Defining parameters
| Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 378.k (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(10\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 168 | 20 | 148 |
| Cusp forms | 120 | 20 | 100 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 378.2.k.a | $4$ | $3.018$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}+(-1+3\zeta_{12}^{2}+\cdots)q^{7}+\cdots\) |
| 378.2.k.b | $4$ | $3.018$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}+(-2\zeta_{12}+4\zeta_{12}^{3})q^{5}+\cdots\) |
| 378.2.k.c | $4$ | $3.018$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}+(\zeta_{12}-2\zeta_{12}^{3})q^{5}+\cdots\) |
| 378.2.k.d | $8$ | $3.018$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+\beta_1 q^{2}+\beta_{2} q^{4}+(-\beta_{6}+\beta_{5})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)