Properties

Label 378.2.h.d.361.2
Level $378$
Weight $2$
Character 378.361
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(289,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(0.500000 - 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 378.361
Dual form 378.2.h.d.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -1.76088 q^{5} +(-1.85185 - 1.88962i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -1.76088 q^{5} +(-1.85185 - 1.88962i) q^{7} -1.00000 q^{8} +(-0.880438 + 1.52496i) q^{10} -6.12476 q^{11} +(-0.380438 + 0.658939i) q^{13} +(-2.56238 + 0.658939i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(3.42107 - 5.92546i) q^{17} +(0.971410 + 1.68253i) q^{19} +(0.880438 + 1.52496i) q^{20} +(-3.06238 + 5.30420i) q^{22} +0.421067 q^{23} -1.89931 q^{25} +(0.380438 + 0.658939i) q^{26} +(-0.710533 + 2.54856i) q^{28} +(-0.732287 - 1.26836i) q^{29} +(-3.85185 - 6.67160i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.42107 - 5.92546i) q^{34} +(3.26088 + 3.32738i) q^{35} +(1.44282 + 2.49904i) q^{37} +1.94282 q^{38} +1.76088 q^{40} +(3.47141 - 6.01266i) q^{41} +(4.33009 + 7.49994i) q^{43} +(3.06238 + 5.30420i) q^{44} +(0.210533 - 0.364654i) q^{46} +(0.830095 - 1.43777i) q^{47} +(-0.141315 + 6.99857i) q^{49} +(-0.949657 + 1.64485i) q^{50} +0.760877 q^{52} +(0.112725 - 0.195246i) q^{53} +10.7850 q^{55} +(1.85185 + 1.88962i) q^{56} -1.46457 q^{58} +(0.993163 + 1.72021i) q^{59} +(5.17511 - 8.96355i) q^{61} -7.70370 q^{62} +1.00000 q^{64} +(0.669905 - 1.16031i) q^{65} +(-3.39248 - 5.87594i) q^{67} -6.84213 q^{68} +(4.51204 - 1.16031i) q^{70} -10.7850 q^{71} +(0.153353 - 0.265616i) q^{73} +2.88564 q^{74} +(0.971410 - 1.68253i) q^{76} +(11.3421 + 11.5735i) q^{77} +(6.72257 - 11.6438i) q^{79} +(0.880438 - 1.52496i) q^{80} +(-3.47141 - 6.01266i) q^{82} +(1.56238 + 2.70612i) q^{83} +(-6.02408 + 10.4340i) q^{85} +8.66019 q^{86} +6.12476 q^{88} +(-1.30150 - 2.25427i) q^{89} +(1.94966 - 0.501371i) q^{91} +(-0.210533 - 0.364654i) q^{92} +(-0.830095 - 1.43777i) q^{94} +(-1.71053 - 2.96273i) q^{95} +(-1.81806 - 3.14897i) q^{97} +(5.99028 + 3.62167i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} - 10 q^{5} - 2 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 3 q^{4} - 10 q^{5} - 2 q^{7} - 6 q^{8} - 5 q^{10} - 2 q^{11} - 2 q^{13} + 2 q^{14} - 3 q^{16} + 4 q^{17} - 3 q^{19} + 5 q^{20} - q^{22} - 14 q^{23} + 4 q^{25} + 2 q^{26} + 4 q^{28} + 5 q^{29} - 14 q^{31} + 3 q^{32} - 4 q^{34} + 19 q^{35} - 9 q^{37} - 6 q^{38} + 10 q^{40} + 12 q^{41} + 18 q^{43} + q^{44} - 7 q^{46} - 3 q^{47} + 2 q^{50} + 4 q^{52} - 9 q^{53} + 14 q^{55} + 2 q^{56} + 10 q^{58} - 4 q^{59} + 4 q^{61} - 28 q^{62} + 6 q^{64} + 12 q^{65} + 5 q^{67} - 8 q^{68} + 2 q^{70} - 14 q^{71} - 25 q^{73} - 18 q^{74} - 3 q^{76} + 35 q^{77} + 7 q^{79} + 5 q^{80} - 12 q^{82} - 8 q^{83} + 14 q^{85} + 36 q^{86} + 2 q^{88} + 9 q^{89} + 4 q^{91} + 7 q^{92} + 3 q^{94} - 2 q^{95} - 28 q^{97} + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.76088 −0.787488 −0.393744 0.919220i \(-0.628820\pi\)
−0.393744 + 0.919220i \(0.628820\pi\)
\(6\) 0 0
\(7\) −1.85185 1.88962i −0.699933 0.714209i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.880438 + 1.52496i −0.278419 + 0.482236i
\(11\) −6.12476 −1.84669 −0.923343 0.383977i \(-0.874554\pi\)
−0.923343 + 0.383977i \(0.874554\pi\)
\(12\) 0 0
\(13\) −0.380438 + 0.658939i −0.105515 + 0.182757i −0.913948 0.405831i \(-0.866982\pi\)
0.808434 + 0.588587i \(0.200316\pi\)
\(14\) −2.56238 + 0.658939i −0.684825 + 0.176109i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.42107 5.92546i 0.829731 1.43714i −0.0685191 0.997650i \(-0.521827\pi\)
0.898250 0.439486i \(-0.144839\pi\)
\(18\) 0 0
\(19\) 0.971410 + 1.68253i 0.222857 + 0.385999i 0.955674 0.294426i \(-0.0951285\pi\)
−0.732818 + 0.680425i \(0.761795\pi\)
\(20\) 0.880438 + 1.52496i 0.196872 + 0.340992i
\(21\) 0 0
\(22\) −3.06238 + 5.30420i −0.652902 + 1.13086i
\(23\) 0.421067 0.0877985 0.0438992 0.999036i \(-0.486022\pi\)
0.0438992 + 0.999036i \(0.486022\pi\)
\(24\) 0 0
\(25\) −1.89931 −0.379863
\(26\) 0.380438 + 0.658939i 0.0746101 + 0.129228i
\(27\) 0 0
\(28\) −0.710533 + 2.54856i −0.134278 + 0.481632i
\(29\) −0.732287 1.26836i −0.135982 0.235528i 0.789990 0.613120i \(-0.210086\pi\)
−0.925972 + 0.377592i \(0.876752\pi\)
\(30\) 0 0
\(31\) −3.85185 6.67160i −0.691812 1.19825i −0.971243 0.238088i \(-0.923479\pi\)
0.279431 0.960166i \(-0.409854\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −3.42107 5.92546i −0.586708 1.01621i
\(35\) 3.26088 + 3.32738i 0.551189 + 0.562431i
\(36\) 0 0
\(37\) 1.44282 + 2.49904i 0.237198 + 0.410839i 0.959909 0.280311i \(-0.0904376\pi\)
−0.722711 + 0.691150i \(0.757104\pi\)
\(38\) 1.94282 0.315167
\(39\) 0 0
\(40\) 1.76088 0.278419
\(41\) 3.47141 6.01266i 0.542143 0.939020i −0.456638 0.889653i \(-0.650946\pi\)
0.998781 0.0493667i \(-0.0157203\pi\)
\(42\) 0 0
\(43\) 4.33009 + 7.49994i 0.660333 + 1.14373i 0.980528 + 0.196379i \(0.0629183\pi\)
−0.320195 + 0.947352i \(0.603748\pi\)
\(44\) 3.06238 + 5.30420i 0.461671 + 0.799638i
\(45\) 0 0
\(46\) 0.210533 0.364654i 0.0310414 0.0537654i
\(47\) 0.830095 1.43777i 0.121082 0.209720i −0.799113 0.601181i \(-0.794697\pi\)
0.920195 + 0.391461i \(0.128030\pi\)
\(48\) 0 0
\(49\) −0.141315 + 6.99857i −0.0201879 + 0.999796i
\(50\) −0.949657 + 1.64485i −0.134302 + 0.232617i
\(51\) 0 0
\(52\) 0.760877 0.105515
\(53\) 0.112725 0.195246i 0.0154840 0.0268190i −0.858180 0.513350i \(-0.828404\pi\)
0.873664 + 0.486531i \(0.161738\pi\)
\(54\) 0 0
\(55\) 10.7850 1.45424
\(56\) 1.85185 + 1.88962i 0.247464 + 0.252511i
\(57\) 0 0
\(58\) −1.46457 −0.192308
\(59\) 0.993163 + 1.72021i 0.129299 + 0.223952i 0.923405 0.383827i \(-0.125394\pi\)
−0.794106 + 0.607779i \(0.792061\pi\)
\(60\) 0 0
\(61\) 5.17511 8.96355i 0.662605 1.14766i −0.317324 0.948317i \(-0.602784\pi\)
0.979929 0.199348i \(-0.0638823\pi\)
\(62\) −7.70370 −0.978370
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.669905 1.16031i 0.0830915 0.143919i
\(66\) 0 0
\(67\) −3.39248 5.87594i −0.414457 0.717861i 0.580914 0.813965i \(-0.302695\pi\)
−0.995371 + 0.0961042i \(0.969362\pi\)
\(68\) −6.84213 −0.829731
\(69\) 0 0
\(70\) 4.51204 1.16031i 0.539292 0.138684i
\(71\) −10.7850 −1.27994 −0.639969 0.768401i \(-0.721053\pi\)
−0.639969 + 0.768401i \(0.721053\pi\)
\(72\) 0 0
\(73\) 0.153353 0.265616i 0.0179487 0.0310880i −0.856912 0.515463i \(-0.827620\pi\)
0.874860 + 0.484375i \(0.160953\pi\)
\(74\) 2.88564 0.335449
\(75\) 0 0
\(76\) 0.971410 1.68253i 0.111428 0.193000i
\(77\) 11.3421 + 11.5735i 1.29256 + 1.31892i
\(78\) 0 0
\(79\) 6.72257 11.6438i 0.756348 1.31003i −0.188353 0.982101i \(-0.560315\pi\)
0.944701 0.327932i \(-0.106352\pi\)
\(80\) 0.880438 1.52496i 0.0984360 0.170496i
\(81\) 0 0
\(82\) −3.47141 6.01266i −0.383353 0.663987i
\(83\) 1.56238 + 2.70612i 0.171494 + 0.297036i 0.938942 0.344075i \(-0.111807\pi\)
−0.767449 + 0.641110i \(0.778474\pi\)
\(84\) 0 0
\(85\) −6.02408 + 10.4340i −0.653403 + 1.13173i
\(86\) 8.66019 0.933852
\(87\) 0 0
\(88\) 6.12476 0.652902
\(89\) −1.30150 2.25427i −0.137959 0.238952i 0.788765 0.614695i \(-0.210721\pi\)
−0.926724 + 0.375743i \(0.877388\pi\)
\(90\) 0 0
\(91\) 1.94966 0.501371i 0.204380 0.0525580i
\(92\) −0.210533 0.364654i −0.0219496 0.0380178i
\(93\) 0 0
\(94\) −0.830095 1.43777i −0.0856178 0.148294i
\(95\) −1.71053 2.96273i −0.175497 0.303970i
\(96\) 0 0
\(97\) −1.81806 3.14897i −0.184596 0.319729i 0.758845 0.651272i \(-0.225764\pi\)
−0.943440 + 0.331543i \(0.892431\pi\)
\(98\) 5.99028 + 3.62167i 0.605110 + 0.365844i
\(99\) 0 0
\(100\) 0.949657 + 1.64485i 0.0949657 + 0.164485i
\(101\) 8.01040 0.797065 0.398532 0.917154i \(-0.369520\pi\)
0.398532 + 0.917154i \(0.369520\pi\)
\(102\) 0 0
\(103\) −6.82846 −0.672828 −0.336414 0.941714i \(-0.609214\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(104\) 0.380438 0.658939i 0.0373051 0.0646142i
\(105\) 0 0
\(106\) −0.112725 0.195246i −0.0109488 0.0189639i
\(107\) −1.77292 3.07078i −0.171394 0.296863i 0.767513 0.641033i \(-0.221494\pi\)
−0.938908 + 0.344170i \(0.888160\pi\)
\(108\) 0 0
\(109\) 0.351848 0.609419i 0.0337010 0.0583718i −0.848683 0.528902i \(-0.822604\pi\)
0.882384 + 0.470530i \(0.155937\pi\)
\(110\) 5.39248 9.34004i 0.514152 0.890538i
\(111\) 0 0
\(112\) 2.56238 0.658939i 0.242122 0.0622638i
\(113\) −4.25116 + 7.36323i −0.399916 + 0.692674i −0.993715 0.111939i \(-0.964294\pi\)
0.593799 + 0.804613i \(0.297627\pi\)
\(114\) 0 0
\(115\) −0.741446 −0.0691402
\(116\) −0.732287 + 1.26836i −0.0679911 + 0.117764i
\(117\) 0 0
\(118\) 1.98633 0.182856
\(119\) −17.5322 + 4.50855i −1.60717 + 0.413298i
\(120\) 0 0
\(121\) 26.5127 2.41025
\(122\) −5.17511 8.96355i −0.468532 0.811521i
\(123\) 0 0
\(124\) −3.85185 + 6.67160i −0.345906 + 0.599127i
\(125\) 12.1488 1.08663
\(126\) 0 0
\(127\) −18.9532 −1.68183 −0.840913 0.541170i \(-0.817982\pi\)
−0.840913 + 0.541170i \(0.817982\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −0.669905 1.16031i −0.0587546 0.101766i
\(131\) 7.29303 0.637195 0.318598 0.947890i \(-0.396788\pi\)
0.318598 + 0.947890i \(0.396788\pi\)
\(132\) 0 0
\(133\) 1.38044 4.95139i 0.119699 0.429340i
\(134\) −6.78495 −0.586131
\(135\) 0 0
\(136\) −3.42107 + 5.92546i −0.293354 + 0.508104i
\(137\) 8.18194 0.699031 0.349515 0.936931i \(-0.386346\pi\)
0.349515 + 0.936931i \(0.386346\pi\)
\(138\) 0 0
\(139\) −6.23229 + 10.7946i −0.528616 + 0.915589i 0.470828 + 0.882225i \(0.343955\pi\)
−0.999443 + 0.0333640i \(0.989378\pi\)
\(140\) 1.25116 4.48769i 0.105742 0.379279i
\(141\) 0 0
\(142\) −5.39248 + 9.34004i −0.452527 + 0.783799i
\(143\) 2.33009 4.03584i 0.194852 0.337494i
\(144\) 0 0
\(145\) 1.28947 + 2.23342i 0.107084 + 0.185476i
\(146\) −0.153353 0.265616i −0.0126916 0.0219825i
\(147\) 0 0
\(148\) 1.44282 2.49904i 0.118599 0.205420i
\(149\) −8.82846 −0.723256 −0.361628 0.932323i \(-0.617779\pi\)
−0.361628 + 0.932323i \(0.617779\pi\)
\(150\) 0 0
\(151\) −14.9863 −1.21957 −0.609785 0.792567i \(-0.708744\pi\)
−0.609785 + 0.792567i \(0.708744\pi\)
\(152\) −0.971410 1.68253i −0.0787918 0.136471i
\(153\) 0 0
\(154\) 15.6940 4.03584i 1.26466 0.325217i
\(155\) 6.78263 + 11.7479i 0.544794 + 0.943611i
\(156\) 0 0
\(157\) −9.49028 16.4377i −0.757407 1.31187i −0.944169 0.329462i \(-0.893132\pi\)
0.186761 0.982405i \(-0.440201\pi\)
\(158\) −6.72257 11.6438i −0.534819 0.926334i
\(159\) 0 0
\(160\) −0.880438 1.52496i −0.0696048 0.120559i
\(161\) −0.779752 0.795655i −0.0614530 0.0627064i
\(162\) 0 0
\(163\) −7.51887 13.0231i −0.588924 1.02005i −0.994374 0.105929i \(-0.966219\pi\)
0.405450 0.914117i \(-0.367115\pi\)
\(164\) −6.94282 −0.542143
\(165\) 0 0
\(166\) 3.12476 0.242529
\(167\) −0.572097 + 0.990901i −0.0442702 + 0.0766782i −0.887311 0.461171i \(-0.847430\pi\)
0.843041 + 0.537849i \(0.180763\pi\)
\(168\) 0 0
\(169\) 6.21053 + 10.7570i 0.477733 + 0.827458i
\(170\) 6.02408 + 10.4340i 0.462026 + 0.800252i
\(171\) 0 0
\(172\) 4.33009 7.49994i 0.330167 0.571865i
\(173\) 0.248838 0.431001i 0.0189188 0.0327684i −0.856411 0.516295i \(-0.827311\pi\)
0.875330 + 0.483526i \(0.160644\pi\)
\(174\) 0 0
\(175\) 3.51724 + 3.58898i 0.265878 + 0.271301i
\(176\) 3.06238 5.30420i 0.230836 0.399819i
\(177\) 0 0
\(178\) −2.60301 −0.195104
\(179\) −4.41423 + 7.64567i −0.329935 + 0.571464i −0.982499 0.186270i \(-0.940360\pi\)
0.652564 + 0.757734i \(0.273694\pi\)
\(180\) 0 0
\(181\) 1.32941 0.0988140 0.0494070 0.998779i \(-0.484267\pi\)
0.0494070 + 0.998779i \(0.484267\pi\)
\(182\) 0.540628 1.93914i 0.0400740 0.143738i
\(183\) 0 0
\(184\) −0.421067 −0.0310414
\(185\) −2.54063 4.40050i −0.186791 0.323531i
\(186\) 0 0
\(187\) −20.9532 + 36.2920i −1.53225 + 2.65394i
\(188\) −1.66019 −0.121082
\(189\) 0 0
\(190\) −3.42107 −0.248190
\(191\) −8.08414 + 14.0021i −0.584947 + 1.01316i 0.409934 + 0.912115i \(0.365552\pi\)
−0.994882 + 0.101044i \(0.967782\pi\)
\(192\) 0 0
\(193\) 7.08414 + 12.2701i 0.509927 + 0.883220i 0.999934 + 0.0115011i \(0.00366101\pi\)
−0.490007 + 0.871719i \(0.663006\pi\)
\(194\) −3.63611 −0.261058
\(195\) 0 0
\(196\) 6.13160 3.37690i 0.437971 0.241207i
\(197\) −15.8421 −1.12871 −0.564353 0.825534i \(-0.690874\pi\)
−0.564353 + 0.825534i \(0.690874\pi\)
\(198\) 0 0
\(199\) −4.47141 + 7.74471i −0.316970 + 0.549008i −0.979854 0.199714i \(-0.935999\pi\)
0.662884 + 0.748722i \(0.269332\pi\)
\(200\) 1.89931 0.134302
\(201\) 0 0
\(202\) 4.00520 6.93721i 0.281805 0.488101i
\(203\) −1.04063 + 3.73255i −0.0730378 + 0.261974i
\(204\) 0 0
\(205\) −6.11273 + 10.5876i −0.426931 + 0.739467i
\(206\) −3.41423 + 5.91362i −0.237881 + 0.412021i
\(207\) 0 0
\(208\) −0.380438 0.658939i −0.0263787 0.0456892i
\(209\) −5.94966 10.3051i −0.411546 0.712819i
\(210\) 0 0
\(211\) 11.3856 19.7205i 0.783820 1.35762i −0.145882 0.989302i \(-0.546602\pi\)
0.929702 0.368314i \(-0.120065\pi\)
\(212\) −0.225450 −0.0154840
\(213\) 0 0
\(214\) −3.54583 −0.242388
\(215\) −7.62476 13.2065i −0.520005 0.900674i
\(216\) 0 0
\(217\) −5.47373 + 19.6333i −0.371581 + 1.33280i
\(218\) −0.351848 0.609419i −0.0238302 0.0412751i
\(219\) 0 0
\(220\) −5.39248 9.34004i −0.363561 0.629706i
\(221\) 2.60301 + 4.50855i 0.175097 + 0.303278i
\(222\) 0 0
\(223\) −6.44282 11.1593i −0.431443 0.747281i 0.565555 0.824711i \(-0.308662\pi\)
−0.996998 + 0.0774293i \(0.975329\pi\)
\(224\) 0.710533 2.54856i 0.0474745 0.170283i
\(225\) 0 0
\(226\) 4.25116 + 7.36323i 0.282783 + 0.489795i
\(227\) −21.9967 −1.45997 −0.729987 0.683461i \(-0.760474\pi\)
−0.729987 + 0.683461i \(0.760474\pi\)
\(228\) 0 0
\(229\) −3.79863 −0.251020 −0.125510 0.992092i \(-0.540057\pi\)
−0.125510 + 0.992092i \(0.540057\pi\)
\(230\) −0.370723 + 0.642111i −0.0244448 + 0.0423396i
\(231\) 0 0
\(232\) 0.732287 + 1.26836i 0.0480770 + 0.0832718i
\(233\) 3.33530 + 5.77690i 0.218503 + 0.378458i 0.954350 0.298689i \(-0.0965495\pi\)
−0.735848 + 0.677147i \(0.763216\pi\)
\(234\) 0 0
\(235\) −1.46169 + 2.53173i −0.0953505 + 0.165152i
\(236\) 0.993163 1.72021i 0.0646494 0.111976i
\(237\) 0 0
\(238\) −4.86156 + 17.4376i −0.315128 + 1.13031i
\(239\) 7.82038 13.5453i 0.505858 0.876172i −0.494119 0.869394i \(-0.664509\pi\)
0.999977 0.00677786i \(-0.00215748\pi\)
\(240\) 0 0
\(241\) 21.4120 1.37927 0.689635 0.724157i \(-0.257771\pi\)
0.689635 + 0.724157i \(0.257771\pi\)
\(242\) 13.2564 22.9607i 0.852151 1.47597i
\(243\) 0 0
\(244\) −10.3502 −0.662605
\(245\) 0.248838 12.3236i 0.0158977 0.787328i
\(246\) 0 0
\(247\) −1.47825 −0.0940586
\(248\) 3.85185 + 6.67160i 0.244593 + 0.423647i
\(249\) 0 0
\(250\) 6.07442 10.5212i 0.384180 0.665419i
\(251\) 23.6030 1.48981 0.744904 0.667171i \(-0.232495\pi\)
0.744904 + 0.667171i \(0.232495\pi\)
\(252\) 0 0
\(253\) −2.57893 −0.162136
\(254\) −9.47661 + 16.4140i −0.594616 + 1.02990i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −20.2599 −1.26378 −0.631890 0.775058i \(-0.717721\pi\)
−0.631890 + 0.775058i \(0.717721\pi\)
\(258\) 0 0
\(259\) 2.05034 7.35422i 0.127402 0.456969i
\(260\) −1.33981 −0.0830915
\(261\) 0 0
\(262\) 3.64652 6.31595i 0.225283 0.390201i
\(263\) 22.4887 1.38671 0.693355 0.720596i \(-0.256132\pi\)
0.693355 + 0.720596i \(0.256132\pi\)
\(264\) 0 0
\(265\) −0.198495 + 0.343803i −0.0121935 + 0.0211197i
\(266\) −3.59781 3.67119i −0.220596 0.225095i
\(267\) 0 0
\(268\) −3.39248 + 5.87594i −0.207228 + 0.358930i
\(269\) 12.6706 21.9461i 0.772540 1.33808i −0.163627 0.986522i \(-0.552319\pi\)
0.936167 0.351556i \(-0.114347\pi\)
\(270\) 0 0
\(271\) −6.87880 11.9144i −0.417858 0.723751i 0.577866 0.816132i \(-0.303886\pi\)
−0.995724 + 0.0923810i \(0.970552\pi\)
\(272\) 3.42107 + 5.92546i 0.207433 + 0.359284i
\(273\) 0 0
\(274\) 4.09097 7.08577i 0.247145 0.428067i
\(275\) 11.6328 0.701487
\(276\) 0 0
\(277\) −3.28263 −0.197234 −0.0986171 0.995125i \(-0.531442\pi\)
−0.0986171 + 0.995125i \(0.531442\pi\)
\(278\) 6.23229 + 10.7946i 0.373788 + 0.647419i
\(279\) 0 0
\(280\) −3.26088 3.32738i −0.194875 0.198849i
\(281\) −0.634479 1.09895i −0.0378498 0.0655578i 0.846480 0.532421i \(-0.178718\pi\)
−0.884330 + 0.466863i \(0.845384\pi\)
\(282\) 0 0
\(283\) 4.09617 + 7.09478i 0.243492 + 0.421741i 0.961707 0.274081i \(-0.0883736\pi\)
−0.718214 + 0.695822i \(0.755040\pi\)
\(284\) 5.39248 + 9.34004i 0.319985 + 0.554230i
\(285\) 0 0
\(286\) −2.33009 4.03584i −0.137781 0.238644i
\(287\) −17.7902 + 4.57489i −1.05012 + 0.270047i
\(288\) 0 0
\(289\) −14.9074 25.8204i −0.876906 1.51884i
\(290\) 2.57893 0.151440
\(291\) 0 0
\(292\) −0.306707 −0.0179487
\(293\) −7.72545 + 13.3809i −0.451326 + 0.781719i −0.998469 0.0553202i \(-0.982382\pi\)
0.547143 + 0.837039i \(0.315715\pi\)
\(294\) 0 0
\(295\) −1.74884 3.02908i −0.101821 0.176360i
\(296\) −1.44282 2.49904i −0.0838622 0.145254i
\(297\) 0 0
\(298\) −4.41423 + 7.64567i −0.255709 + 0.442902i
\(299\) −0.160190 + 0.277457i −0.00926402 + 0.0160458i
\(300\) 0 0
\(301\) 6.15335 22.0710i 0.354673 1.27215i
\(302\) −7.49316 + 12.9785i −0.431183 + 0.746831i
\(303\) 0 0
\(304\) −1.94282 −0.111428
\(305\) −9.11273 + 15.7837i −0.521793 + 0.903772i
\(306\) 0 0
\(307\) 4.89931 0.279619 0.139809 0.990178i \(-0.455351\pi\)
0.139809 + 0.990178i \(0.455351\pi\)
\(308\) 4.35185 15.6093i 0.247970 0.889423i
\(309\) 0 0
\(310\) 13.5653 0.770455
\(311\) −3.84501 6.65976i −0.218031 0.377640i 0.736175 0.676791i \(-0.236630\pi\)
−0.954206 + 0.299151i \(0.903297\pi\)
\(312\) 0 0
\(313\) 0.861564 1.49227i 0.0486985 0.0843482i −0.840649 0.541581i \(-0.817826\pi\)
0.889347 + 0.457233i \(0.151159\pi\)
\(314\) −18.9806 −1.07114
\(315\) 0 0
\(316\) −13.4451 −0.756348
\(317\) 16.6014 28.7544i 0.932426 1.61501i 0.153266 0.988185i \(-0.451021\pi\)
0.779161 0.626824i \(-0.215646\pi\)
\(318\) 0 0
\(319\) 4.48508 + 7.76839i 0.251116 + 0.434946i
\(320\) −1.76088 −0.0984360
\(321\) 0 0
\(322\) −1.07893 + 0.277457i −0.0601266 + 0.0154621i
\(323\) 13.2930 0.739644
\(324\) 0 0
\(325\) 0.722572 1.25153i 0.0400811 0.0694224i
\(326\) −15.0377 −0.832864
\(327\) 0 0
\(328\) −3.47141 + 6.01266i −0.191677 + 0.331994i
\(329\) −4.25404 + 1.09396i −0.234533 + 0.0603121i
\(330\) 0 0
\(331\) −1.44445 + 2.50187i −0.0793944 + 0.137515i −0.902989 0.429664i \(-0.858632\pi\)
0.823594 + 0.567179i \(0.191965\pi\)
\(332\) 1.56238 2.70612i 0.0857468 0.148518i
\(333\) 0 0
\(334\) 0.572097 + 0.990901i 0.0313037 + 0.0542197i
\(335\) 5.97373 + 10.3468i 0.326380 + 0.565307i
\(336\) 0 0
\(337\) −4.36156 + 7.55445i −0.237590 + 0.411517i −0.960022 0.279924i \(-0.909691\pi\)
0.722433 + 0.691441i \(0.243024\pi\)
\(338\) 12.4211 0.675617
\(339\) 0 0
\(340\) 12.0482 0.653403
\(341\) 23.5917 + 40.8620i 1.27756 + 2.21280i
\(342\) 0 0
\(343\) 13.4863 12.6933i 0.728193 0.685372i
\(344\) −4.33009 7.49994i −0.233463 0.404370i
\(345\) 0 0
\(346\) −0.248838 0.431001i −0.0133776 0.0231707i
\(347\) 4.84733 + 8.39583i 0.260219 + 0.450712i 0.966300 0.257419i \(-0.0828720\pi\)
−0.706081 + 0.708131i \(0.749539\pi\)
\(348\) 0 0
\(349\) 14.1992 + 24.5937i 0.760065 + 1.31647i 0.942817 + 0.333312i \(0.108166\pi\)
−0.182752 + 0.983159i \(0.558500\pi\)
\(350\) 4.86677 1.25153i 0.260140 0.0668971i
\(351\) 0 0
\(352\) −3.06238 5.30420i −0.163225 0.282715i
\(353\) 4.39372 0.233854 0.116927 0.993141i \(-0.462696\pi\)
0.116927 + 0.993141i \(0.462696\pi\)
\(354\) 0 0
\(355\) 18.9910 1.00794
\(356\) −1.30150 + 2.25427i −0.0689796 + 0.119476i
\(357\) 0 0
\(358\) 4.41423 + 7.64567i 0.233299 + 0.404086i
\(359\) −16.0796 27.8507i −0.848650 1.46990i −0.882413 0.470475i \(-0.844083\pi\)
0.0337633 0.999430i \(-0.489251\pi\)
\(360\) 0 0
\(361\) 7.61273 13.1856i 0.400670 0.693980i
\(362\) 0.664703 1.15130i 0.0349360 0.0605110i
\(363\) 0 0
\(364\) −1.40903 1.43777i −0.0738532 0.0753594i
\(365\) −0.270036 + 0.467717i −0.0141343 + 0.0244814i
\(366\) 0 0
\(367\) 34.6030 1.80626 0.903131 0.429365i \(-0.141262\pi\)
0.903131 + 0.429365i \(0.141262\pi\)
\(368\) −0.210533 + 0.364654i −0.0109748 + 0.0190089i
\(369\) 0 0
\(370\) −5.08126 −0.264162
\(371\) −0.577690 + 0.148558i −0.0299921 + 0.00771274i
\(372\) 0 0
\(373\) 10.9759 0.568312 0.284156 0.958778i \(-0.408287\pi\)
0.284156 + 0.958778i \(0.408287\pi\)
\(374\) 20.9532 + 36.2920i 1.08347 + 1.87662i
\(375\) 0 0
\(376\) −0.830095 + 1.43777i −0.0428089 + 0.0741472i
\(377\) 1.11436 0.0573925
\(378\) 0 0
\(379\) 33.9877 1.74583 0.872916 0.487871i \(-0.162226\pi\)
0.872916 + 0.487871i \(0.162226\pi\)
\(380\) −1.71053 + 2.96273i −0.0877485 + 0.151985i
\(381\) 0 0
\(382\) 8.08414 + 14.0021i 0.413620 + 0.716411i
\(383\) 21.0241 1.07428 0.537140 0.843493i \(-0.319505\pi\)
0.537140 + 0.843493i \(0.319505\pi\)
\(384\) 0 0
\(385\) −19.9721 20.3794i −1.01787 1.03863i
\(386\) 14.1683 0.721146
\(387\) 0 0
\(388\) −1.81806 + 3.14897i −0.0922978 + 0.159865i
\(389\) −13.7382 −0.696553 −0.348277 0.937392i \(-0.613233\pi\)
−0.348277 + 0.937392i \(0.613233\pi\)
\(390\) 0 0
\(391\) 1.44050 2.49501i 0.0728491 0.126178i
\(392\) 0.141315 6.99857i 0.00713749 0.353481i
\(393\) 0 0
\(394\) −7.92107 + 13.7197i −0.399058 + 0.691188i
\(395\) −11.8376 + 20.5034i −0.595615 + 1.03164i
\(396\) 0 0
\(397\) −3.57893 6.19889i −0.179622 0.311114i 0.762129 0.647425i \(-0.224154\pi\)
−0.941751 + 0.336311i \(0.890821\pi\)
\(398\) 4.47141 + 7.74471i 0.224132 + 0.388207i
\(399\) 0 0
\(400\) 0.949657 1.64485i 0.0474828 0.0822427i
\(401\) 9.27936 0.463389 0.231695 0.972789i \(-0.425573\pi\)
0.231695 + 0.972789i \(0.425573\pi\)
\(402\) 0 0
\(403\) 5.86156 0.291985
\(404\) −4.00520 6.93721i −0.199266 0.345139i
\(405\) 0 0
\(406\) 2.71217 + 2.76748i 0.134603 + 0.137348i
\(407\) −8.83693 15.3060i −0.438030 0.758691i
\(408\) 0 0
\(409\) −7.58414 13.1361i −0.375011 0.649539i 0.615317 0.788279i \(-0.289028\pi\)
−0.990329 + 0.138741i \(0.955695\pi\)
\(410\) 6.11273 + 10.5876i 0.301886 + 0.522882i
\(411\) 0 0
\(412\) 3.41423 + 5.91362i 0.168207 + 0.291343i
\(413\) 1.41135 5.06227i 0.0694481 0.249098i
\(414\) 0 0
\(415\) −2.75116 4.76515i −0.135049 0.233912i
\(416\) −0.760877 −0.0373051
\(417\) 0 0
\(418\) −11.8993 −0.582014
\(419\) 4.16827 7.21966i 0.203633 0.352703i −0.746063 0.665875i \(-0.768058\pi\)
0.949696 + 0.313172i \(0.101392\pi\)
\(420\) 0 0
\(421\) −3.50232 6.06620i −0.170693 0.295649i 0.767969 0.640486i \(-0.221267\pi\)
−0.938662 + 0.344838i \(0.887934\pi\)
\(422\) −11.3856 19.7205i −0.554244 0.959979i
\(423\) 0 0
\(424\) −0.112725 + 0.195246i −0.00547442 + 0.00948197i
\(425\) −6.49768 + 11.2543i −0.315184 + 0.545914i
\(426\) 0 0
\(427\) −26.5212 + 6.82015i −1.28345 + 0.330050i
\(428\) −1.77292 + 3.07078i −0.0856971 + 0.148432i
\(429\) 0 0
\(430\) −15.2495 −0.735397
\(431\) 1.72545 2.98857i 0.0831120 0.143954i −0.821473 0.570247i \(-0.806847\pi\)
0.904585 + 0.426293i \(0.140181\pi\)
\(432\) 0 0
\(433\) 28.2599 1.35809 0.679043 0.734099i \(-0.262395\pi\)
0.679043 + 0.734099i \(0.262395\pi\)
\(434\) 14.2661 + 14.5570i 0.684794 + 0.698761i
\(435\) 0 0
\(436\) −0.703697 −0.0337010
\(437\) 0.409028 + 0.708458i 0.0195665 + 0.0338901i
\(438\) 0 0
\(439\) 14.4480 25.0247i 0.689566 1.19436i −0.282412 0.959293i \(-0.591134\pi\)
0.971978 0.235071i \(-0.0755322\pi\)
\(440\) −10.7850 −0.514152
\(441\) 0 0
\(442\) 5.20602 0.247625
\(443\) −6.88044 + 11.9173i −0.326899 + 0.566207i −0.981895 0.189426i \(-0.939337\pi\)
0.654995 + 0.755633i \(0.272671\pi\)
\(444\) 0 0
\(445\) 2.29179 + 3.96950i 0.108641 + 0.188172i
\(446\) −12.8856 −0.610153
\(447\) 0 0
\(448\) −1.85185 1.88962i −0.0874916 0.0892761i
\(449\) 20.2003 0.953309 0.476655 0.879091i \(-0.341849\pi\)
0.476655 + 0.879091i \(0.341849\pi\)
\(450\) 0 0
\(451\) −21.2616 + 36.8261i −1.00117 + 1.73407i
\(452\) 8.50232 0.399916
\(453\) 0 0
\(454\) −10.9984 + 19.0497i −0.516179 + 0.894048i
\(455\) −3.43310 + 0.882853i −0.160946 + 0.0413888i
\(456\) 0 0
\(457\) −10.0149 + 17.3463i −0.468478 + 0.811428i −0.999351 0.0360237i \(-0.988531\pi\)
0.530873 + 0.847451i \(0.321864\pi\)
\(458\) −1.89931 + 3.28971i −0.0887491 + 0.153718i
\(459\) 0 0
\(460\) 0.370723 + 0.642111i 0.0172851 + 0.0299386i
\(461\) −5.97661 10.3518i −0.278359 0.482131i 0.692618 0.721304i \(-0.256457\pi\)
−0.970977 + 0.239173i \(0.923124\pi\)
\(462\) 0 0
\(463\) 6.64527 11.5100i 0.308832 0.534913i −0.669275 0.743015i \(-0.733395\pi\)
0.978107 + 0.208102i \(0.0667286\pi\)
\(464\) 1.46457 0.0679911
\(465\) 0 0
\(466\) 6.67059 0.309009
\(467\) 5.61505 + 9.72555i 0.259833 + 0.450045i 0.966197 0.257804i \(-0.0829990\pi\)
−0.706364 + 0.707849i \(0.749666\pi\)
\(468\) 0 0
\(469\) −4.82094 + 17.2918i −0.222610 + 0.798463i
\(470\) 1.46169 + 2.53173i 0.0674230 + 0.116780i
\(471\) 0 0
\(472\) −0.993163 1.72021i −0.0457141 0.0791791i
\(473\) −26.5208 45.9354i −1.21943 2.11211i
\(474\) 0 0
\(475\) −1.84501 3.19565i −0.0846550 0.146627i
\(476\) 12.6706 + 12.9290i 0.580756 + 0.592601i
\(477\) 0 0
\(478\) −7.82038 13.5453i −0.357696 0.619547i
\(479\) 32.6271 1.49077 0.745385 0.666634i \(-0.232266\pi\)
0.745385 + 0.666634i \(0.232266\pi\)
\(480\) 0 0
\(481\) −2.19562 −0.100111
\(482\) 10.7060 18.5434i 0.487646 0.844627i
\(483\) 0 0
\(484\) −13.2564 22.9607i −0.602562 1.04367i
\(485\) 3.20137 + 5.54494i 0.145367 + 0.251783i
\(486\) 0 0
\(487\) 1.84897 3.20251i 0.0837848 0.145120i −0.821088 0.570802i \(-0.806632\pi\)
0.904873 + 0.425682i \(0.139966\pi\)
\(488\) −5.17511 + 8.96355i −0.234266 + 0.405761i
\(489\) 0 0
\(490\) −10.5482 6.37731i −0.476517 0.288098i
\(491\) 18.7804 32.5287i 0.847549 1.46800i −0.0358393 0.999358i \(-0.511410\pi\)
0.883389 0.468641i \(-0.155256\pi\)
\(492\) 0 0
\(493\) −10.0208 −0.451314
\(494\) −0.739123 + 1.28020i −0.0332547 + 0.0575989i
\(495\) 0 0
\(496\) 7.70370 0.345906
\(497\) 19.9721 + 20.3794i 0.895871 + 0.914143i
\(498\) 0 0
\(499\) −31.7954 −1.42336 −0.711678 0.702506i \(-0.752064\pi\)
−0.711678 + 0.702506i \(0.752064\pi\)
\(500\) −6.07442 10.5212i −0.271656 0.470523i
\(501\) 0 0
\(502\) 11.8015 20.4408i 0.526727 0.912318i
\(503\) −30.8252 −1.37443 −0.687214 0.726455i \(-0.741166\pi\)
−0.687214 + 0.726455i \(0.741166\pi\)
\(504\) 0 0
\(505\) −14.1053 −0.627679
\(506\) −1.28947 + 2.23342i −0.0573238 + 0.0992877i
\(507\) 0 0
\(508\) 9.47661 + 16.4140i 0.420457 + 0.728252i
\(509\) −8.01616 −0.355310 −0.177655 0.984093i \(-0.556851\pi\)
−0.177655 + 0.984093i \(0.556851\pi\)
\(510\) 0 0
\(511\) −0.785900 + 0.202101i −0.0347662 + 0.00894042i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −10.1300 + 17.5456i −0.446814 + 0.773904i
\(515\) 12.0241 0.529844
\(516\) 0 0
\(517\) −5.08414 + 8.80598i −0.223600 + 0.387287i
\(518\) −5.34377 5.45276i −0.234792 0.239580i
\(519\) 0 0
\(520\) −0.669905 + 1.16031i −0.0293773 + 0.0508829i
\(521\) −14.8646 + 25.7462i −0.651229 + 1.12796i 0.331596 + 0.943421i \(0.392413\pi\)
−0.982825 + 0.184540i \(0.940920\pi\)
\(522\) 0 0
\(523\) 13.4698 + 23.3303i 0.588992 + 1.02016i 0.994365 + 0.106013i \(0.0338084\pi\)
−0.405373 + 0.914152i \(0.632858\pi\)
\(524\) −3.64652 6.31595i −0.159299 0.275914i
\(525\) 0 0
\(526\) 11.2443 19.4757i 0.490276 0.849183i
\(527\) −52.7097 −2.29607
\(528\) 0 0
\(529\) −22.8227 −0.992291
\(530\) 0.198495 + 0.343803i 0.00862207 + 0.0149339i
\(531\) 0 0
\(532\) −4.97825 + 1.28020i −0.215834 + 0.0555037i
\(533\) 2.64132 + 4.57489i 0.114408 + 0.198161i
\(534\) 0 0
\(535\) 3.12188 + 5.40726i 0.134971 + 0.233776i
\(536\) 3.39248 + 5.87594i 0.146533 + 0.253802i
\(537\) 0 0
\(538\) −12.6706 21.9461i −0.546268 0.946164i
\(539\) 0.865521 42.8646i 0.0372806 1.84631i
\(540\) 0 0
\(541\) 7.15568 + 12.3940i 0.307647 + 0.532859i 0.977847 0.209321i \(-0.0671252\pi\)
−0.670201 + 0.742180i \(0.733792\pi\)
\(542\) −13.7576 −0.590940
\(543\) 0 0
\(544\) 6.84213 0.293354
\(545\) −0.619562 + 1.07311i −0.0265391 + 0.0459671i
\(546\) 0 0
\(547\) 1.02463 + 1.77471i 0.0438101 + 0.0758813i 0.887099 0.461579i \(-0.152717\pi\)
−0.843289 + 0.537461i \(0.819384\pi\)
\(548\) −4.09097 7.08577i −0.174758 0.302689i
\(549\) 0 0
\(550\) 5.81642 10.0743i 0.248013 0.429571i
\(551\) 1.42270 2.46419i 0.0606091 0.104978i
\(552\) 0 0
\(553\) −34.4516 + 8.85952i −1.46503 + 0.376745i
\(554\) −1.64132 + 2.84284i −0.0697328 + 0.120781i
\(555\) 0 0
\(556\) 12.4646 0.528616
\(557\) −8.84338 + 15.3172i −0.374706 + 0.649010i −0.990283 0.139067i \(-0.955590\pi\)
0.615577 + 0.788077i \(0.288923\pi\)
\(558\) 0 0
\(559\) −6.58934 −0.278699
\(560\) −4.51204 + 1.16031i −0.190668 + 0.0490320i
\(561\) 0 0
\(562\) −1.26896 −0.0535277
\(563\) 0.468531 + 0.811520i 0.0197462 + 0.0342015i 0.875730 0.482802i \(-0.160381\pi\)
−0.855983 + 0.517003i \(0.827048\pi\)
\(564\) 0 0
\(565\) 7.48577 12.9657i 0.314929 0.545473i
\(566\) 8.19235 0.344350
\(567\) 0 0
\(568\) 10.7850 0.452527
\(569\) 11.7632 20.3745i 0.493139 0.854142i −0.506830 0.862046i \(-0.669183\pi\)
0.999969 + 0.00790437i \(0.00251607\pi\)
\(570\) 0 0
\(571\) 0.242002 + 0.419160i 0.0101275 + 0.0175413i 0.871045 0.491204i \(-0.163443\pi\)
−0.860917 + 0.508745i \(0.830110\pi\)
\(572\) −4.66019 −0.194852
\(573\) 0 0
\(574\) −4.93310 + 17.6942i −0.205904 + 0.738540i
\(575\) −0.799737 −0.0333514
\(576\) 0 0
\(577\) −2.23065 + 3.86360i −0.0928633 + 0.160844i −0.908715 0.417417i \(-0.862935\pi\)
0.815852 + 0.578261i \(0.196269\pi\)
\(578\) −29.8148 −1.24013
\(579\) 0 0
\(580\) 1.28947 2.23342i 0.0535422 0.0927378i
\(581\) 2.22025 7.96364i 0.0921114 0.330387i
\(582\) 0 0
\(583\) −0.690415 + 1.19583i −0.0285941 + 0.0495264i
\(584\) −0.153353 + 0.265616i −0.00634581 + 0.0109913i
\(585\) 0 0
\(586\) 7.72545 + 13.3809i 0.319135 + 0.552759i
\(587\) −8.31518 14.4023i −0.343204 0.594447i 0.641822 0.766854i \(-0.278179\pi\)
−0.985026 + 0.172407i \(0.944846\pi\)
\(588\) 0 0
\(589\) 7.48345 12.9617i 0.308350 0.534078i
\(590\) −3.49768 −0.143997
\(591\) 0 0
\(592\) −2.88564 −0.118599
\(593\) −20.7632 35.9629i −0.852642 1.47682i −0.878815 0.477163i \(-0.841665\pi\)
0.0261726 0.999657i \(-0.491668\pi\)
\(594\) 0 0
\(595\) 30.8720 7.93899i 1.26563 0.325467i
\(596\) 4.41423 + 7.64567i 0.180814 + 0.313179i
\(597\) 0 0
\(598\) 0.160190 + 0.277457i 0.00655065 + 0.0113461i
\(599\) 7.53831 + 13.0567i 0.308007 + 0.533483i 0.977926 0.208950i \(-0.0670047\pi\)
−0.669919 + 0.742434i \(0.733671\pi\)
\(600\) 0 0
\(601\) −8.05555 13.9526i −0.328593 0.569139i 0.653640 0.756805i \(-0.273241\pi\)
−0.982233 + 0.187666i \(0.939908\pi\)
\(602\) −16.0374 16.3645i −0.653634 0.666965i
\(603\) 0 0
\(604\) 7.49316 + 12.9785i 0.304892 + 0.528089i
\(605\) −46.6856 −1.89804
\(606\) 0 0
\(607\) 19.5732 0.794451 0.397225 0.917721i \(-0.369973\pi\)
0.397225 + 0.917721i \(0.369973\pi\)
\(608\) −0.971410 + 1.68253i −0.0393959 + 0.0682357i
\(609\) 0 0
\(610\) 9.11273 + 15.7837i 0.368963 + 0.639063i
\(611\) 0.631600 + 1.09396i 0.0255518 + 0.0442570i
\(612\) 0 0
\(613\) −2.77579 + 4.80782i −0.112113 + 0.194186i −0.916622 0.399755i \(-0.869095\pi\)
0.804509 + 0.593941i \(0.202429\pi\)
\(614\) 2.44966 4.24293i 0.0988601 0.171231i
\(615\) 0 0
\(616\) −11.3421 11.5735i −0.456988 0.466308i
\(617\) −0.634479 + 1.09895i −0.0255431 + 0.0442420i −0.878514 0.477716i \(-0.841465\pi\)
0.852971 + 0.521958i \(0.174798\pi\)
\(618\) 0 0
\(619\) 4.50232 0.180964 0.0904818 0.995898i \(-0.471159\pi\)
0.0904818 + 0.995898i \(0.471159\pi\)
\(620\) 6.78263 11.7479i 0.272397 0.471805i
\(621\) 0 0
\(622\) −7.69002 −0.308342
\(623\) −1.84953 + 6.63392i −0.0740997 + 0.265782i
\(624\) 0 0
\(625\) −11.8960 −0.475842
\(626\) −0.861564 1.49227i −0.0344350 0.0596432i
\(627\) 0 0
\(628\) −9.49028 + 16.4377i −0.378704 + 0.655934i
\(629\) 19.7439 0.787242
\(630\) 0 0
\(631\) −1.69905 −0.0676381 −0.0338191 0.999428i \(-0.510767\pi\)
−0.0338191 + 0.999428i \(0.510767\pi\)
\(632\) −6.72257 + 11.6438i −0.267410 + 0.463167i
\(633\) 0 0
\(634\) −16.6014 28.7544i −0.659325 1.14198i
\(635\) 33.3743 1.32442
\(636\) 0 0
\(637\) −4.55787 2.75564i −0.180589 0.109183i
\(638\) 8.97017 0.355132
\(639\) 0 0
\(640\) −0.880438 + 1.52496i −0.0348024 + 0.0602795i
\(641\) 0.948577 0.0374666 0.0187333 0.999825i \(-0.494037\pi\)
0.0187333 + 0.999825i \(0.494037\pi\)
\(642\) 0 0
\(643\) −9.84897 + 17.0589i −0.388405 + 0.672738i −0.992235 0.124375i \(-0.960307\pi\)
0.603830 + 0.797113i \(0.293641\pi\)
\(644\) −0.299182 + 1.07311i −0.0117894 + 0.0422865i
\(645\) 0 0
\(646\) 6.64652 11.5121i 0.261504 0.452938i
\(647\) −11.7271 + 20.3119i −0.461039 + 0.798543i −0.999013 0.0444181i \(-0.985857\pi\)
0.537974 + 0.842962i \(0.319190\pi\)
\(648\) 0 0
\(649\) −6.08289 10.5359i −0.238774 0.413569i
\(650\) −0.722572 1.25153i −0.0283416 0.0490891i
\(651\) 0 0
\(652\) −7.51887 + 13.0231i −0.294462 + 0.510023i
\(653\) −22.7907 −0.891869 −0.445935 0.895065i \(-0.647129\pi\)
−0.445935 + 0.895065i \(0.647129\pi\)
\(654\) 0 0
\(655\) −12.8421 −0.501784
\(656\) 3.47141 + 6.01266i 0.135536 + 0.234755i
\(657\) 0 0
\(658\) −1.17962 + 4.23109i −0.0459864 + 0.164945i
\(659\) 13.2398 + 22.9320i 0.515750 + 0.893305i 0.999833 + 0.0182828i \(0.00581993\pi\)
−0.484083 + 0.875022i \(0.660847\pi\)
\(660\) 0 0
\(661\) 13.3691 + 23.1559i 0.519997 + 0.900662i 0.999730 + 0.0232469i \(0.00740038\pi\)
−0.479732 + 0.877415i \(0.659266\pi\)
\(662\) 1.44445 + 2.50187i 0.0561403 + 0.0972379i
\(663\) 0 0
\(664\) −1.56238 2.70612i −0.0606322 0.105018i
\(665\) −2.43078 + 8.71878i −0.0942617 + 0.338100i
\(666\) 0 0
\(667\) −0.308342 0.534063i −0.0119390 0.0206790i
\(668\) 1.14419 0.0442702
\(669\) 0 0
\(670\) 11.9475 0.461571
\(671\) −31.6963 + 54.8996i −1.22362 + 2.11938i
\(672\) 0 0
\(673\) −10.3856 17.9885i −0.400337 0.693404i 0.593429 0.804886i \(-0.297774\pi\)
−0.993766 + 0.111482i \(0.964440\pi\)
\(674\) 4.36156 + 7.55445i 0.168001 + 0.290987i
\(675\) 0 0
\(676\) 6.21053 10.7570i 0.238867 0.413729i
\(677\) −10.3490 + 17.9249i −0.397743 + 0.688911i −0.993447 0.114293i \(-0.963540\pi\)
0.595704 + 0.803204i \(0.296873\pi\)
\(678\) 0 0
\(679\) −2.58358 + 9.26684i −0.0991487 + 0.355629i
\(680\) 6.02408 10.4340i 0.231013 0.400126i
\(681\) 0 0
\(682\) 47.1833 1.80674
\(683\) −14.2918 + 24.7541i −0.546860 + 0.947190i 0.451627 + 0.892207i \(0.350844\pi\)
−0.998487 + 0.0549828i \(0.982490\pi\)
\(684\) 0 0
\(685\) −14.4074 −0.550478
\(686\) −4.24953 18.0261i −0.162248 0.688241i
\(687\) 0 0
\(688\) −8.66019 −0.330167
\(689\) 0.0857699 + 0.148558i 0.00326757 + 0.00565960i
\(690\) 0 0
\(691\) 3.34897 5.80059i 0.127401 0.220665i −0.795268 0.606258i \(-0.792670\pi\)
0.922669 + 0.385593i \(0.126003\pi\)
\(692\) −0.497677 −0.0189188
\(693\) 0 0
\(694\) 9.69467 0.368005
\(695\) 10.9743 19.0080i 0.416278 0.721016i
\(696\) 0 0
\(697\) −23.7518 41.1394i −0.899665 1.55827i
\(698\) 28.3984 1.07489
\(699\) 0 0
\(700\) 1.34953 4.84051i 0.0510073 0.182954i
\(701\) 25.1442 0.949683 0.474842 0.880071i \(-0.342505\pi\)
0.474842 + 0.880071i \(0.342505\pi\)
\(702\) 0 0
\(703\) −2.80314 + 4.85518i −0.105722 + 0.183117i
\(704\) −6.12476 −0.230836
\(705\) 0 0
\(706\) 2.19686 3.80507i 0.0826799 0.143206i
\(707\) −14.8341 15.1366i −0.557892 0.569271i
\(708\) 0 0
\(709\) −4.43310 + 7.67836i −0.166489 + 0.288367i −0.937183 0.348838i \(-0.886576\pi\)
0.770694 + 0.637205i \(0.219910\pi\)
\(710\) 9.49549 16.4467i 0.356359 0.617232i
\(711\) 0 0
\(712\) 1.30150 + 2.25427i 0.0487760 + 0.0844824i
\(713\) −1.62188 2.80919i −0.0607401 0.105205i
\(714\) 0 0
\(715\) −4.10301 + 7.10662i −0.153444 + 0.265773i
\(716\) 8.82846 0.329935
\(717\) 0 0
\(718\) −32.1592 −1.20017
\(719\) −11.8015 20.4408i −0.440122 0.762313i 0.557576 0.830126i \(-0.311731\pi\)
−0.997698 + 0.0678123i \(0.978398\pi\)
\(720\) 0 0
\(721\) 12.6453 + 12.9032i 0.470935 + 0.480540i
\(722\) −7.61273 13.1856i −0.283316 0.490718i
\(723\) 0 0
\(724\) −0.664703 1.15130i −0.0247035 0.0427877i
\(725\) 1.39084 + 2.40901i 0.0516546 + 0.0894683i
\(726\) 0 0
\(727\) 3.25692 + 5.64115i 0.120792 + 0.209219i 0.920080 0.391730i \(-0.128123\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(728\) −1.94966 + 0.501371i −0.0722591 + 0.0185820i
\(729\) 0 0
\(730\) 0.270036 + 0.467717i 0.00999449 + 0.0173110i
\(731\) 59.2542 2.19159
\(732\) 0 0
\(733\) −23.1981 −0.856842 −0.428421 0.903579i \(-0.640930\pi\)
−0.428421 + 0.903579i \(0.640930\pi\)
\(734\) 17.3015 29.9671i 0.638610 1.10611i
\(735\) 0 0
\(736\) 0.210533 + 0.364654i 0.00776036 + 0.0134413i
\(737\) 20.7781 + 35.9888i 0.765372 + 1.32566i
\(738\) 0 0
\(739\) −7.57838 + 13.1261i −0.278775 + 0.482853i −0.971081 0.238752i \(-0.923262\pi\)
0.692305 + 0.721605i \(0.256595\pi\)
\(740\) −2.54063 + 4.40050i −0.0933954 + 0.161765i
\(741\) 0 0
\(742\) −0.160190 + 0.574573i −0.00588076 + 0.0210932i
\(743\) 5.21737 9.03675i 0.191407 0.331526i −0.754310 0.656518i \(-0.772028\pi\)
0.945717 + 0.324992i \(0.105362\pi\)
\(744\) 0 0
\(745\) 15.5458 0.569555
\(746\) 5.48796 9.50543i 0.200929 0.348018i
\(747\) 0 0
\(748\) 41.9064 1.53225
\(749\) −2.51943 + 9.03675i −0.0920580 + 0.330196i
\(750\) 0 0
\(751\) 40.2118 1.46735 0.733674 0.679501i \(-0.237804\pi\)
0.733674 + 0.679501i \(0.237804\pi\)
\(752\) 0.830095 + 1.43777i 0.0302704 + 0.0524300i
\(753\) 0 0
\(754\) 0.557180 0.965064i 0.0202913 0.0351456i
\(755\) 26.3891 0.960397
\(756\) 0 0
\(757\) −21.5206 −0.782181 −0.391091 0.920352i \(-0.627902\pi\)
−0.391091 + 0.920352i \(0.627902\pi\)
\(758\) 16.9939 29.4342i 0.617244 1.06910i
\(759\) 0 0
\(760\) 1.71053 + 2.96273i 0.0620476 + 0.107470i
\(761\) 23.6627 0.857771 0.428886 0.903359i \(-0.358906\pi\)
0.428886 + 0.903359i \(0.358906\pi\)
\(762\) 0 0
\(763\) −1.80314 + 0.463693i −0.0652780 + 0.0167868i
\(764\) 16.1683 0.584947
\(765\) 0 0
\(766\) 10.5120 18.2074i 0.379815 0.657860i
\(767\) −1.51135 −0.0545717
\(768\) 0 0
\(769\) −5.62764 + 9.74736i −0.202938 + 0.351499i −0.949474 0.313846i \(-0.898382\pi\)
0.746536 + 0.665345i \(0.231716\pi\)
\(770\) −27.6352 + 7.10662i −0.995902 + 0.256105i
\(771\) 0 0
\(772\) 7.08414 12.2701i 0.254964 0.441610i
\(773\) −0.138992 + 0.240741i −0.00499919 + 0.00865886i −0.868514 0.495664i \(-0.834925\pi\)
0.863515 + 0.504323i \(0.168258\pi\)
\(774\) 0 0
\(775\) 7.31587 + 12.6715i 0.262794 + 0.455172i
\(776\) 1.81806 + 3.14897i 0.0652644 + 0.113041i
\(777\) 0 0
\(778\) −6.86909 + 11.8976i −0.246269 + 0.426550i
\(779\) 13.4887 0.483281
\(780\) 0 0
\(781\) 66.0553 2.36364
\(782\) −1.44050 2.49501i −0.0515121 0.0892215i