pi\)
−0.581589 + 0.813483i \(0.697569\pi\)
\(18\) 1.50000 2.59808i 0.353553 0.612372i
\(19\) 1.02094 1.76833i 0.234221 0.405682i −0.724825 0.688933i \(-0.758079\pi\)
0.959046 + 0.283251i \(0.0914128\pi\)
\(20\) 0.673648 + 0.565258i 0.150632 + 0.126396i
\(21\) −0.592396 + 1.62760i −0.129271 + 0.355170i
\(22\) −0.358441 2.03282i −0.0764198 0.433398i
\(23\) −4.36231 + 3.66041i −0.909605 + 0.763249i −0.972044 0.234800i \(-0.924557\pi\)
0.0624390 + 0.998049i \(0.480112\pi\)
\(24\) −1.70574 0.300767i −0.348182 0.0613939i
\(25\) 3.97178 1.44561i 0.794356 0.289122i
\(26\) 0.347296 0.0681104
\(27\) −4.50000 2.59808i −0.866025 0.500000i
\(28\) 1.00000 0.188982
\(29\) −1.78699 + 0.650411i −0.331836 + 0.120778i −0.502564 0.864540i \(-0.667610\pi\)
0.170729 + 0.985318i \(0.445388\pi\)
\(30\) 0.979055 1.16679i 0.178750 0.213026i
\(31\) −2.03209 + 1.70513i −0.364974 + 0.306249i −0.806770 0.590866i \(-0.798786\pi\)
0.441796 + 0.897116i \(0.354342\pi\)
\(32\) 0.173648 + 0.984808i 0.0306970 + 0.174091i
\(33\) −3.52094 + 0.620838i −0.612918 + 0.108074i
\(34\) −2.61334 2.19285i −0.448184 0.376071i
\(35\) −0.439693 + 0.761570i −0.0743216 + 0.128729i
\(36\) −0.520945 + 2.95442i −0.0868241 + 0.492404i
\(37\) −0.226682 0.392624i −0.0372662 0.0645470i 0.846791 0.531926i \(-0.178532\pi\)
−0.884057 + 0.467379i \(0.845198\pi\)
\(38\) −0.354570 + 2.01087i −0.0575189 + 0.326206i
\(39\) 0.601535i 0.0963227i
\(40\) −0.826352 0.300767i −0.130658 0.0475555i
\(41\) −5.06418 1.84321i −0.790892 0.287861i −0.0851850 0.996365i \(-0.527148\pi\)
−0.705707 + 0.708504i \(0.749370\pi\)
\(42\) 1.73205i 0.267261i
\(43\) −0.336152 + 1.90641i −0.0512627 + 0.290725i −0.999652 0.0263835i \(-0.991601\pi\)
0.948389 + 0.317109i \(0.102712\pi\)
\(44\) 1.03209 + 1.78763i 0.155593 + 0.269495i
\(45\) −2.02094 1.69577i −0.301265 0.252791i
\(46\) 2.84730 4.93166i 0.419811 0.727134i
\(47\) 2.04916 + 1.71945i 0.298901 + 0.250808i 0.779887 0.625921i \(-0.215277\pi\)
−0.480986 + 0.876728i \(0.659721\pi\)
\(48\) 1.70574 0.300767i 0.246202 0.0434120i
\(49\) 0.173648 + 0.984808i 0.0248069 + 0.140687i
\(50\) −3.23783 + 2.71686i −0.457898 + 0.384222i
\(51\) −3.79813 + 4.52644i −0.531845 + 0.633828i
\(52\) −0.326352 + 0.118782i −0.0452569 + 0.0164721i
\(53\) 10.0915 1.38618 0.693088 0.720853i \(-0.256250\pi\)
0.693088 + 0.720853i \(0.256250\pi\)
\(54\) 5.11721 + 0.902302i 0.696364 + 0.122788i
\(55\) −1.81521 −0.244763
\(56\) −0.939693 + 0.342020i −0.125572 + 0.0457044i
\(57\) 3.48293 + 0.614134i 0.461325 + 0.0813440i
\(58\) 1.45677 1.22237i 0.191283 0.160505i
\(59\) 0.177519 + 1.00676i 0.0231109 + 0.131069i 0.994180 0.107729i \(-0.0343579\pi\)
−0.971069 + 0.238798i \(0.923247\pi\)
\(60\) −0.520945 + 1.43128i −0.0672537 + 0.184778i
\(61\) −2.62449 2.20220i −0.336031 0.281963i 0.459121 0.888374i \(-0.348164\pi\)
−0.795152 + 0.606410i \(0.792609\pi\)
\(62\) 1.32635 2.29731i 0.168447 0.291759i
\(63\) −3.00000 −0.377964
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 0.0530334 0.300767i 0.00657799 0.0373056i
\(66\) 3.09627 1.78763i 0.381124 0.220042i
\(67\) 10.0706 + 3.66539i 1.23032 + 0.447799i 0.873706 0.486455i \(-0.161710\pi\)
0.356611 + 0.934253i \(0.383932\pi\)
\(68\) 3.20574 + 1.16679i 0.388753 + 0.141494i
\(69\) −8.54189 4.93166i −1.02832 0.593702i
\(70\) 0.152704 0.866025i 0.0182516 0.103510i
\(71\) 2.87211 + 4.97464i 0.340857 + 0.590381i 0.984592 0.174867i \(-0.0559495\pi\)
−0.643735 + 0.765248i \(0.722616\pi\)
\(72\) −0.520945 2.95442i −0.0613939 0.348182i
\(73\) 6.20961 10.7554i 0.726780 1.25882i −0.231458 0.972845i \(-0.574350\pi\)
0.958237 0.285974i \(-0.0923172\pi\)
\(74\) 0.347296 + 0.291416i 0.0403724 + 0.0338765i
\(75\) 4.70574 + 5.60808i 0.543372 + 0.647565i
\(76\) −0.354570 2.01087i −0.0406720 0.230662i
\(77\) −1.58125 + 1.32683i −0.180200 + 0.151206i
\(78\) 0.205737 + 0.565258i 0.0232951 + 0.0640029i
\(79\) 6.33750 2.30666i 0.713024 0.259520i 0.0400627 0.999197i \(-0.487244\pi\)
0.672961 + 0.739678i \(0.265022\pi\)
\(80\) 0.879385 0.0983183
\(81\) 1.56283 8.86327i 0.173648 0.984808i
\(82\) 5.38919 0.595136
\(83\) 3.41147 1.24168i 0.374458 0.136292i −0.147934 0.988997i \(-0.547262\pi\)
0.522392 + 0.852706i \(0.325040\pi\)
\(84\) 0.592396 + 1.62760i 0.0646357 + 0.177585i
\(85\) −2.29813 + 1.92836i −0.249268 + 0.209160i
\(86\) −0.336152 1.90641i −0.0362482 0.205574i
\(87\) −2.11721 2.52319i −0.226989 0.270515i
\(88\) −1.58125 1.32683i −0.168562 0.141440i
\(89\) 9.38326 16.2523i 0.994623 1.72274i 0.407625 0.913149i \(-0.366357\pi\)
0.586998 0.809588i \(-0.300310\pi\)
\(90\) 2.47906 + 0.902302i 0.261315 + 0.0951110i
\(91\) −0.173648 0.300767i −0.0182033 0.0315290i
\(92\) −0.988856 + 5.60808i −0.103095 + 0.584683i
\(93\) −3.97906 2.29731i −0.412609 0.238220i
\(94\) −2.51367 0.914901i −0.259265 0.0943649i
\(95\) 1.68732 + 0.614134i 0.173115 + 0.0630088i
\(96\) −1.50000 + 0.866025i −0.153093 + 0.0883883i
\(97\) −1.24376 + 7.05369i −0.126284 + 0.716194i 0.854253 + 0.519858i \(0.174015\pi\)
−0.980537 + 0.196335i \(0.937096\pi\)
\(98\) −0.500000 0.866025i −0.0505076 0.0874818i
\(99\) −3.09627 5.36289i −0.311187 0.538991i
\(100\) 2.11334 3.66041i 0.211334 0.366041i
\(101\) −1.91147 1.60392i −0.190199 0.159596i 0.542716 0.839916i \(-0.317396\pi\)
−0.732915 + 0.680321i \(0.761841\pi\)
\(102\) 2.02094 5.55250i 0.200103 0.549779i
\(103\) 0.176174 + 0.999135i 0.0173590 + 0.0984477i 0.992256 0.124207i \(-0.0396388\pi\)
−0.974897 + 0.222655i \(0.928528\pi\)
\(104\) 0.266044 0.223238i 0.0260878 0.0218903i
\(105\) −1.50000 0.264490i −0.146385 0.0258116i
\(106\) −9.48293 + 3.45150i −0.921063 + 0.335240i
\(107\) 11.3131 1.09368 0.546842 0.837236i \(-0.315830\pi\)
0.546842 + 0.837236i \(0.315830\pi\)
\(108\) −5.11721 + 0.902302i −0.492404 + 0.0868241i
\(109\) 12.7588 1.22207 0.611034 0.791604i \(-0.290754\pi\)
0.611034 + 0.791604i \(0.290754\pi\)
\(110\) 1.70574 0.620838i 0.162636 0.0591945i
\(111\) 0.504748 0.601535i 0.0479085 0.0570952i
\(112\) 0.766044 0.642788i 0.0723844 0.0607377i
\(113\) −3.15910 17.9161i −0.297183 1.68541i −0.658194 0.752848i \(-0.728680\pi\)
0.361011 0.932561i \(-0.382432\pi\)
\(114\) −3.48293 + 0.614134i −0.326206 + 0.0575189i
\(115\) −3.83615 3.21891i −0.357723 0.300165i
\(116\) −0.950837 + 1.64690i −0.0882830 + 0.152911i
\(117\) 0.979055 0.356347i 0.0905137 0.0329443i
\(118\) −0.511144 0.885328i −0.0470547 0.0815010i
\(119\) −0.592396 + 3.35965i −0.0543049 + 0.307978i
\(120\) 1.52314i 0.139043i
\(121\) 6.33275 + 2.30493i 0.575704 + 0.209539i
\(122\) 3.21941 + 1.17177i 0.291471 + 0.106087i
\(123\) 9.33434i 0.841649i
\(124\) −0.460637 + 2.61240i −0.0413664 + 0.234601i
\(125\) 4.05690 + 7.02676i 0.362861 + 0.628493i
\(126\) 2.81908 1.02606i 0.251143 0.0914087i
\(127\) 6.14156 10.6375i 0.544975 0.943925i −0.453633 0.891188i \(-0.649872\pi\)
0.998608 0.0527364i \(-0.0167943\pi\)
\(128\) 0.766044 + 0.642788i 0.0677094 + 0.0568149i
\(129\) −3.30200 + 0.582232i −0.290725 + 0.0512627i
\(130\) 0.0530334 + 0.300767i 0.00465134 + 0.0263791i
\(131\) 1.70574 1.43128i 0.149031 0.125052i −0.565224 0.824938i \(-0.691210\pi\)
0.714255 + 0.699886i \(0.246766\pi\)
\(132\) −2.29813 + 2.73881i −0.200027 + 0.238383i
\(133\) 1.91875 0.698367i 0.166377 0.0605561i
\(134\) −10.7169 −0.925798
\(135\) 1.56283 4.29385i 0.134507 0.369556i
\(136\) −3.41147 −0.292531
\(137\) 6.01842 2.19053i 0.514188 0.187149i −0.0718764 0.997414i \(-0.522899\pi\)
0.586065 + 0.810264i \(0.300676\pi\)
\(138\) 9.71348 + 1.71275i 0.826866 + 0.145799i
\(139\) −16.7815 + 14.0814i −1.42339 + 1.19437i −0.473897 + 0.880580i \(0.657153\pi\)
−0.949494 + 0.313786i \(0.898403\pi\)
\(140\) 0.152704 + 0.866025i 0.0129058 + 0.0731925i
\(141\) −1.58466 + 4.35381i −0.133452 + 0.366657i
\(142\) −4.40033 3.69232i −0.369267 0.309852i
\(143\) 0.358441 0.620838i 0.0299743 0.0519170i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) −0.836152 1.44826i −0.0694386 0.120271i
\(146\) −2.15657 + 12.2305i −0.178479 + 1.01221i
\(147\) −1.50000 + 0.866025i −0.123718 + 0.0714286i
\(148\) −0.426022 0.155059i −0.0350188 0.0127458i
\(149\) −20.7528 7.55342i −1.70014 0.618800i −0.704298 0.709905i \(-0.748738\pi\)
−0.995841 + 0.0911048i \(0.970960\pi\)
\(150\) −6.34002 3.66041i −0.517661 0.298872i
\(151\) −3.12361 + 17.7149i −0.254196 + 1.44161i 0.543933 + 0.839128i \(0.316934\pi\)
−0.798129 + 0.602487i \(0.794177\pi\)
\(152\) 1.02094 + 1.76833i 0.0828095 + 0.143430i
\(153\) −9.61721 3.50038i −0.777505 0.282989i
\(154\) 1.03209 1.78763i 0.0831681 0.144051i
\(155\) −1.78699 1.49946i −0.143534 0.120440i
\(156\) −0.386659 0.460802i −0.0309575 0.0368937i
\(157\) 3.40554 + 19.3138i 0.271792 + 1.54141i 0.748971 + 0.662603i \(0.230548\pi\)
−0.477179 + 0.878806i \(0.658341\pi\)
\(158\) −5.16637 + 4.33510i −0.411015 + 0.344882i
\(159\) 5.97818 + 16.4249i 0.474100 + 1.30258i
\(160\) −0.826352 + 0.300767i −0.0653288 + 0.0237778i
\(161\) −5.69459 −0.448797
\(162\) 1.56283 + 8.86327i 0.122788 + 0.696364i
\(163\) 8.96585 0.702260 0.351130 0.936327i \(-0.385798\pi\)
0.351130 + 0.936327i \(0.385798\pi\)
\(164\) −5.06418 + 1.84321i −0.395446 + 0.143931i
\(165\) −1.07532 2.95442i −0.0837137 0.230002i
\(166\) −2.78106 + 2.33359i −0.215852 + 0.181121i
\(167\) −0.273785 1.55271i −0.0211861 0.120153i 0.972381 0.233401i \(-0.0749855\pi\)
−0.993567 + 0.113248i \(0.963874\pi\)
\(168\) −1.11334 1.32683i −0.0858961 0.102367i
\(169\) −9.86618 8.27871i −0.758937 0.636824i
\(170\) 1.50000 2.59808i 0.115045 0.199263i
\(171\) 1.06371 + 6.03260i 0.0813440 + 0.461325i
\(172\) 0.967911 + 1.67647i 0.0738025 + 0.127830i
\(173\) 3.33363 18.9059i 0.253451 1.43739i −0.546567 0.837415i \(-0.684066\pi\)
0.800018 0.599976i \(-0.204823\pi\)
\(174\) 2.85251 + 1.64690i 0.216248 + 0.124851i
\(175\) 3.97178 + 1.44561i 0.300238 + 0.109278i
\(176\) 1.93969 + 0.705990i 0.146210 + 0.0532160i
\(177\) −1.53343 + 0.885328i −0.115260 + 0.0665453i
\(178\) −3.25877 + 18.4814i −0.244255 + 1.38524i
\(179\) 8.03596 + 13.9187i 0.600636 + 1.04033i 0.992725 + 0.120404i \(0.0384191\pi\)
−0.392089 + 0.919927i \(0.628248\pi\)
\(180\) −2.63816 −0.196637
\(181\) −11.1630 + 19.3348i −0.829737 + 1.43715i 0.0685074 + 0.997651i \(0.478176\pi\)
−0.898244 + 0.439496i \(0.855157\pi\)
\(182\) 0.266044 + 0.223238i 0.0197205 + 0.0165475i
\(183\) 2.02956 5.57618i 0.150030 0.412203i
\(184\) −0.988856 5.60808i −0.0728994 0.413433i
\(185\) 0.305407 0.256267i 0.0224540 0.0188411i
\(186\) 4.52481 + 0.797847i 0.331776 + 0.0585010i
\(187\) −6.61721 + 2.40847i −0.483898 + 0.176125i
\(188\) 2.67499 0.195094
\(189\) −1.77719 4.88279i −0.129271 0.355170i
\(190\) −1.79561 −0.130267
\(191\) −13.3157 + 4.84651i −0.963488 + 0.350681i −0.775400 0.631471i \(-0.782452\pi\)
−0.188089 + 0.982152i \(0.560229\pi\)
\(192\) 1.11334 1.32683i 0.0803485 0.0957556i
\(193\) 7.43242 6.23654i 0.534997 0.448916i −0.334826 0.942280i \(-0.608677\pi\)
0.869823 + 0.493364i \(0.164233\pi\)
\(194\) −1.24376 7.05369i −0.0892965 0.506425i
\(195\) 0.520945 0.0918566i 0.0373056 0.00657799i
\(196\) 0.766044 + 0.642788i 0.0547175 + 0.0459134i
\(197\) 2.96198 5.13030i 0.211032 0.365519i −0.741005 0.671499i \(-0.765651\pi\)
0.952038 + 0.305980i \(0.0989841\pi\)
\(198\) 4.74376 + 3.98048i 0.337124 + 0.282881i
\(199\) −9.23308 15.9922i −0.654516 1.13365i −0.982015 0.188803i \(-0.939539\pi\)
0.327499 0.944851i \(-0.393794\pi\)
\(200\) −0.733956 + 4.16247i −0.0518985 + 0.294331i
\(201\) 18.5622i 1.30928i
\(202\) 2.34477 + 0.853427i 0.164977 + 0.0600469i
\(203\) −1.78699 0.650411i −0.125422 0.0456499i
\(204\) 5.90885i 0.413702i
\(205\) 0.822948 4.66717i 0.0574772 0.325969i
\(206\) −0.507274 0.878624i −0.0353435 0.0612167i
\(207\) 2.96657 16.8242i 0.206191 1.16937i
\(208\) −0.173648 + 0.300767i −0.0120403 + 0.0208545i
\(209\) 3.22874 + 2.70924i 0.223337 + 0.187402i
\(210\) 1.50000 0.264490i 0.103510 0.0182516i
\(211\) 3.21823 + 18.2515i 0.221552 + 1.25648i 0.869168 + 0.494516i \(0.164655\pi\)
−0.647617 + 0.761966i \(0.724234\pi\)
\(212\) 7.73055 6.48670i 0.530936 0.445509i
\(213\) −6.39528 + 7.62159i −0.438197 + 0.522223i
\(214\) −10.6309 + 3.86932i −0.726712 + 0.264502i
\(215\) −1.70233 −0.116098
\(216\) 4.50000 2.59808i 0.306186 0.176777i
\(217\) −2.65270 −0.180077
\(218\) −11.9893 + 4.36376i −0.812019 + 0.295551i
\(219\) 21.1839 + 3.73530i 1.43148 + 0.252408i
\(220\) −1.39053 + 1.16679i −0.0937495 + 0.0786652i
\(221\) −0.205737 1.16679i −0.0138394 0.0784870i
\(222\) −0.268571 + 0.737892i −0.0180253 + 0.0495241i
\(223\) −8.05169 6.75617i −0.539181 0.452427i 0.332077 0.943252i \(-0.392251\pi\)
−0.871258 + 0.490826i \(0.836695\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) −6.34002 + 10.9812i −0.422668 + 0.732083i
\(226\) 9.09627 + 15.7552i 0.605075 + 1.04802i
\(227\) −2.22328 + 12.6088i −0.147564 + 0.836878i 0.817708 + 0.575633i \(0.195244\pi\)
−0.965272 + 0.261245i \(0.915867\pi\)
\(228\) 3.06283 1.76833i 0.202841 0.117110i
\(229\) −9.75624 3.55098i −0.644711 0.234656i −0.00108918 0.999999i \(-0.500347\pi\)
−0.643622 + 0.765344i \(0.722569\pi\)
\(230\) 4.70574 + 1.71275i 0.310287 + 0.112935i
\(231\) −3.09627 1.78763i −0.203719 0.117617i
\(232\) 0.330222 1.87278i 0.0216802 0.122954i
\(233\) 2.00134 + 3.46643i 0.131112 + 0.227093i 0.924106 0.382137i \(-0.124812\pi\)
−0.792993 + 0.609230i \(0.791478\pi\)
\(234\) −0.798133 + 0.669713i −0.0521756 + 0.0437805i
\(235\) −1.17617 + 2.03719i −0.0767252 + 0.132892i
\(236\) 0.783119 + 0.657115i 0.0509767 + 0.0427745i
\(237\) 7.50862 + 8.94842i 0.487737 + 0.581263i
\(238\) −0.592396 3.35965i −0.0383993 0.217774i
\(239\) 16.3537 13.7224i 1.05783 0.887627i 0.0639371 0.997954i \(-0.479634\pi\)
0.993895 + 0.110327i \(0.0351898\pi\)
\(240\) 0.520945 + 1.43128i 0.0336268 + 0.0923889i
\(241\) 5.34642 1.94594i 0.344393 0.125349i −0.164032 0.986455i \(-0.552450\pi\)
0.508425 + 0.861106i \(0.330228\pi\)
\(242\) −6.73917 −0.433210
\(243\) 15.3516 2.70691i 0.984808 0.173648i
\(244\) −3.42602 −0.219329
\(245\) −0.826352 + 0.300767i −0.0527937 + 0.0192153i
\(246\) 3.19253 + 8.77141i 0.203548 + 0.559245i
\(247\) −0.543233 + 0.455827i −0.0345651 + 0.0290036i
\(248\) −0.460637 2.61240i −0.0292505 0.165888i
\(249\) 4.04189 + 4.81694i 0.256144 + 0.305261i
\(250\) −6.21554 5.21546i −0.393105 0.329854i
\(251\) 6.46451 11.1969i 0.408036 0.706739i −0.586634 0.809853i \(-0.699547\pi\)
0.994670 + 0.103113i \(0.0328804\pi\)
\(252\) −2.29813 + 1.92836i −0.144769 + 0.121475i
\(253\) −5.87733 10.1798i −0.369504 0.640000i
\(254\) −2.13294 + 12.0965i −0.133833 + 0.759003i
\(255\) −4.50000 2.59808i −0.281801 0.162698i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) −27.5107 10.0131i −1.71607 0.624599i −0.718585 0.695439i \(-0.755210\pi\)
−0.997488 + 0.0708401i \(0.977432\pi\)
\(258\) 2.90373 1.67647i 0.180779 0.104373i
\(259\) 0.0787257 0.446476i 0.00489178 0.0277426i
\(260\) −0.152704 0.264490i −0.00947028 0.0164030i
\(261\) 2.85251 4.94069i 0.176566 0.305821i
\(262\) −1.11334 + 1.92836i −0.0687824 + 0.119135i
\(263\) −5.35117 4.49016i −0.329967 0.276875i 0.462719 0.886505i \(-0.346874\pi\)
−0.792686 + 0.609630i \(0.791318\pi\)
\(264\) 1.22281 3.35965i 0.0752588 0.206772i
\(265\) 1.54101 + 8.73951i 0.0946636 + 0.536864i
\(266\) −1.56418 + 1.31250i −0.0959059 + 0.0804746i
\(267\) 32.0107 + 5.64436i 1.95903 + 0.345429i
\(268\) 10.0706 3.66539i 0.615158 0.223899i
\(269\) −18.9786 −1.15715 −0.578574 0.815630i \(-0.696391\pi\)
−0.578574 + 0.815630i \(0.696391\pi\)
\(270\) 4.56942i 0.278086i
\(271\) −28.8033 −1.74968 −0.874839 0.484413i \(-0.839033\pi\)
−0.874839 + 0.484413i \(0.839033\pi\)
\(272\) 3.20574 1.16679i 0.194376 0.0707472i
\(273\) 0.386659 0.460802i 0.0234017 0.0278890i
\(274\) −4.90626 + 4.11684i −0.296398 + 0.248707i
\(275\) 1.51501 + 8.59208i 0.0913588 + 0.518122i
\(276\) −9.71348 + 1.71275i −0.584683 + 0.103095i
\(277\) −18.0326 15.1311i −1.08347 0.909140i −0.0872669 0.996185i \(-0.527813\pi\)
−0.996204 + 0.0870446i \(0.972258\pi\)
\(278\) 10.9534 18.9718i 0.656939 1.13785i
\(279\) 1.38191 7.83721i 0.0827329 0.469201i
\(280\) −0.439693 0.761570i −0.0262767 0.0455125i
\(281\) 3.93464 22.3145i 0.234721 1.33117i −0.608480 0.793570i \(-0.708220\pi\)
0.843201 0.537599i \(-0.180669\pi\)
\(282\) 4.63322i 0.275904i
\(283\) 8.45811 + 3.07850i 0.502783 + 0.182998i 0.580945 0.813943i \(-0.302683\pi\)
−0.0781626 + 0.996941i \(0.524905\pi\)
\(284\) 5.39780 + 1.96464i 0.320301 + 0.116580i
\(285\) 3.11008i 0.184225i
\(286\) −0.124485 + 0.705990i −0.00736096 + 0.0417461i
\(287\) −2.69459 4.66717i −0.159057 0.275494i
\(288\) −2.29813 1.92836i −0.135419 0.113630i
\(289\) 2.68092 4.64349i 0.157701 0.273147i
\(290\) 1.28106 + 1.07494i 0.0752264 + 0.0631224i
\(291\) −12.2173 + 2.15425i −0.716194 + 0.126284i
\(292\) −2.15657 12.2305i −0.126204 0.715738i
\(293\) 6.99067 5.86587i 0.408399 0.342688i −0.415330 0.909671i \(-0.636334\pi\)
0.823729 + 0.566983i \(0.191890\pi\)
\(294\) 1.11334 1.32683i 0.0649314 0.0773822i
\(295\) −0.844770 + 0.307471i −0.0491844 + 0.0179017i
\(296\) 0.453363 0.0263512
\(297\) 6.89440 8.21643i 0.400054 0.476765i
\(298\) 22.0847 1.27933
\(299\) 1.85844 0.676417i 0.107476 0.0391182i
\(300\) 7.20961 + 1.27125i 0.416247 + 0.0733956i
\(301\) −1.48293 + 1.24432i −0.0854744 + 0.0717216i
\(302\) −3.12361 17.7149i −0.179743 1.01938i
\(303\) 1.47818 4.06126i 0.0849191 0.233313i
\(304\) −1.56418 1.31250i −0.0897117 0.0752771i
\(305\) 1.50640 2.60916i 0.0862560 0.149400i
\(306\) 10.2344 0.585063
\(307\) −5.69712 9.86770i −0.325152 0.563179i 0.656391 0.754421i \(-0.272082\pi\)
−0.981543 + 0.191241i \(0.938749\pi\)
\(308\) −0.358441 + 2.03282i −0.0204241 + 0.115831i
\(309\) −1.52182 + 0.878624i −0.0865734 + 0.0499832i
\(310\) 2.19207 + 0.797847i 0.124501 + 0.0453147i
\(311\) −2.13903 0.778544i −0.121293 0.0441472i 0.280660 0.959807i \(-0.409447\pi\)
−0.401954 + 0.915660i \(0.631669\pi\)
\(312\) 0.520945 + 0.300767i 0.0294927 + 0.0170276i
\(313\) −0.253718 + 1.43891i −0.0143410 + 0.0813318i −0.991138 0.132834i \(-0.957592\pi\)
0.976797 + 0.214166i \(0.0687033\pi\)
\(314\) −9.80587 16.9843i −0.553377 0.958478i
\(315\) −0.458111 2.59808i −0.0258116 0.146385i
\(316\) 3.37211 5.84067i 0.189696 0.328563i
\(317\) −0.320422 0.268866i −0.0179967 0.0151010i 0.633745 0.773542i \(-0.281517\pi\)
−0.651742 + 0.758441i \(0.725961\pi\)
\(318\) −11.2353 13.3897i −0.630044 0.750858i
\(319\) −0.681637 3.86576i −0.0381644 0.216441i
\(320\) 0.673648 0.565258i 0.0376581 0.0315989i
\(321\) 6.70187 + 18.4132i 0.374062 + 1.02773i
\(322\) 5.35117 1.94767i 0.298209 0.108539i
\(323\) 6.96585 0.387590
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) −1.46791 −0.0814251
\(326\) −8.42514 + 3.06650i −0.466626 + 0.169838i
\(327\) 7.55825 + 20.7661i 0.417972 + 1.14837i
\(328\) 4.12836 3.46410i 0.227950 0.191273i
\(329\) 0.464508 + 2.63435i 0.0256091 + 0.145237i
\(330\) 2.02094 + 2.40847i 0.111249 + 0.132582i
\(331\) 8.74170 + 7.33515i 0.480487 + 0.403177i 0.850603 0.525809i \(-0.176237\pi\)
−0.370115 + 0.928986i \(0.620682\pi\)
\(332\) 1.81521 3.14403i 0.0996225 0.172551i
\(333\) 1.27807 + 0.465178i 0.0700376 + 0.0254916i
\(334\) 0.788333 + 1.36543i 0.0431357 + 0.0747132i
\(335\) −1.63651 + 9.28109i −0.0894119 + 0.507080i
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) 23.4047 + 8.51860i 1.27493 + 0.464038i 0.888753 0.458386i \(-0.151572\pi\)
0.386180 + 0.922423i \(0.373794\pi\)
\(338\) 12.1027 + 4.40501i 0.658298 + 0.239601i
\(339\) 27.2888 15.7552i 1.48212 0.855705i
\(340\) −0.520945 + 2.95442i −0.0282522 + 0.160226i
\(341\) −2.73783 4.74205i −0.148262 0.256797i
\(342\) −3.06283 5.30498i −0.165619 0.286861i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −1.48293 1.24432i −0.0799540 0.0670894i
\(345\) 2.96657 8.15058i 0.159715 0.438812i
\(346\) 3.33363 + 18.9059i 0.179217 + 1.01639i
\(347\) −9.02481 + 7.57272i −0.484477 + 0.406525i −0.852042 0.523473i \(-0.824636\pi\)
0.367565 + 0.929998i \(0.380192\pi\)
\(348\) −3.24376 0.571962i −0.173884 0.0306604i
\(349\) 21.8332 7.94664i 1.16871 0.425374i 0.316506 0.948591i \(-0.397490\pi\)
0.852200 + 0.523217i \(0.175268\pi\)
\(350\) −4.22668 −0.225926
\(351\) 1.15998 + 1.38241i 0.0619150 + 0.0737875i
\(352\) −2.06418 −0.110021
\(353\) −9.70486 + 3.53228i −0.516538 + 0.188004i −0.587117 0.809502i \(-0.699737\pi\)
0.0705798 + 0.997506i \(0.477515\pi\)
\(354\) 1.13816 1.35640i 0.0604923 0.0720919i
\(355\) −3.86959 + 3.24697i −0.205376 + 0.172331i
\(356\) −3.25877 18.4814i −0.172714 0.979513i
\(357\) −5.81908 + 1.02606i −0.307978 + 0.0543049i
\(358\) −12.3118 10.3308i −0.650699 0.546001i
\(359\) −2.58512 + 4.47756i −0.136438 + 0.236317i −0.926146 0.377166i \(-0.876899\pi\)
0.789708 + 0.613483i \(0.210232\pi\)
\(360\) 2.47906 0.902302i 0.130658 0.0475555i
\(361\) 7.41534 + 12.8438i 0.390281 + 0.675987i
\(362\) 3.87686 21.9868i 0.203763 1.15560i
\(363\) 11.6726i 0.612652i
\(364\) −0.326352 0.118782i −0.0171055 0.00622589i
\(365\) 10.2626 + 3.73530i 0.537171 + 0.195514i
\(366\) 5.93404i 0.310177i
\(367\) 2.55216 14.4740i 0.133221 0.755536i −0.842860 0.538133i \(-0.819130\pi\)
0.976082 0.217404i \(-0.0697589\pi\)
\(368\) 2.84730 + 4.93166i 0.148426 + 0.257081i
\(369\) 15.1925 5.52963i 0.790892 0.287861i
\(370\) −0.199340 + 0.345268i −0.0103632 + 0.0179496i
\(371\) 7.73055 + 6.48670i 0.401350 + 0.336773i
\(372\) −4.52481 + 0.797847i −0.234601 + 0.0413664i
\(373\) −1.91740 10.8741i −0.0992794 0.563042i −0.993352 0.115119i \(-0.963275\pi\)
0.894072 0.447923i \(-0.147836\pi\)
\(374\) 5.39440 4.52644i 0.278938 0.234057i
\(375\) −9.03343 + 10.7656i −0.466484 + 0.555935i
\(376\) −2.51367 + 0.914901i −0.129633 + 0.0471824i
\(377\) 0.660444 0.0340146
\(378\) 3.34002 + 3.98048i 0.171792 + 0.204734i
\(379\) −4.77332 −0.245189 −0.122594 0.992457i \(-0.539121\pi\)
−0.122594 + 0.992457i \(0.539121\pi\)
\(380\) 1.68732 0.614134i 0.0865576 0.0315044i
\(381\) 20.9518 + 3.69436i 1.07339 + 0.189268i
\(382\) 10.8550 9.10846i 0.555392 0.466029i
\(383\) 3.23355 + 18.3383i 0.165226 + 0.937046i 0.948831 + 0.315785i \(0.102268\pi\)
−0.783604 + 0.621260i \(0.786621\pi\)
\(384\) −0.592396 + 1.62760i −0.0302306 + 0.0830579i
\(385\) −1.39053 1.16679i −0.0708680 0.0594653i
\(386\) −4.85117 + 8.40247i −0.246918 + 0.427674i
\(387\) −2.90373 5.02941i −0.147605 0.255659i
\(388\) 3.58125 + 6.20291i 0.181811 + 0.314905i
\(389\) 0.400492 2.27130i 0.0203057 0.115160i −0.972970 0.230931i \(-0.925823\pi\)
0.993276 + 0.115771i \(0.0369340\pi\)
\(390\) −0.458111 + 0.264490i −0.0231973 + 0.0133930i
\(391\) −18.2554 6.64441i −0.923214 0.336022i
\(392\) −0.939693 0.342020i −0.0474616 0.0172746i
\(393\) 3.34002 + 1.92836i 0.168482 + 0.0972730i
\(394\) −1.02869 + 5.83396i −0.0518244 + 0.293911i
\(395\) 2.96538 + 5.13620i 0.149205 + 0.258430i
\(396\) −5.81908 2.11797i −0.292420 0.106432i
\(397\) −13.6224 + 23.5947i −0.683690 + 1.18419i 0.290157 + 0.956979i \(0.406293\pi\)
−0.973847 + 0.227207i \(0.927041\pi\)
\(398\) 14.1459 + 11.8698i 0.709070 + 0.594980i
\(399\) 2.27332 + 2.70924i 0.113808 + 0.135631i
\(400\) −0.733956 4.16247i −0.0366978 0.208123i
\(401\) −22.0385 + 18.4925i −1.10055 + 0.923471i −0.997462 0.0712017i \(-0.977317\pi\)
−0.103088 + 0.994672i \(0.532872\pi\)
\(402\) −6.34864 17.4427i −0.316641 0.869965i
\(403\) 0.865715 0.315094i 0.0431243 0.0156960i
\(404\) −2.49525 −0.124143
\(405\) 7.91447 0.393273
\(406\) 1.90167 0.0943785
\(407\) 0.879385 0.320070i 0.0435895 0.0158653i
\(408\) −2.02094 5.55250i −0.100052 0.274890i
\(409\) 24.2160 20.3196i 1.19740 1.00474i 0.197704 0.980262i \(-0.436652\pi\)
0.999700 0.0244798i \(-0.00779293\pi\)
\(410\) 0.822948 + 4.66717i 0.0406425 + 0.230495i
\(411\) 7.13058 + 8.49789i 0.351725 + 0.419170i
\(412\) 0.777189 + 0.652139i 0.0382893 + 0.0321286i
\(413\) −0.511144 + 0.885328i −0.0251518 + 0.0435641i
\(414\) 2.96657 + 16.8242i 0.145799 + 0.826866i
\(415\) 1.59627 + 2.76481i 0.0783576 + 0.135719i
\(416\) 0.0603074 0.342020i 0.00295681 0.0167689i
\(417\) −32.8601 18.9718i −1.60917 0.929052i
\(418\) −3.96064 1.44155i −0.193721 0.0705087i
\(419\) −0.118089 0.0429807i −0.00576900 0.00209975i 0.339134 0.940738i \(-0.389866\pi\)
−0.344903 + 0.938638i \(0.612088\pi\)
\(420\) −1.31908 + 0.761570i −0.0643644 + 0.0371608i
\(421\) −5.13176 + 29.1037i −0.250107 + 1.41843i 0.558221 + 0.829692i \(0.311484\pi\)
−0.808328 + 0.588733i \(0.799627\pi\)
\(422\) −9.26651 16.0501i −0.451087 0.781305i
\(423\) −8.02498 −0.390188
\(424\) −5.04576 + 8.73951i −0.245044 + 0.424428i
\(425\) 11.0458 + 9.26849i 0.535798 + 0.449588i
\(426\) 3.40286 9.34927i 0.164869 0.452974i
\(427\) −0.594922 3.37397i −0.0287903 0.163278i
\(428\) 8.66637 7.27195i 0.418905 0.351503i
\(429\) 1.22281 + 0.215615i 0.0590379 + 0.0104100i
\(430\) 1.59967 0.582232i 0.0771429 0.0280777i
\(431\) −9.25578 −0.445835 −0.222918 0.974837i \(-0.571558\pi\)
−0.222918 + 0.974837i \(0.571558\pi\)
\(432\) −3.34002 + 3.98048i −0.160697 + 0.191511i
\(433\) −4.85978 −0.233546 −0.116773 0.993159i \(-0.537255\pi\)
−0.116773 + 0.993159i \(0.537255\pi\)
\(434\) 2.49273 0.907278i 0.119655 0.0435507i
\(435\) 1.86184 2.21886i 0.0892686 0.106386i
\(436\) 9.77379 8.20118i 0.468079 0.392765i
\(437\) 2.01913 + 11.4511i 0.0965883 + 0.547779i
\(438\) −21.1839 + 3.73530i −1.01221 + 0.178479i
\(439\) −22.7931 19.1257i −1.08786 0.912820i −0.0913077 0.995823i \(-0.529105\pi\)
−0.996549 + 0.0830022i \(0.973549\pi\)
\(440\) 0.907604 1.57202i 0.0432683 0.0749429i
\(441\) −2.29813 1.92836i −0.109435 0.0918268i
\(442\) 0.592396 + 1.02606i 0.0281774 + 0.0488047i
\(443\) −3.69547 + 20.9581i −0.175577 + 0.995747i 0.761899 + 0.647696i \(0.224267\pi\)
−0.937476 + 0.348051i \(0.886844\pi\)
\(444\) 0.785248i 0.0372662i
\(445\) 15.5077 + 5.64436i 0.735137 + 0.267568i
\(446\) 9.87686 + 3.59488i 0.467683 + 0.170223i
\(447\) 38.2518i 1.80925i
\(448\) 0.173648 0.984808i 0.00820411 0.0465278i
\(449\) 5.89171 + 10.2047i 0.278047 + 0.481592i 0.970899 0.239488i \(-0.0769795\pi\)
−0.692852 + 0.721080i \(0.743646\pi\)
\(450\) 2.20187 12.4874i 0.103797 0.588662i
\(451\) 5.56212 9.63387i 0.261910 0.453641i
\(452\) −13.9363 11.6939i −0.655508 0.550036i
\(453\) −30.6830 + 5.41025i −1.44161 + 0.254196i
\(454\) −2.22328 12.6088i −0.104344 0.591762i
\(455\) 0.233956 0.196312i 0.0109680 0.00920325i
\(456\) −2.27332 + 2.70924i −0.106458 + 0.126872i
\(457\) 36.1117 13.1436i 1.68924 0.614832i 0.694707 0.719293i \(-0.255534\pi\)
0.994529 + 0.104461i \(0.0333117\pi\)
\(458\) 10.3824 0.485137
\(459\) 17.7265i 0.827404i
\(460\) −5.00774 −0.233487
\(461\) 23.0736 8.39809i 1.07464 0.391138i 0.256732 0.966483i \(-0.417354\pi\)
0.817911 + 0.575345i \(0.195132\pi\)
\(462\) 3.52094 + 0.620838i 0.163809 + 0.0288840i
\(463\) −5.23964 + 4.39658i −0.243507 + 0.204326i −0.756370 0.654144i \(-0.773029\pi\)
0.512864 + 0.858470i \(0.328585\pi\)
\(464\) 0.330222 + 1.87278i 0.0153302 + 0.0869418i
\(465\) 1.38191 3.79677i 0.0640846 0.176071i
\(466\) −3.06624 2.57288i −0.142041 0.119186i
\(467\) −0.979055 + 1.69577i −0.0453053 + 0.0784711i −0.887789 0.460251i \(-0.847759\pi\)
0.842484 + 0.538722i \(0.181093\pi\)
\(468\) 0.520945 0.902302i 0.0240807 0.0417089i
\(469\) 5.35844 + 9.28109i 0.247430 + 0.428561i
\(470\) 0.408481 2.31661i 0.0188418 0.106857i
\(471\) −29.4176 + 16.9843i −1.35549 + 0.782594i
\(472\) −0.960637 0.349643i −0.0442169 0.0160936i
\(473\) −3.75490 1.36667i −0.172650 0.0628396i
\(474\) −10.1163 5.84067i −0.464659 0.268271i
\(475\) 1.49866 8.49930i 0.0687630 0.389975i
\(476\) 1.70574 + 2.95442i 0.0781823 + 0.135416i
\(477\) −23.1917 + 19.4601i −1.06187 + 0.891017i
\(478\) −10.6741 + 18.4881i −0.488223 + 0.845626i
\(479\) −12.6138 10.5842i −0.576340 0.483606i 0.307403 0.951579i \(-0.400540\pi\)
−0.883743 + 0.467973i \(0.844984\pi\)
\(480\) −0.979055 1.16679i −0.0446876 0.0532566i
\(481\) 0.0273411 + 0.155059i 0.00124665 + 0.00707010i
\(482\) −4.35844 + 3.65717i −0.198522 + 0.166579i
\(483\) −3.37346 9.26849i −0.153498 0.421731i
\(484\) 6.33275 2.30493i 0.287852 0.104770i
\(485\) −6.29860 −0.286005
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) −7.53714 −0.341540 −0.170770 0.985311i \(-0.554626\pi\)
−0.170770 + 0.985311i \(0.554626\pi\)
\(488\) 3.21941 1.17177i 0.145736 0.0530435i
\(489\) 5.31134 + 14.5928i 0.240187 + 0.659908i
\(490\) 0.673648 0.565258i 0.0304323 0.0255358i
\(491\) 1.03667 + 5.87927i 0.0467845 + 0.265328i 0.999223 0.0394014i \(-0.0125451\pi\)
−0.952439 + 0.304729i \(0.901434\pi\)
\(492\) −6.00000 7.15052i −0.270501 0.322370i
\(493\) −4.96972 4.17009i −0.223825 0.187811i
\(494\) 0.354570 0.614134i 0.0159529 0.0276312i
\(495\) 4.17159 3.50038i 0.187499 0.157330i
\(496\) 1.32635 + 2.29731i 0.0595550 + 0.103152i
\(497\) −0.997474 + 5.65695i −0.0447428 + 0.253749i
\(498\) −5.44562 3.14403i −0.244024 0.140887i
\(499\) −35.9111 13.0706i −1.60760 0.585119i −0.626637 0.779312i \(-0.715569\pi\)
−0.980963 + 0.194193i \(0.937791\pi\)
\(500\) 7.62449 + 2.77509i 0.340977 + 0.124106i
\(501\) 2.36500 1.36543i 0.105660 0.0610031i
\(502\) −2.24510 + 12.7326i −0.100204 + 0.568283i
\(503\) −5.44222 9.42620i −0.242657 0.420293i 0.718814 0.695203i \(-0.244685\pi\)
−0.961470 + 0.274909i \(0.911352\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) 1.09714 1.90031i 0.0488223 0.0845626i
\(506\) 9.00459 + 7.55574i 0.400303 + 0.335894i
\(507\) 7.62970 20.9624i 0.338847 0.930974i
\(508\) −2.13294 12.0965i −0.0946340 0.536696i
\(509\) −1.55644 + 1.30601i −0.0689879 + 0.0578877i −0.676630 0.736324i \(-0.736560\pi\)
0.607642 + 0.794211i \(0.292116\pi\)
\(510\) 5.11721 + 0.902302i 0.226594 + 0.0399546i
\(511\) 11.6702 4.24762i 0.516261 0.187904i
\(512\) 1.00000 0.0441942
\(513\) −9.18850 + 5.30498i −0.405682 + 0.234221i
\(514\) 29.2763 1.29132
\(515\) −0.838374 + 0.305143i −0.0369432 + 0.0134462i
\(516\) −2.15523 + 2.56850i −0.0948787 + 0.113072i
\(517\) −4.22984 + 3.54925i −0.186028 + 0.156096i
\(518\) 0.0787257 + 0.446476i 0.00345901 + 0.0196170i
\(519\) 32.7460 5.77401i 1.43739 0.253451i
\(520\) 0.233956 + 0.196312i 0.0102596 + 0.00860885i
\(521\) −17.9534 + 31.0961i −0.786551 + 1.36235i 0.141517 + 0.989936i \(0.454802\pi\)
−0.928068 + 0.372411i \(0.878531\pi\)
\(522\) −0.990667 + 5.61835i −0.0433603 + 0.245908i
\(523\) 4.68139 + 8.10840i 0.204703 + 0.354556i 0.950038 0.312134i \(-0.101044\pi\)
−0.745335 + 0.666690i \(0.767711\pi\)
\(524\) 0.386659 2.19285i 0.0168913 0.0957952i
\(525\) 7.32083i 0.319507i
\(526\) 6.56418 + 2.38917i 0.286212 + 0.104173i
\(527\) −8.50387 3.09516i −0.370434 0.134827i
\(528\) 3.57526i 0.155593i
\(529\) 1.63722 9.28515i 0.0711836 0.403702i
\(530\) −4.43717 7.68540i −0.192738 0.333832i
\(531\) −2.34936 1.97134i −0.101953 0.0855490i
\(532\) 1.02094 1.76833i 0.0442636 0.0766667i
\(533\) 1.43376 + 1.20307i 0.0621032 + 0.0521107i
\(534\) −32.0107 + 5.64436i −1.38524 + 0.244255i
\(535\) 1.72756 + 9.79747i 0.0746889 + 0.423582i
\(536\) −8.20961 + 6.88868i −0.354601 + 0.297546i
\(537\) −17.8935 + 21.3247i −0.772162 + 0.920227i
\(538\) 17.8341 6.49108i 0.768882 0.279850i
\(539\) −2.06418 −0.0889104
\(540\) −1.56283 4.29385i −0.0672537 0.184778i
\(541\) −2.66313 −0.114497 −0.0572485 0.998360i \(-0.518233\pi\)
−0.0572485 + 0.998360i \(0.518233\pi\)
\(542\) 27.0663 9.85133i 1.16260 0.423151i
\(543\) −38.0822 6.71492i −1.63426 0.288165i
\(544\) −2.61334 + 2.19285i −0.112046 + 0.0940178i
\(545\) 1.94831 + 11.0494i 0.0834565 + 0.473305i
\(546\) −0.205737 + 0.565258i −0.00880473 + 0.0241908i
\(547\) −11.3543 9.52741i −0.485476 0.407363i 0.366926 0.930250i \(-0.380410\pi\)
−0.852402 + 0.522888i \(0.824855\pi\)
\(548\) 3.20233 5.54660i 0.136797 0.236939i
\(549\) 10.2781 0.438657
\(550\) −4.36231 7.55574i −0.186010 0.322178i
\(551\) −0.674277 + 3.82402i −0.0287252 + 0.162909i
\(552\) 8.54189 4.93166i 0.363567 0.209905i
\(553\) 6.33750 + 2.30666i 0.269498 + 0.0980892i
\(554\) 22.1202 + 8.05110i 0.939797 + 0.342058i
\(555\) 0.598021 + 0.345268i 0.0253846 + 0.0146558i
\(556\) −3.80406 + 21.5739i −0.161328 + 0.914938i
\(557\) 8.58512 + 14.8699i 0.363763 + 0.630057i 0.988577 0.150717i \(-0.0481584\pi\)
−0.624814 + 0.780774i \(0.714825\pi\)
\(558\) 1.38191 + 7.83721i 0.0585010 + 0.331776i
\(559\) 0.336152 0.582232i 0.0142177 0.0246258i
\(560\) 0.673648 + 0.565258i 0.0284668 + 0.0238865i
\(561\) −7.84002 9.34337i −0.331006 0.394478i
\(562\) 3.93464 + 22.3145i 0.165973 + 0.941278i
\(563\) 18.5458 15.5617i 0.781611 0.655849i −0.162043 0.986784i \(-0.551808\pi\)
0.943654 + 0.330935i \(0.107364\pi\)
\(564\) 1.58466 + 4.35381i 0.0667260 + 0.183328i
\(565\) 15.0334 5.47172i 0.632461 0.230197i
\(566\) −9.00093 −0.378337
\(567\) 6.89440 5.78509i 0.289538 0.242951i
\(568\) −5.74422 −0.241022
\(569\) 10.7674 3.91901i 0.451392 0.164293i −0.106312 0.994333i \(-0.533904\pi\)
0.557705 + 0.830039i \(0.311682\pi\)
\(570\) −1.06371 2.92252i −0.0445539 0.122411i
\(571\) −8.05169 + 6.75617i −0.336953 + 0.282737i −0.795526 0.605920i \(-0.792805\pi\)
0.458573 + 0.888657i \(0.348361\pi\)
\(572\) −0.124485 0.705990i −0.00520499 0.0295189i
\(573\) −15.7763 18.8015i −0.659065 0.785443i
\(574\) 4.12836 + 3.46410i 0.172314 + 0.144589i
\(575\) −12.0346 + 20.8446i −0.501878 + 0.869278i
\(576\) 2.81908 + 1.02606i 0.117462 + 0.0427525i
\(577\) −2.52822 4.37900i −0.105251 0.182300i 0.808590 0.588373i \(-0.200231\pi\)
−0.913841 + 0.406073i \(0.866898\pi\)
\(578\) −0.931074 + 5.28039i −0.0387276 + 0.219635i
\(579\) 14.5535 + 8.40247i 0.604823 + 0.349195i
\(580\) −1.57145 0.571962i −0.0652510 0.0237494i
\(581\) 3.41147 + 1.24168i 0.141532 + 0.0515134i
\(582\) 10.7438 6.20291i 0.445343 0.257119i
\(583\) −3.61721 + 20.5142i −0.149810 + 0.849612i
\(584\) 6.20961 + 10.7554i 0.256955 + 0.445060i
\(585\) 0.458111 + 0.793471i 0.0189406 + 0.0328060i
\(586\) −4.56283 + 7.90306i −0.188489 + 0.326472i
\(587\) 13.4684 + 11.3013i 0.555899 + 0.466455i 0.876933 0.480613i \(-0.159586\pi\)
−0.321033 + 0.947068i \(0.604030\pi\)
\(588\) −0.592396 + 1.62760i −0.0244300 + 0.0671209i
\(589\) 0.940570 + 5.33424i 0.0387555 + 0.219793i
\(590\) 0.688663 0.577857i 0.0283518 0.0237900i
\(591\) 10.1047 + 1.78174i 0.415653 + 0.0732908i
\(592\) −0.426022 + 0.155059i −0.0175094 + 0.00637290i
\(593\) 12.7041 0.521694 0.260847 0.965380i \(-0.415998\pi\)
0.260847 + 0.965380i \(0.415998\pi\)
\(594\) −3.66843 + 10.0789i −0.150518 + 0.413544i
\(595\) −3.00000 −0.122988
\(596\) −20.7528 + 7.55342i −0.850069 + 0.309400i
\(597\) 20.5591 24.5014i 0.841429 1.00278i
\(598\) −1.51501 + 1.27125i −0.0619536 + 0.0519852i
\(599\) 6.82594 + 38.7118i 0.278900 + 1.58172i 0.726293 + 0.687385i \(0.241242\pi\)
−0.447393 + 0.894338i \(0.647647\pi\)
\(600\) −7.20961 + 1.27125i −0.294331 + 0.0518985i
\(601\) 25.5881 + 21.4710i 1.04376 + 0.875819i 0.992424 0.122862i \(-0.0392072\pi\)
0.0513372 + 0.998681i \(0.483652\pi\)
\(602\) 0.967911 1.67647i 0.0394491 0.0683279i
\(603\) −30.2117 + 10.9962i −1.23032 + 0.447799i
\(604\) 8.99407 + 15.5782i 0.365964 + 0.633867i
\(605\) −1.02910 + 5.83629i −0.0418387 + 0.237279i
\(606\) 4.32190i 0.175565i
\(607\) −38.8482 14.1396i −1.57680 0.573909i −0.602296 0.798273i \(-0.705747\pi\)
−0.974505 + 0.224364i \(0.927969\pi\)
\(608\) 1.91875 + 0.698367i 0.0778155 + 0.0283225i
\(609\) 3.29380i 0.133471i
\(610\) −0.523166 + 2.96702i −0.0211824 + 0.120131i
\(611\) −0.464508 0.804551i −0.0187920 0.0325486i
\(612\) −9.61721 + 3.50038i −0.388753 + 0.141494i
\(613\) −3.52528 + 6.10597i −0.142385 + 0.246618i −0.928394 0.371597i \(-0.878810\pi\)
0.786009 + 0.618215i \(0.212144\pi\)
\(614\) 8.72849 + 7.32407i 0.352253 + 0.295576i
\(615\) 8.08378 1.42539i 0.325969 0.0574772i
\(616\) −0.358441 2.03282i −0.0144420 0.0819046i
\(617\) 33.8011 28.3625i 1.36078 1.14183i 0.385042 0.922899i \(-0.374187\pi\)
0.975740 0.218933i \(-0.0702575\pi\)
\(618\) 1.12954 1.34613i 0.0454367 0.0541493i
\(619\) 36.0621 13.1255i 1.44946 0.527560i 0.507019 0.861935i \(-0.330747\pi\)
0.942440 + 0.334375i \(0.108525\pi\)
\(620\) −2.33275 −0.0936854
\(621\) 29.1404 5.13824i 1.16937 0.206191i
\(622\) 2.27631 0.0912718
\(623\) 17.6348 6.41852i 0.706521 0.257153i
\(624\) −0.592396 0.104455i −0.0237148 0.00418156i
\(625\) 10.7233 8.99790i 0.428931 0.359916i
\(626\) −0.253718 1.43891i −0.0101406 0.0575103i
\(627\) −2.49684 + 6.86002i −0.0997144 + 0.273963i
\(628\) 15.0235 + 12.6062i 0.599502 + 0.503042i
\(629\) 0.773318 1.33943i 0.0308342 0.0534064i
\(630\) 1.31908 + 2.28471i 0.0525533 + 0.0910250i
\(631\) −16.6755 28.8827i −0.663840 1.14980i −0.979599 0.200964i \(-0.935592\pi\)
0.315759 0.948839i \(-0.397741\pi\)
\(632\) −1.17112 + 6.64176i −0.0465847 + 0.264195i
\(633\) −27.7995 + 16.0501i −1.10493 + 0.637933i
\(634\) 0.393056 + 0.143061i 0.0156102 + 0.00568166i
\(635\) 10.1502 + 3.69436i 0.402798 + 0.146606i
\(636\) 15.1373 + 8.73951i 0.600232 + 0.346544i
\(637\) 0.0603074 0.342020i 0.00238947 0.0135513i
\(638\) 1.96270 + 3.39949i 0.0777039 + 0.134587i
\(639\) −16.1934 5.89392i −0.640601 0.233160i
\(640\) −0.439693 + 0.761570i −0.0173804 + 0.0301037i
\(641\) −31.3601 26.3142i −1.23865 1.03935i −0.997628 0.0688300i \(-0.978073\pi\)
−0.241021 0.970520i \(-0.577482\pi\)
\(642\) −12.5954 15.0106i −0.497100 0.592421i
\(643\) −6.21869 35.2680i −0.245241 1.39083i −0.819932 0.572461i \(-0.805989\pi\)
0.574690 0.818371i \(-0.305123\pi\)
\(644\) −4.36231 + 3.66041i −0.171899 + 0.144241i
\(645\) −1.00846 2.77071i −0.0397079 0.109097i
\(646\) −6.54576 + 2.38246i −0.257539 + 0.0937367i
\(647\) −34.1388 −1.34213 −0.671067 0.741397i \(-0.734164\pi\)
−0.671067 + 0.741397i \(0.734164\pi\)
\(648\) 6.89440 + 5.78509i 0.270838 + 0.227260i
\(649\) −2.11019 −0.0828320
\(650\) 1.37939 0.502055i 0.0541039 0.0196922i
\(651\) −1.57145 4.31753i −0.0615900 0.169217i
\(652\) 6.86824 5.76314i 0.268981 0.225702i
\(653\) 6.90003 + 39.1320i 0.270019 + 1.53135i 0.754352 + 0.656470i \(0.227951\pi\)
−0.484334 + 0.874883i \(0.660938\pi\)
\(654\) −14.2049 16.9287i −0.555454 0.661964i
\(655\) 1.50000 + 1.25865i 0.0586098 + 0.0491795i
\(656\) −2.69459 + 4.66717i −0.105206 + 0.182222i
\(657\) 6.46972 + 36.6916i 0.252408 + 1.43148i
\(658\) −1.33750 2.31661i −0.0521410 0.0903109i
\(659\) 2.76563 15.6847i 0.107734 0.610989i −0.882359 0.470576i \(-0.844046\pi\)
0.990093 0.140412i \(-0.0448428\pi\)
\(660\) −2.72281 1.57202i −0.105985 0.0611906i
\(661\) 6.12836 + 2.23054i 0.238365 + 0.0867579i 0.458441 0.888725i \(-0.348408\pi\)
−0.220075 + 0.975483i \(0.570630\pi\)
\(662\) −10.7233 3.90295i −0.416772 0.151693i
\(663\) 1.77719 1.02606i 0.0690203 0.0398489i
\(664\) −0.630415 + 3.57526i −0.0244648 + 0.138747i
\(665\) 0.897804 + 1.55504i 0.0348153 + 0.0603019i
\(666\) −1.36009 −0.0527024
\(667\) 5.41463 9.37841i 0.209655 0.363134i
\(668\) −1.20780 1.01346i −0.0467310 0.0392120i
\(669\) 6.22652 17.1072i 0.240731 0.661403i
\(670\) −1.63651 9.28109i −0.0632238 0.358560i
\(671\) 5.41740 4.54574i 0.209137 0.175486i
\(672\) −1.70574 0.300767i −0.0658002 0.0116024i
\(673\) −15.3500 + 5.58694i −0.591698 + 0.215361i −0.620476 0.784225i \(-0.713061\pi\)
0.0287778 + 0.999586i \(0.490838\pi\)
\(674\) −24.9067 −0.959371
\(675\) −21.6288 3.81374i −0.832494 0.146791i
\(676\) −12.8794 −0.495361
\(677\) 1.68092 0.611806i 0.0646031 0.0235136i −0.309516 0.950894i \(-0.600167\pi\)
0.374120 + 0.927380i \(0.377945\pi\)
\(678\) −20.2545 + 24.1384i −0.777869 + 0.927028i
\(679\) −5.48680 + 4.60397i −0.210564 + 0.176684i
\(680\) −0.520945 2.95442i −0.0199773 0.113297i
\(681\) −21.8391 + 3.85083i −0.836878 + 0.147564i
\(682\) 4.19459 + 3.51968i 0.160619 + 0.134776i
\(683\) −7.89306 + 13.6712i −0.302019 + 0.523113i −0.976593 0.215094i \(-0.930994\pi\)
0.674574 + 0.738207i \(0.264327\pi\)
\(684\) 4.69253 + 3.93750i 0.179423 + 0.150554i
\(685\) 2.81608 + 4.87760i 0.107597 + 0.186364i
\(686\) 0.173648 0.984808i 0.00662992 0.0376001i
\(687\) 17.9828i 0.686087i
\(688\) 1.81908 + 0.662090i 0.0693517 + 0.0252420i
\(689\) −3.29339 1.19869i −0.125468 0.0456666i
\(690\) 8.67366i 0.330201i
\(691\) −2.74376 + 15.5606i −0.104377 + 0.591954i 0.887090 + 0.461597i \(0.152723\pi\)
−0.991467 + 0.130357i \(0.958388\pi\)
\(692\) −9.59879 16.6256i −0.364891 0.632010i
\(693\) 1.07532 6.09845i 0.0408481 0.231661i
\(694\) 5.89053 10.2027i 0.223601 0.387289i
\(695\) −14.7574 12.3830i −0.559781 0.469712i
\(696\) 3.24376 0.571962i 0.122954 0.0216802i
\(697\) −3.19253 18.1058i −0.120926 0.685804i
\(698\) −17.7986 + 14.9348i −0.673687 + 0.565290i
\(699\) −4.45636 + 5.31088i −0.168555 + 0.200876i
\(700\) 3.97178 1.44561i 0.150119 0.0546389i
\(701\) 29.6705 1.12064 0.560321 0.828276i \(-0.310678\pi\)
0.560321 + 0.828276i \(0.310678\pi\)
\(702\) −1.56283 0.902302i −0.0589854 0.0340552i
\(703\) −0.925717 −0.0349141
\(704\) 1.93969 0.705990i 0.0731049 0.0266080i
\(705\) −4.01249 0.707510i −0.151119 0.0266464i
\(706\) 7.91147 6.63852i 0.297752 0.249844i
\(707\) −0.433296 2.45734i −0.0162958 0.0924179i
\(708\) −0.605600 + 1.66387i −0.0227598 + 0.0625322i
\(709\) −8.70574 7.30498i −0.326951 0.274344i 0.464505 0.885570i \(-0.346232\pi\)
−0.791456 + 0.611226i \(0.790677\pi\)
\(710\) 2.52569 4.37463i 0.0947875 0.164177i
\(711\) −10.1163 + 17.5220i −0.379392 + 0.657126i
\(712\) 9.38326 + 16.2523i 0.351652 + 0.609080i
\(713\) 2.62314 14.8766i 0.0982374 0.557132i
\(714\) 5.11721 2.95442i 0.191507 0.110567i
\(715\) 0.592396 + 0.215615i 0.0221544 + 0.00806353i
\(716\) 15.1027 + 5.49692i 0.564413 + 0.205430i
\(717\) 32.0223 + 18.4881i 1.19590 + 0.690451i
\(718\) 0.897804 5.09170i 0.0335057 0.190020i
\(719\) −19.5940 33.9379i −0.730735 1.26567i −0.956570 0.291504i \(-0.905844\pi\)
0.225835 0.974166i \(-0.427489\pi\)
\(720\) −2.02094 + 1.69577i −0.0753162 + 0.0631978i
\(721\) −0.507274 + 0.878624i −0.0188919 + 0.0327217i
\(722\) −11.3610 9.53298i −0.422811 0.354781i
\(723\) 6.33440 + 7.54904i 0.235579 + 0.280752i
\(724\) 3.87686 + 21.9868i 0.144082 + 0.817132i
\(725\) −6.15729 + 5.16658i −0.228676 + 0.191882i
\(726\) −3.99226 10.9686i −0.148167 0.407084i
\(727\) 41.9752 15.2777i 1.55678 0.566620i 0.586781 0.809746i \(-0.300395\pi\)
0.969995 + 0.243126i \(0.0781728\pi\)
\(728\) 0.347296 0.0128717
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −10.9213 −0.404214
\(731\) −6.20574 + 2.25870i −0.229527 + 0.0835412i
\(732\) −2.02956 5.57618i −0.0750148 0.206101i
\(733\) 25.5633 21.4502i 0.944202 0.792280i −0.0341096 0.999418i \(-0.510860\pi\)
0.978312 + 0.207139i \(0.0664151\pi\)
\(734\) 2.55216 + 14.4740i 0.0942018 + 0.534245i
\(735\) −0.979055 1.16679i −0.0361130 0.0430378i
\(736\) −4.36231 3.66041i −0.160797 0.134925i
\(737\) −11.0608 + 19.1578i −0.407429 + 0.705687i
\(738\) −12.3851 + 10.3923i −0.455901 + 0.382546i
\(739\) 3.22921 + 5.59315i 0.118788 + 0.205747i 0.919288 0.393586i \(-0.128766\pi\)
−0.800499 + 0.599334i \(0.795432\pi\)
\(740\) 0.0692302 0.392624i 0.00254495 0.0144331i
\(741\) −1.06371 0.614134i −0.0390764 0.0225608i
\(742\) −9.48293 3.45150i −0.348129 0.126709i
\(743\) 16.5342 + 6.01796i 0.606581 + 0.220777i 0.627007 0.779014i \(-0.284280\pi\)
−0.0204255 + 0.999791i \(0.506502\pi\)
\(744\) 3.97906 2.29731i 0.145879 0.0842234i
\(745\) 3.37242 19.1259i 0.123556 0.700720i
\(746\) 5.52094 + 9.56256i 0.202136 + 0.350110i
\(747\) −5.44562 + 9.43209i −0.199245 + 0.345102i
\(748\) −3.52094 + 6.09845i −0.128738 + 0.222982i
\(749\) 8.66637 + 7.27195i 0.316662 + 0.265711i
\(750\) 4.80659 13.2060i 0.175512 0.482215i
\(751\) −2.54024 14.4064i −0.0926947 0.525698i −0.995429 0.0955001i \(-0.969555\pi\)
0.902735 0.430198i \(-0.141556\pi\)
\(752\) 2.04916 1.71945i 0.0747253 0.0627020i
\(753\) 22.0535 + 3.88863i 0.803674 + 0.141709i
\(754\) −0.620615 + 0.225885i −0.0226015 + 0.00822626i
\(755\) −15.8185 −0.575694
\(756\) −4.50000 2.59808i −0.163663 0.0944911i
\(757\) −14.7692 −0.536796 −0.268398 0.963308i \(-0.586494\pi\)
−0.268398 + 0.963308i \(0.586494\pi\)
\(758\) 4.48545 1.63257i 0.162919 0.0592977i
\(759\) 13.0869 15.5964i 0.475026 0.566113i
\(760\) −1.37551 + 1.15419i −0.0498952 + 0.0418670i
\(761\) −3.67768 20.8572i −0.133316 0.756072i −0.976018 0.217691i \(-0.930147\pi\)
0.842702 0.538380i \(-0.180964\pi\)
\(762\) −20.9518 + 3.69436i −0.759003 + 0.133833i
\(763\) 9.77379 + 8.20118i 0.353835 + 0.296903i
\(764\) −7.08512 + 12.2718i −0.256331 + 0.443978i
\(765\) 1.56283 8.86327i 0.0565044 0.320452i
\(766\) </