Properties

Label 378.2.h.c.361.3
Level $378$
Weight $2$
Character 378.361
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(289,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 378.361
Dual form 378.2.h.c.289.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +3.18194 q^{5} +(0.710533 - 2.54856i) q^{7} +1.00000 q^{8} +(-1.59097 + 2.75564i) q^{10} -3.18194 q^{11} +(2.85185 - 4.93955i) q^{13} +(1.85185 + 1.88962i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(0.760877 - 1.31788i) q^{17} +(-0.641315 - 1.11079i) q^{19} +(-1.59097 - 2.75564i) q^{20} +(1.59097 - 2.75564i) q^{22} -2.23912 q^{23} +5.12476 q^{25} +(2.85185 + 4.93955i) q^{26} +(-2.56238 + 0.658939i) q^{28} +(3.54063 + 6.13255i) q^{29} +(4.71053 + 8.15888i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.760877 + 1.31788i) q^{34} +(2.26088 - 8.10936i) q^{35} +(0.500000 + 0.866025i) q^{37} +1.28263 q^{38} +3.18194 q^{40} +(2.80150 - 4.85235i) q^{41} +(3.41423 + 5.91362i) q^{43} +(1.59097 + 2.75564i) q^{44} +(1.11956 - 1.93914i) q^{46} +(-2.91423 + 5.04759i) q^{47} +(-5.99028 - 3.62167i) q^{49} +(-2.56238 + 4.43818i) q^{50} -5.70370 q^{52} +(-1.02859 + 1.78157i) q^{53} -10.1248 q^{55} +(0.710533 - 2.54856i) q^{56} -7.08126 q^{58} +(-0.562382 - 0.974074i) q^{59} +(-1.56238 + 2.70612i) q^{61} -9.42107 q^{62} +1.00000 q^{64} +(9.07442 - 15.7174i) q^{65} +(-5.48345 - 9.49761i) q^{67} -1.52175 q^{68} +(5.89248 + 6.01266i) q^{70} -8.69002 q^{71} +(-2.48345 + 4.30146i) q^{73} -1.00000 q^{74} +(-0.641315 + 1.11079i) q^{76} +(-2.26088 + 8.10936i) q^{77} +(2.06922 - 3.58399i) q^{79} +(-1.59097 + 2.75564i) q^{80} +(2.80150 + 4.85235i) q^{82} +(4.03379 + 6.98673i) q^{83} +(2.42107 - 4.19341i) q^{85} -6.82846 q^{86} -3.18194 q^{88} +(-0.112725 - 0.195246i) q^{89} +(-10.5624 - 10.7778i) q^{91} +(1.11956 + 1.93914i) q^{92} +(-2.91423 - 5.04759i) q^{94} +(-2.04063 - 3.53447i) q^{95} +(7.42107 + 12.8537i) q^{97} +(6.13160 - 3.37690i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 2 q^{5} - 4 q^{7} + 6 q^{8} - q^{10} - 2 q^{11} + 8 q^{13} + 2 q^{14} - 3 q^{16} + 4 q^{17} - 3 q^{19} - q^{20} + q^{22} - 14 q^{23} - 4 q^{25} + 8 q^{26} + 2 q^{28} + 5 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 3.18194 1.42301 0.711504 0.702682i \(-0.248014\pi\)
0.711504 + 0.702682i \(0.248014\pi\)
\(6\) 0 0
\(7\) 0.710533 2.54856i 0.268556 0.963264i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.59097 + 2.75564i −0.503109 + 0.871411i
\(11\) −3.18194 −0.959392 −0.479696 0.877435i \(-0.659253\pi\)
−0.479696 + 0.877435i \(0.659253\pi\)
\(12\) 0 0
\(13\) 2.85185 4.93955i 0.790960 1.36998i −0.134412 0.990925i \(-0.542915\pi\)
0.925373 0.379058i \(-0.123752\pi\)
\(14\) 1.85185 + 1.88962i 0.494927 + 0.505022i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.760877 1.31788i 0.184540 0.319632i −0.758882 0.651229i \(-0.774254\pi\)
0.943421 + 0.331596i \(0.107587\pi\)
\(18\) 0 0
\(19\) −0.641315 1.11079i −0.147128 0.254833i 0.783037 0.621975i \(-0.213670\pi\)
−0.930165 + 0.367142i \(0.880336\pi\)
\(20\) −1.59097 2.75564i −0.355752 0.616181i
\(21\) 0 0
\(22\) 1.59097 2.75564i 0.339196 0.587505i
\(23\) −2.23912 −0.466889 −0.233445 0.972370i \(-0.575000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(24\) 0 0
\(25\) 5.12476 1.02495
\(26\) 2.85185 + 4.93955i 0.559293 + 0.968725i
\(27\) 0 0
\(28\) −2.56238 + 0.658939i −0.484245 + 0.124528i
\(29\) 3.54063 + 6.13255i 0.657478 + 1.13879i 0.981266 + 0.192656i \(0.0617101\pi\)
−0.323788 + 0.946130i \(0.604957\pi\)
\(30\) 0 0
\(31\) 4.71053 + 8.15888i 0.846037 + 1.46538i 0.884718 + 0.466127i \(0.154351\pi\)
−0.0386810 + 0.999252i \(0.512316\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.760877 + 1.31788i 0.130489 + 0.226014i
\(35\) 2.26088 8.10936i 0.382158 1.37073i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 1.28263 0.208070
\(39\) 0 0
\(40\) 3.18194 0.503109
\(41\) 2.80150 4.85235i 0.437522 0.757810i −0.559976 0.828509i \(-0.689190\pi\)
0.997498 + 0.0706992i \(0.0225230\pi\)
\(42\) 0 0
\(43\) 3.41423 + 5.91362i 0.520665 + 0.901819i 0.999711 + 0.0240288i \(0.00764935\pi\)
−0.479046 + 0.877790i \(0.659017\pi\)
\(44\) 1.59097 + 2.75564i 0.239848 + 0.415429i
\(45\) 0 0
\(46\) 1.11956 1.93914i 0.165070 0.285910i
\(47\) −2.91423 + 5.04759i −0.425084 + 0.736267i −0.996428 0.0844432i \(-0.973089\pi\)
0.571344 + 0.820711i \(0.306422\pi\)
\(48\) 0 0
\(49\) −5.99028 3.62167i −0.855755 0.517381i
\(50\) −2.56238 + 4.43818i −0.362375 + 0.627653i
\(51\) 0 0
\(52\) −5.70370 −0.790960
\(53\) −1.02859 + 1.78157i −0.141288 + 0.244717i −0.927982 0.372626i \(-0.878458\pi\)
0.786694 + 0.617343i \(0.211791\pi\)
\(54\) 0 0
\(55\) −10.1248 −1.36522
\(56\) 0.710533 2.54856i 0.0949490 0.340565i
\(57\) 0 0
\(58\) −7.08126 −0.929815
\(59\) −0.562382 0.974074i −0.0732159 0.126814i 0.827093 0.562065i \(-0.189993\pi\)
−0.900309 + 0.435251i \(0.856660\pi\)
\(60\) 0 0
\(61\) −1.56238 + 2.70612i −0.200042 + 0.346484i −0.948542 0.316652i \(-0.897441\pi\)
0.748499 + 0.663135i \(0.230775\pi\)
\(62\) −9.42107 −1.19648
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 9.07442 15.7174i 1.12554 1.94950i
\(66\) 0 0
\(67\) −5.48345 9.49761i −0.669910 1.16032i −0.977929 0.208938i \(-0.932999\pi\)
0.308019 0.951380i \(-0.400334\pi\)
\(68\) −1.52175 −0.184540
\(69\) 0 0
\(70\) 5.89248 + 6.01266i 0.704286 + 0.718650i
\(71\) −8.69002 −1.03132 −0.515658 0.856794i \(-0.672452\pi\)
−0.515658 + 0.856794i \(0.672452\pi\)
\(72\) 0 0
\(73\) −2.48345 + 4.30146i −0.290666 + 0.503448i −0.973967 0.226689i \(-0.927210\pi\)
0.683302 + 0.730136i \(0.260543\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −0.641315 + 1.11079i −0.0735639 + 0.127416i
\(77\) −2.26088 + 8.10936i −0.257651 + 0.924148i
\(78\) 0 0
\(79\) 2.06922 3.58399i 0.232805 0.403231i −0.725827 0.687877i \(-0.758543\pi\)
0.958633 + 0.284646i \(0.0918762\pi\)
\(80\) −1.59097 + 2.75564i −0.177876 + 0.308090i
\(81\) 0 0
\(82\) 2.80150 + 4.85235i 0.309374 + 0.535852i
\(83\) 4.03379 + 6.98673i 0.442766 + 0.766893i 0.997894 0.0648718i \(-0.0206639\pi\)
−0.555127 + 0.831765i \(0.687331\pi\)
\(84\) 0 0
\(85\) 2.42107 4.19341i 0.262602 0.454839i
\(86\) −6.82846 −0.736332
\(87\) 0 0
\(88\) −3.18194 −0.339196
\(89\) −0.112725 0.195246i −0.0119488 0.0206960i 0.859989 0.510312i \(-0.170470\pi\)
−0.871938 + 0.489616i \(0.837137\pi\)
\(90\) 0 0
\(91\) −10.5624 10.7778i −1.10724 1.12982i
\(92\) 1.11956 + 1.93914i 0.116722 + 0.202169i
\(93\) 0 0
\(94\) −2.91423 5.04759i −0.300580 0.520620i
\(95\) −2.04063 3.53447i −0.209364 0.362629i
\(96\) 0 0
\(97\) 7.42107 + 12.8537i 0.753495 + 1.30509i 0.946119 + 0.323819i \(0.104967\pi\)
−0.192624 + 0.981273i \(0.561700\pi\)
\(98\) 6.13160 3.37690i 0.619385 0.341119i
\(99\) 0 0
\(100\) −2.56238 4.43818i −0.256238 0.443818i
\(101\) −18.5893 −1.84971 −0.924854 0.380322i \(-0.875813\pi\)
−0.924854 + 0.380322i \(0.875813\pi\)
\(102\) 0 0
\(103\) −0.282630 −0.0278484 −0.0139242 0.999903i \(-0.504432\pi\)
−0.0139242 + 0.999903i \(0.504432\pi\)
\(104\) 2.85185 4.93955i 0.279647 0.484362i
\(105\) 0 0
\(106\) −1.02859 1.78157i −0.0999055 0.173041i
\(107\) −5.68878 9.85326i −0.549955 0.952550i −0.998277 0.0586780i \(-0.981311\pi\)
0.448322 0.893872i \(-0.352022\pi\)
\(108\) 0 0
\(109\) −2.21053 + 3.82876i −0.211731 + 0.366728i −0.952256 0.305300i \(-0.901243\pi\)
0.740526 + 0.672028i \(0.234577\pi\)
\(110\) 5.06238 8.76830i 0.482679 0.836025i
\(111\) 0 0
\(112\) 1.85185 + 1.88962i 0.174983 + 0.178552i
\(113\) 1.60752 2.78431i 0.151223 0.261926i −0.780454 0.625213i \(-0.785012\pi\)
0.931677 + 0.363287i \(0.118345\pi\)
\(114\) 0 0
\(115\) −7.12476 −0.664388
\(116\) 3.54063 6.13255i 0.328739 0.569393i
\(117\) 0 0
\(118\) 1.12476 0.103543
\(119\) −2.81806 2.87553i −0.258331 0.263600i
\(120\) 0 0
\(121\) −0.875237 −0.0795670
\(122\) −1.56238 2.70612i −0.141451 0.245001i
\(123\) 0 0
\(124\) 4.71053 8.15888i 0.423018 0.732689i
\(125\) 0.396990 0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 9.07442 + 15.7174i 0.795879 + 1.37850i
\(131\) −6.36389 −0.556015 −0.278008 0.960579i \(-0.589674\pi\)
−0.278008 + 0.960579i \(0.589674\pi\)
\(132\) 0 0
\(133\) −3.28659 + 0.845174i −0.284983 + 0.0732859i
\(134\) 10.9669 0.947396
\(135\) 0 0
\(136\) 0.760877 1.31788i 0.0652446 0.113007i
\(137\) −2.74145 −0.234218 −0.117109 0.993119i \(-0.537363\pi\)
−0.117109 + 0.993119i \(0.537363\pi\)
\(138\) 0 0
\(139\) −3.98345 + 6.89953i −0.337872 + 0.585211i −0.984032 0.177991i \(-0.943040\pi\)
0.646161 + 0.763202i \(0.276374\pi\)
\(140\) −8.15335 + 2.09671i −0.689084 + 0.177204i
\(141\) 0 0
\(142\) 4.34501 7.52578i 0.364625 0.631550i
\(143\) −9.07442 + 15.7174i −0.758841 + 1.31435i
\(144\) 0 0
\(145\) 11.2661 + 19.5134i 0.935597 + 1.62050i
\(146\) −2.48345 4.30146i −0.205532 0.355991i
\(147\) 0 0
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) 23.2599 1.90553 0.952764 0.303712i \(-0.0982261\pi\)
0.952764 + 0.303712i \(0.0982261\pi\)
\(150\) 0 0
\(151\) −8.12476 −0.661184 −0.330592 0.943774i \(-0.607248\pi\)
−0.330592 + 0.943774i \(0.607248\pi\)
\(152\) −0.641315 1.11079i −0.0520175 0.0900970i
\(153\) 0 0
\(154\) −5.89248 6.01266i −0.474829 0.484514i
\(155\) 14.9887 + 25.9611i 1.20392 + 2.08525i
\(156\) 0 0
\(157\) 5.63160 + 9.75422i 0.449451 + 0.778471i 0.998350 0.0574170i \(-0.0182864\pi\)
−0.548900 + 0.835888i \(0.684953\pi\)
\(158\) 2.06922 + 3.58399i 0.164618 + 0.285127i
\(159\) 0 0
\(160\) −1.59097 2.75564i −0.125777 0.217853i
\(161\) −1.59097 + 5.70653i −0.125386 + 0.449738i
\(162\) 0 0
\(163\) −1.99028 3.44727i −0.155891 0.270011i 0.777492 0.628893i \(-0.216492\pi\)
−0.933383 + 0.358881i \(0.883158\pi\)
\(164\) −5.60301 −0.437522
\(165\) 0 0
\(166\) −8.06758 −0.626166
\(167\) −2.61956 + 4.53721i −0.202708 + 0.351100i −0.949400 0.314070i \(-0.898307\pi\)
0.746692 + 0.665170i \(0.231641\pi\)
\(168\) 0 0
\(169\) −9.76608 16.9153i −0.751237 1.30118i
\(170\) 2.42107 + 4.19341i 0.185687 + 0.321620i
\(171\) 0 0
\(172\) 3.41423 5.91362i 0.260333 0.450909i
\(173\) 1.27579 2.20974i 0.0969968 0.168003i −0.813443 0.581644i \(-0.802410\pi\)
0.910440 + 0.413641i \(0.135743\pi\)
\(174\) 0 0
\(175\) 3.64132 13.0608i 0.275258 0.987300i
\(176\) 1.59097 2.75564i 0.119924 0.207714i
\(177\) 0 0
\(178\) 0.225450 0.0168982
\(179\) −3.51887 + 6.09487i −0.263013 + 0.455552i −0.967041 0.254620i \(-0.918050\pi\)
0.704028 + 0.710172i \(0.251383\pi\)
\(180\) 0 0
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 14.6150 3.75839i 1.08334 0.278590i
\(183\) 0 0
\(184\) −2.23912 −0.165070
\(185\) 1.59097 + 2.75564i 0.116971 + 0.202599i
\(186\) 0 0
\(187\) −2.42107 + 4.19341i −0.177046 + 0.306653i
\(188\) 5.82846 0.425084
\(189\) 0 0
\(190\) 4.08126 0.296085
\(191\) 0.990285 1.71522i 0.0716545 0.124109i −0.827972 0.560769i \(-0.810505\pi\)
0.899627 + 0.436660i \(0.143839\pi\)
\(192\) 0 0
\(193\) 2.27292 + 3.93680i 0.163608 + 0.283377i 0.936160 0.351574i \(-0.114353\pi\)
−0.772552 + 0.634951i \(0.781020\pi\)
\(194\) −14.8421 −1.06560
\(195\) 0 0
\(196\) −0.141315 + 6.99857i −0.0100939 + 0.499898i
\(197\) 21.8148 1.55424 0.777120 0.629353i \(-0.216680\pi\)
0.777120 + 0.629353i \(0.216680\pi\)
\(198\) 0 0
\(199\) 6.14132 10.6371i 0.435346 0.754042i −0.561978 0.827152i \(-0.689959\pi\)
0.997324 + 0.0731106i \(0.0232926\pi\)
\(200\) 5.12476 0.362375
\(201\) 0 0
\(202\) 9.29467 16.0988i 0.653971 1.13271i
\(203\) 18.1449 4.66611i 1.27352 0.327497i
\(204\) 0 0
\(205\) 8.91423 15.4399i 0.622597 1.07837i
\(206\) 0.141315 0.244765i 0.00984589 0.0170536i
\(207\) 0 0
\(208\) 2.85185 + 4.93955i 0.197740 + 0.342496i
\(209\) 2.04063 + 3.53447i 0.141153 + 0.244485i
\(210\) 0 0
\(211\) −8.32846 + 14.4253i −0.573355 + 0.993080i 0.422863 + 0.906193i \(0.361025\pi\)
−0.996218 + 0.0868863i \(0.972308\pi\)
\(212\) 2.05718 0.141288
\(213\) 0 0
\(214\) 11.3776 0.777754
\(215\) 10.8639 + 18.8168i 0.740911 + 1.28330i
\(216\) 0 0
\(217\) 24.1404 6.20790i 1.63876 0.421420i
\(218\) −2.21053 3.82876i −0.149716 0.259316i
\(219\) 0 0
\(220\) 5.06238 + 8.76830i 0.341306 + 0.591159i
\(221\) −4.33981 7.51677i −0.291927 0.505633i
\(222\) 0 0
\(223\) −5.32846 9.22916i −0.356820 0.618031i 0.630608 0.776102i \(-0.282806\pi\)
−0.987428 + 0.158071i \(0.949472\pi\)
\(224\) −2.56238 + 0.658939i −0.171206 + 0.0440272i
\(225\) 0 0
\(226\) 1.60752 + 2.78431i 0.106931 + 0.185210i
\(227\) 14.5081 0.962935 0.481468 0.876464i \(-0.340104\pi\)
0.481468 + 0.876464i \(0.340104\pi\)
\(228\) 0 0
\(229\) 10.2495 0.677308 0.338654 0.940911i \(-0.390028\pi\)
0.338654 + 0.940911i \(0.390028\pi\)
\(230\) 3.56238 6.17023i 0.234896 0.406853i
\(231\) 0 0
\(232\) 3.54063 + 6.13255i 0.232454 + 0.402622i
\(233\) −0.540628 0.936396i −0.0354177 0.0613453i 0.847773 0.530359i \(-0.177943\pi\)
−0.883191 + 0.469014i \(0.844610\pi\)
\(234\) 0 0
\(235\) −9.27292 + 16.0612i −0.604898 + 1.04771i
\(236\) −0.562382 + 0.974074i −0.0366079 + 0.0634068i
\(237\) 0 0
\(238\) 3.89931 1.00274i 0.252755 0.0649981i
\(239\) 6.16019 10.6698i 0.398470 0.690170i −0.595068 0.803676i \(-0.702875\pi\)
0.993537 + 0.113506i \(0.0362081\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 0.437618 0.757977i 0.0281312 0.0487246i
\(243\) 0 0
\(244\) 3.12476 0.200042
\(245\) −19.0607 11.5239i −1.21775 0.736238i
\(246\) 0 0
\(247\) −7.31573 −0.465489
\(248\) 4.71053 + 8.15888i 0.299119 + 0.518090i
\(249\) 0 0
\(250\) −0.198495 + 0.343803i −0.0125539 + 0.0217440i
\(251\) −5.11109 −0.322609 −0.161305 0.986905i \(-0.551570\pi\)
−0.161305 + 0.986905i \(0.551570\pi\)
\(252\) 0 0
\(253\) 7.12476 0.447930
\(254\) −10.0527 + 17.4117i −0.630760 + 1.09251i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.66019 −0.477830 −0.238915 0.971041i \(-0.576792\pi\)
−0.238915 + 0.971041i \(0.576792\pi\)
\(258\) 0 0
\(259\) 2.56238 0.658939i 0.159219 0.0409445i
\(260\) −18.1488 −1.12554
\(261\) 0 0
\(262\) 3.18194 5.51129i 0.196581 0.340488i
\(263\) 3.09493 0.190842 0.0954208 0.995437i \(-0.469580\pi\)
0.0954208 + 0.995437i \(0.469580\pi\)
\(264\) 0 0
\(265\) −3.27292 + 5.66886i −0.201054 + 0.348235i
\(266\) 0.911351 3.26886i 0.0558785 0.200426i
\(267\) 0 0
\(268\) −5.48345 + 9.49761i −0.334955 + 0.580159i
\(269\) 13.4451 23.2877i 0.819765 1.41987i −0.0860906 0.996287i \(-0.527437\pi\)
0.905855 0.423587i \(-0.139229\pi\)
\(270\) 0 0
\(271\) −11.1082 19.2400i −0.674776 1.16875i −0.976534 0.215362i \(-0.930907\pi\)
0.301759 0.953384i \(-0.402426\pi\)
\(272\) 0.760877 + 1.31788i 0.0461349 + 0.0799080i
\(273\) 0 0
\(274\) 1.37072 2.37416i 0.0828084 0.143428i
\(275\) −16.3067 −0.983331
\(276\) 0 0
\(277\) −14.6375 −0.879482 −0.439741 0.898125i \(-0.644930\pi\)
−0.439741 + 0.898125i \(0.644930\pi\)
\(278\) −3.98345 6.89953i −0.238911 0.413807i
\(279\) 0 0
\(280\) 2.26088 8.10936i 0.135113 0.484627i
\(281\) −11.6992 20.2636i −0.697915 1.20882i −0.969188 0.246322i \(-0.920778\pi\)
0.271273 0.962502i \(-0.412555\pi\)
\(282\) 0 0
\(283\) 13.0624 + 22.6247i 0.776478 + 1.34490i 0.933960 + 0.357377i \(0.116329\pi\)
−0.157482 + 0.987522i \(0.550338\pi\)
\(284\) 4.34501 + 7.52578i 0.257829 + 0.446573i
\(285\) 0 0
\(286\) −9.07442 15.7174i −0.536582 0.929387i
\(287\) −10.3759 10.5876i −0.612471 0.624963i
\(288\) 0 0
\(289\) 7.34213 + 12.7169i 0.431890 + 0.748056i
\(290\) −22.5322 −1.32313
\(291\) 0 0
\(292\) 4.96690 0.290666
\(293\) −12.9315 + 22.3980i −0.755465 + 1.30850i 0.189678 + 0.981846i \(0.439255\pi\)
−0.945143 + 0.326657i \(0.894078\pi\)
\(294\) 0 0
\(295\) −1.78947 3.09945i −0.104187 0.180457i
\(296\) 0.500000 + 0.866025i 0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) −11.6300 + 20.1437i −0.673706 + 1.16689i
\(299\) −6.38564 + 11.0603i −0.369291 + 0.639631i
\(300\) 0 0
\(301\) 17.4971 4.49954i 1.00852 0.259349i
\(302\) 4.06238 7.03625i 0.233764 0.404891i
\(303\) 0 0
\(304\) 1.28263 0.0735639
\(305\) −4.97141 + 8.61073i −0.284662 + 0.493049i
\(306\) 0 0
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 8.15335 2.09671i 0.464580 0.119471i
\(309\) 0 0
\(310\) −29.9773 −1.70260
\(311\) 0.851848 + 1.47544i 0.0483039 + 0.0836648i 0.889166 0.457584i \(-0.151285\pi\)
−0.840863 + 0.541249i \(0.817952\pi\)
\(312\) 0 0
\(313\) 1.42107 2.46136i 0.0803234 0.139124i −0.823065 0.567947i \(-0.807738\pi\)
0.903389 + 0.428822i \(0.141071\pi\)
\(314\) −11.2632 −0.635619
\(315\) 0 0
\(316\) −4.13844 −0.232805
\(317\) −12.4601 + 21.5815i −0.699827 + 1.21214i 0.268700 + 0.963224i \(0.413406\pi\)
−0.968526 + 0.248911i \(0.919927\pi\)
\(318\) 0 0
\(319\) −11.2661 19.5134i −0.630779 1.09254i
\(320\) 3.18194 0.177876
\(321\) 0 0
\(322\) −4.14652 4.23109i −0.231076 0.235789i
\(323\) −1.95185 −0.108604
\(324\) 0 0
\(325\) 14.6150 25.3140i 0.810697 1.40417i
\(326\) 3.98057 0.220463
\(327\) 0 0
\(328\) 2.80150 4.85235i 0.154687 0.267926i
\(329\) 10.7934 + 11.0136i 0.595061 + 0.607198i
\(330\) 0 0
\(331\) 3.58577 6.21074i 0.197092 0.341373i −0.750492 0.660879i \(-0.770184\pi\)
0.947584 + 0.319506i \(0.103517\pi\)
\(332\) 4.03379 6.98673i 0.221383 0.383447i
\(333\) 0 0
\(334\) −2.61956 4.53721i −0.143336 0.248265i
\(335\) −17.4480 30.2209i −0.953287 1.65114i
\(336\) 0 0
\(337\) −10.9211 + 18.9158i −0.594908 + 1.03041i 0.398651 + 0.917103i \(0.369478\pi\)
−0.993560 + 0.113309i \(0.963855\pi\)
\(338\) 19.5322 1.06241
\(339\) 0 0
\(340\) −4.84213 −0.262602
\(341\) −14.9887 25.9611i −0.811681 1.40587i
\(342\) 0 0
\(343\) −13.4863 + 12.6933i −0.728193 + 0.685372i
\(344\) 3.41423 + 5.91362i 0.184083 + 0.318841i
\(345\) 0 0
\(346\) 1.27579 + 2.20974i 0.0685871 + 0.118796i
\(347\) −1.05555 1.82826i −0.0566646 0.0981460i 0.836302 0.548270i \(-0.184713\pi\)
−0.892966 + 0.450124i \(0.851380\pi\)
\(348\) 0 0
\(349\) 18.1082 + 31.3643i 0.969310 + 1.67889i 0.697559 + 0.716527i \(0.254269\pi\)
0.271751 + 0.962368i \(0.412397\pi\)
\(350\) 9.49028 + 9.68385i 0.507277 + 0.517623i
\(351\) 0 0
\(352\) 1.59097 + 2.75564i 0.0847991 + 0.146876i
\(353\) 10.4887 0.558255 0.279127 0.960254i \(-0.409955\pi\)
0.279127 + 0.960254i \(0.409955\pi\)
\(354\) 0 0
\(355\) −27.6512 −1.46757
\(356\) −0.112725 + 0.195246i −0.00597442 + 0.0103480i
\(357\) 0 0
\(358\) −3.51887 6.09487i −0.185978 0.322124i
\(359\) −16.2209 28.0955i −0.856108 1.48282i −0.875613 0.483013i \(-0.839542\pi\)
0.0195047 0.999810i \(-0.493791\pi\)
\(360\) 0 0
\(361\) 8.67743 15.0297i 0.456707 0.791039i
\(362\) 6.48345 11.2297i 0.340762 0.590218i
\(363\) 0 0
\(364\) −4.05267 + 14.5362i −0.212417 + 0.761904i
\(365\) −7.90219 + 13.6870i −0.413620 + 0.716410i
\(366\) 0 0
\(367\) −18.1111 −0.945391 −0.472696 0.881226i \(-0.656719\pi\)
−0.472696 + 0.881226i \(0.656719\pi\)
\(368\) 1.11956 1.93914i 0.0583612 0.101085i
\(369\) 0 0
\(370\) −3.18194 −0.165421
\(371\) 3.80959 + 3.88728i 0.197784 + 0.201818i
\(372\) 0 0
\(373\) −11.6706 −0.604280 −0.302140 0.953263i \(-0.597701\pi\)
−0.302140 + 0.953263i \(0.597701\pi\)
\(374\) −2.42107 4.19341i −0.125190 0.216836i
\(375\) 0 0
\(376\) −2.91423 + 5.04759i −0.150290 + 0.260310i
\(377\) 40.3893 2.08016
\(378\) 0 0
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) −2.04063 + 3.53447i −0.104682 + 0.181315i
\(381\) 0 0
\(382\) 0.990285 + 1.71522i 0.0506674 + 0.0877585i
\(383\) 1.64979 0.0843001 0.0421501 0.999111i \(-0.486579\pi\)
0.0421501 + 0.999111i \(0.486579\pi\)
\(384\) 0 0
\(385\) −7.19398 + 25.8035i −0.366639 + 1.31507i
\(386\) −4.54583 −0.231377
\(387\) 0 0
\(388\) 7.42107 12.8537i 0.376748 0.652546i
\(389\) 32.0676 1.62589 0.812946 0.582340i \(-0.197863\pi\)
0.812946 + 0.582340i \(0.197863\pi\)
\(390\) 0 0
\(391\) −1.70370 + 2.95089i −0.0861596 + 0.149233i
\(392\) −5.99028 3.62167i −0.302555 0.182922i
\(393\) 0 0
\(394\) −10.9074 + 18.8922i −0.549507 + 0.951773i
\(395\) 6.58414 11.4041i 0.331284 0.573800i
\(396\) 0 0
\(397\) −18.9669 32.8516i −0.951921 1.64878i −0.741261 0.671217i \(-0.765772\pi\)
−0.210660 0.977559i \(-0.567561\pi\)
\(398\) 6.14132 + 10.6371i 0.307836 + 0.533188i
\(399\) 0 0
\(400\) −2.56238 + 4.43818i −0.128119 + 0.221909i
\(401\) −10.6192 −0.530296 −0.265148 0.964208i \(-0.585421\pi\)
−0.265148 + 0.964208i \(0.585421\pi\)
\(402\) 0 0
\(403\) 53.7349 2.67673
\(404\) 9.29467 + 16.0988i 0.462427 + 0.800947i
\(405\) 0 0
\(406\) −5.03147 + 18.0470i −0.249708 + 0.895657i
\(407\) −1.59097 2.75564i −0.0788615 0.136592i
\(408\) 0 0
\(409\) −2.77292 4.80283i −0.137112 0.237485i 0.789290 0.614020i \(-0.210449\pi\)
−0.926402 + 0.376535i \(0.877115\pi\)
\(410\) 8.91423 + 15.4399i 0.440242 + 0.762522i
\(411\) 0 0
\(412\) 0.141315 + 0.244765i 0.00696209 + 0.0120587i
\(413\) −2.88207 + 0.741150i −0.141818 + 0.0364696i
\(414\) 0 0
\(415\) 12.8353 + 22.2314i 0.630060 + 1.09130i
\(416\) −5.70370 −0.279647
\(417\) 0 0
\(418\) −4.08126 −0.199621
\(419\) −2.77455 + 4.80566i −0.135546 + 0.234772i −0.925806 0.378000i \(-0.876612\pi\)
0.790260 + 0.612772i \(0.209945\pi\)
\(420\) 0 0
\(421\) −3.42107 5.92546i −0.166733 0.288789i 0.770537 0.637396i \(-0.219988\pi\)
−0.937269 + 0.348606i \(0.886655\pi\)
\(422\) −8.32846 14.4253i −0.405423 0.702213i
\(423\) 0 0
\(424\) −1.02859 + 1.78157i −0.0499527 + 0.0865207i
\(425\) 3.89931 6.75381i 0.189144 0.327608i
\(426\) 0 0
\(427\) 5.78659 + 5.90461i 0.280033 + 0.285744i
\(428\) −5.68878 + 9.85326i −0.274978 + 0.476275i
\(429\) 0 0
\(430\) −21.7278 −1.04781
\(431\) −16.5539 + 28.6722i −0.797374 + 1.38109i 0.123947 + 0.992289i \(0.460445\pi\)
−0.921321 + 0.388803i \(0.872889\pi\)
\(432\) 0 0
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) −6.69398 + 24.0101i −0.321321 + 1.15252i
\(435\) 0 0
\(436\) 4.42107 0.211731
\(437\) 1.43598 + 2.48720i 0.0686924 + 0.118979i
\(438\) 0 0
\(439\) 4.41711 7.65066i 0.210817 0.365146i −0.741153 0.671336i \(-0.765721\pi\)
0.951970 + 0.306190i \(0.0990542\pi\)
\(440\) −10.1248 −0.482679
\(441\) 0 0
\(442\) 8.67962 0.412847
\(443\) 8.75924 15.1715i 0.416164 0.720817i −0.579386 0.815053i \(-0.696708\pi\)
0.995550 + 0.0942360i \(0.0300408\pi\)
\(444\) 0 0
\(445\) −0.358685 0.621261i −0.0170033 0.0294506i
\(446\) 10.6569 0.504620
\(447\) 0 0
\(448\) 0.710533 2.54856i 0.0335695 0.120408i
\(449\) −31.2301 −1.47384 −0.736920 0.675980i \(-0.763720\pi\)
−0.736920 + 0.675980i \(0.763720\pi\)
\(450\) 0 0
\(451\) −8.91423 + 15.4399i −0.419755 + 0.727036i
\(452\) −3.21505 −0.151223
\(453\) 0 0
\(454\) −7.25404 + 12.5644i −0.340449 + 0.589675i
\(455\) −33.6089 34.2944i −1.57561 1.60775i
\(456\) 0 0
\(457\) 16.0624 27.8209i 0.751367 1.30140i −0.195794 0.980645i \(-0.562728\pi\)
0.947161 0.320760i \(-0.103938\pi\)
\(458\) −5.12476 + 8.87635i −0.239464 + 0.414765i
\(459\) 0 0
\(460\) 3.56238 + 6.17023i 0.166097 + 0.287688i
\(461\) −1.23229 2.13438i −0.0573933 0.0994081i 0.835901 0.548880i \(-0.184946\pi\)
−0.893295 + 0.449472i \(0.851612\pi\)
\(462\) 0 0
\(463\) 15.1735 26.2812i 0.705171 1.22139i −0.261459 0.965215i \(-0.584204\pi\)
0.966630 0.256177i \(-0.0824631\pi\)
\(464\) −7.08126 −0.328739
\(465\) 0 0
\(466\) 1.08126 0.0500882
\(467\) 7.98181 + 13.8249i 0.369354 + 0.639740i 0.989465 0.144774i \(-0.0462456\pi\)
−0.620110 + 0.784515i \(0.712912\pi\)
\(468\) 0 0
\(469\) −28.1014 + 7.22651i −1.29760 + 0.333689i
\(470\) −9.27292 16.0612i −0.427728 0.740846i
\(471\) 0 0
\(472\) −0.562382 0.974074i −0.0258857 0.0448354i
\(473\) −10.8639 18.8168i −0.499522 0.865198i
\(474\) 0 0
\(475\) −3.28659 5.69254i −0.150799 0.261192i
\(476\) −1.08126 + 3.87828i −0.0495593 + 0.177760i
\(477\) 0 0
\(478\) 6.16019 + 10.6698i 0.281761 + 0.488024i
\(479\) 23.1729 1.05880 0.529399 0.848373i \(-0.322418\pi\)
0.529399 + 0.848373i \(0.322418\pi\)
\(480\) 0 0
\(481\) 5.70370 0.260066
\(482\) 6.50000 11.2583i 0.296067 0.512803i
\(483\) 0 0
\(484\) 0.437618 + 0.757977i 0.0198917 + 0.0344535i
\(485\) 23.6134 + 40.8996i 1.07223 + 1.85716i
\(486\) 0 0
\(487\) 1.70658 2.95588i 0.0773323 0.133943i −0.824766 0.565474i \(-0.808693\pi\)
0.902098 + 0.431531i \(0.142026\pi\)
\(488\) −1.56238 + 2.70612i −0.0707257 + 0.122500i
\(489\) 0 0
\(490\) 19.5104 10.7451i 0.881390 0.485415i
\(491\) 9.58414 16.6002i 0.432526 0.749157i −0.564564 0.825389i \(-0.690956\pi\)
0.997090 + 0.0762323i \(0.0242890\pi\)
\(492\) 0 0
\(493\) 10.7759 0.485323
\(494\) 3.65787 6.33561i 0.164575 0.285053i
\(495\) 0 0
\(496\) −9.42107 −0.423018
\(497\) −6.17455 + 22.1470i −0.276966 + 0.993430i
\(498\) 0 0
\(499\) 41.1696 1.84301 0.921503 0.388371i \(-0.126962\pi\)
0.921503 + 0.388371i \(0.126962\pi\)
\(500\) −0.198495 0.343803i −0.00887697 0.0153754i
\(501\) 0 0
\(502\) 2.55555 4.42633i 0.114060 0.197557i
\(503\) 26.4542 1.17953 0.589767 0.807574i \(-0.299220\pi\)
0.589767 + 0.807574i \(0.299220\pi\)
\(504\) 0 0
\(505\) −59.1502 −2.63215
\(506\) −3.56238 + 6.17023i −0.158367 + 0.274300i
\(507\) 0 0
\(508\) −10.0527 17.4117i −0.446015 0.772521i
\(509\) −12.7713 −0.566077 −0.283039 0.959109i \(-0.591342\pi\)
−0.283039 + 0.959109i \(0.591342\pi\)
\(510\) 0 0
\(511\) 9.19794 + 9.38554i 0.406893 + 0.415192i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.83009 6.63392i 0.168938 0.292610i
\(515\) −0.899313 −0.0396285
\(516\) 0 0
\(517\) 9.27292 16.0612i 0.407822 0.706369i
\(518\) −0.710533 + 2.54856i −0.0312190 + 0.111977i
\(519\) 0 0
\(520\) 9.07442 15.7174i 0.397940 0.689252i
\(521\) 3.40615 5.89962i 0.149226 0.258467i −0.781716 0.623635i \(-0.785655\pi\)
0.930942 + 0.365168i \(0.118988\pi\)
\(522\) 0 0
\(523\) 14.7535 + 25.5538i 0.645125 + 1.11739i 0.984273 + 0.176656i \(0.0565280\pi\)
−0.339148 + 0.940733i \(0.610139\pi\)
\(524\) 3.18194 + 5.51129i 0.139004 + 0.240762i
\(525\) 0 0
\(526\) −1.54746 + 2.68029i −0.0674727 + 0.116866i
\(527\) 14.3365 0.624510
\(528\) 0 0
\(529\) −17.9863 −0.782014
\(530\) −3.27292 5.66886i −0.142166 0.246239i
\(531\) 0 0
\(532\) 2.37524 + 2.42368i 0.102980 + 0.105080i
\(533\) −15.9789 27.6763i −0.692125 1.19879i
\(534\) 0 0
\(535\) −18.1014 31.3525i −0.782591 1.35549i
\(536\) −5.48345 9.49761i −0.236849 0.410234i
\(537\) 0 0
\(538\) 13.4451 + 23.2877i 0.579661 + 1.00400i
\(539\) 19.0607 + 11.5239i 0.821004 + 0.496371i
\(540\) 0 0
\(541\) 14.7008 + 25.4626i 0.632038 + 1.09472i 0.987135 + 0.159892i \(0.0511145\pi\)
−0.355097 + 0.934829i \(0.615552\pi\)
\(542\) 22.2164 0.954277
\(543\) 0 0
\(544\) −1.52175 −0.0652446
\(545\) −7.03379 + 12.1829i −0.301295 + 0.521857i
\(546\) 0 0
\(547\) 17.6150 + 30.5102i 0.753165 + 1.30452i 0.946281 + 0.323344i \(0.104807\pi\)
−0.193116 + 0.981176i \(0.561859\pi\)
\(548\) 1.37072 + 2.37416i 0.0585544 + 0.101419i
\(549\) 0 0
\(550\) 8.15335 14.1220i 0.347660 0.602165i
\(551\) 4.54132 7.86579i 0.193467 0.335094i
\(552\) 0 0
\(553\) −7.66376 7.82007i −0.325896 0.332543i
\(554\) 7.31875 12.6764i 0.310944 0.538570i
\(555\) 0 0
\(556\) 7.96690 0.337872
\(557\) 3.36909 5.83543i 0.142753 0.247255i −0.785779 0.618507i \(-0.787738\pi\)
0.928532 + 0.371252i \(0.121071\pi\)
\(558\) 0 0
\(559\) 38.9475 1.64730
\(560\) 5.89248 + 6.01266i 0.249003 + 0.254081i
\(561\) 0 0
\(562\) 23.3984 0.987001
\(563\) −0.729964 1.26433i −0.0307643 0.0532853i 0.850233 0.526406i \(-0.176461\pi\)
−0.880998 + 0.473121i \(0.843127\pi\)
\(564\) 0 0
\(565\) 5.11505 8.85952i 0.215192 0.372723i
\(566\) −26.1248 −1.09811
\(567\) 0 0
\(568\) −8.69002 −0.364625
\(569\) 9.78263 16.9440i 0.410109 0.710330i −0.584792 0.811183i \(-0.698824\pi\)
0.994901 + 0.100853i \(0.0321573\pi\)
\(570\) 0 0
\(571\) 10.9629 + 18.9884i 0.458785 + 0.794638i 0.998897 0.0469545i \(-0.0149516\pi\)
−0.540112 + 0.841593i \(0.681618\pi\)
\(572\) 18.1488 0.758841
\(573\) 0 0
\(574\) 14.3571 3.69204i 0.599252 0.154103i
\(575\) −11.4750 −0.478540
\(576\) 0 0
\(577\) 12.3655 21.4177i 0.514783 0.891631i −0.485069 0.874476i \(-0.661206\pi\)
0.999853 0.0171554i \(-0.00546099\pi\)
\(578\) −14.6843 −0.610785
\(579\) 0 0
\(580\) 11.2661 19.5134i 0.467798 0.810251i
\(581\) 20.6722 5.31604i 0.857629 0.220547i
\(582\) 0 0
\(583\) 3.27292 5.66886i 0.135550 0.234780i
\(584\) −2.48345 + 4.30146i −0.102766 + 0.177996i
\(585\) 0 0
\(586\) −12.9315 22.3980i −0.534194 0.925251i
\(587\) 18.0796 + 31.3148i 0.746226 + 1.29250i 0.949620 + 0.313404i \(0.101469\pi\)
−0.203394 + 0.979097i \(0.565197\pi\)
\(588\) 0 0
\(589\) 6.04187 10.4648i 0.248951 0.431196i
\(590\) 3.57893 0.147342
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 7.55391 + 13.0838i 0.310202 + 0.537285i 0.978406 0.206693i \(-0.0662700\pi\)
−0.668204 + 0.743978i \(0.732937\pi\)
\(594\) 0 0
\(595\) −8.96690 9.14978i −0.367607 0.375105i
\(596\) −11.6300 20.1437i −0.476382 0.825118i
\(597\) 0 0
\(598\) −6.38564 11.0603i −0.261128 0.452287i
\(599\) −2.72708 4.72345i −0.111426 0.192995i 0.804920 0.593384i \(-0.202208\pi\)
−0.916345 + 0.400389i \(0.868875\pi\)
\(600\) 0 0
\(601\) −3.36840 5.83424i −0.137400 0.237984i 0.789112 0.614250i \(-0.210541\pi\)
−0.926512 + 0.376266i \(0.877208\pi\)
\(602\) −4.85185 + 17.4027i −0.197747 + 0.709282i
\(603\) 0 0
\(604\) 4.06238 + 7.03625i 0.165296 + 0.286301i
\(605\) −2.78495 −0.113224
\(606\) 0 0
\(607\) 6.67059 0.270751 0.135376 0.990794i \(-0.456776\pi\)
0.135376 + 0.990794i \(0.456776\pi\)
\(608\) −0.641315 + 1.11079i −0.0260088 + 0.0450485i
\(609\) 0 0
\(610\) −4.97141 8.61073i −0.201287 0.348638i
\(611\) 16.6219 + 28.7899i 0.672449 + 1.16472i
\(612\) 0 0
\(613\) 0.654988 1.13447i 0.0264547 0.0458209i −0.852495 0.522735i \(-0.824912\pi\)
0.878950 + 0.476915i \(0.158245\pi\)
\(614\) −1.76608 + 3.05894i −0.0712731 + 0.123449i
\(615\) 0 0
\(616\) −2.26088 + 8.10936i −0.0910933 + 0.326736i
\(617\) −17.2483 + 29.8749i −0.694390 + 1.20272i 0.275996 + 0.961159i \(0.410992\pi\)
−0.970386 + 0.241560i \(0.922341\pi\)
\(618\) 0 0
\(619\) −16.4484 −0.661118 −0.330559 0.943785i \(-0.607237\pi\)
−0.330559 + 0.943785i \(0.607237\pi\)
\(620\) 14.9887 25.9611i 0.601959 1.04262i
\(621\) 0 0
\(622\) −1.70370 −0.0683120
\(623\) −0.577690 + 0.148558i −0.0231446 + 0.00595184i
\(624\) 0 0
\(625\) −24.3606 −0.974425
\(626\) 1.42107 + 2.46136i 0.0567972 + 0.0983757i
\(627\) 0 0
\(628\) 5.63160 9.75422i 0.224725 0.389236i
\(629\) 1.52175 0.0606763
\(630\) 0 0
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) 2.06922 3.58399i 0.0823091 0.142564i
\(633\) 0 0
\(634\) −12.4601 21.5815i −0.494852 0.857109i
\(635\) 63.9740 2.53873
\(636\) 0 0
\(637\) −34.9728 + 19.2608i −1.38567 + 0.763142i
\(638\) 22.5322 0.892057
\(639\) 0 0
\(640\) −1.59097 + 2.75564i −0.0628887 + 0.108926i
\(641\) −27.8993 −1.10196 −0.550978 0.834520i \(-0.685745\pi\)
−0.550978 + 0.834520i \(0.685745\pi\)
\(642\) 0 0
\(643\) 14.2524 24.6859i 0.562060 0.973516i −0.435257 0.900306i \(-0.643342\pi\)
0.997317 0.0732100i \(-0.0233243\pi\)
\(644\) 5.73749 1.47544i 0.226089 0.0581407i
\(645\) 0 0
\(646\) 0.975923 1.69035i 0.0383972 0.0665059i
\(647\) −8.35705 + 14.4748i −0.328550 + 0.569065i −0.982224 0.187711i \(-0.939893\pi\)
0.653675 + 0.756776i \(0.273226\pi\)
\(648\) 0 0
\(649\) 1.78947 + 3.09945i 0.0702427 + 0.121664i
\(650\) 14.6150 + 25.3140i 0.573249 + 0.992897i
\(651\) 0 0
\(652\) −1.99028 + 3.44727i −0.0779456 + 0.135006i
\(653\) −38.1650 −1.49351 −0.746756 0.665098i \(-0.768390\pi\)
−0.746756 + 0.665098i \(0.768390\pi\)
\(654\) 0 0
\(655\) −20.2495 −0.791214
\(656\) 2.80150 + 4.85235i 0.109380 + 0.189452i
\(657\) 0 0
\(658\) −14.9347 + 3.84060i −0.582217 + 0.149722i
\(659\) −4.37072 7.57031i −0.170259 0.294898i 0.768251 0.640148i \(-0.221127\pi\)
−0.938510 + 0.345251i \(0.887794\pi\)
\(660\) 0 0
\(661\) 10.0419 + 17.3930i 0.390584 + 0.676511i 0.992527 0.122028i \(-0.0389399\pi\)
−0.601943 + 0.798539i \(0.705607\pi\)
\(662\) 3.58577 + 6.21074i 0.139365 + 0.241387i
\(663\) 0 0
\(664\) 4.03379 + 6.98673i 0.156541 + 0.271138i
\(665\) −10.4577 + 2.68930i −0.405534 + 0.104286i
\(666\) 0 0
\(667\) −7.92790 13.7315i −0.306970 0.531687i
\(668\) 5.23912 0.202708
\(669\) 0 0
\(670\) 34.8960 1.34815
\(671\) 4.97141 8.61073i 0.191919 0.332414i
\(672\) 0 0
\(673\) −17.0264 29.4906i −0.656319 1.13678i −0.981561 0.191148i \(-0.938779\pi\)
0.325242 0.945631i \(-0.394554\pi\)
\(674\) −10.9211 18.9158i −0.420664 0.728611i
\(675\) 0 0
\(676\) −9.76608 + 16.9153i −0.375618 + 0.650590i
\(677\) −0.358685 + 0.621261i −0.0137854 + 0.0238770i −0.872836 0.488014i \(-0.837721\pi\)
0.859050 + 0.511891i \(0.171055\pi\)
\(678\) 0 0
\(679\) 38.0312 9.78005i 1.45950 0.375324i
\(680\) 2.42107 4.19341i 0.0928437 0.160810i
\(681\) 0 0
\(682\) 29.9773 1.14789
\(683\) 10.5270 18.2332i 0.402803 0.697675i −0.591260 0.806481i \(-0.701369\pi\)
0.994063 + 0.108806i \(0.0347027\pi\)
\(684\) 0 0
\(685\) −8.72313 −0.333294
\(686\) −4.24953 18.0261i −0.162248 0.688241i
\(687\) 0 0
\(688\) −6.82846 −0.260333
\(689\) 5.86677 + 10.1615i 0.223506 + 0.387124i
\(690\) 0 0
\(691\) −2.92395 + 5.06442i −0.111232 + 0.192660i −0.916267 0.400567i \(-0.868813\pi\)
0.805035 + 0.593227i \(0.202146\pi\)
\(692\) −2.55159 −0.0969968
\(693\) 0 0
\(694\) 2.11109 0.0801359
\(695\) −12.6751 + 21.9539i −0.480794 + 0.832760i
\(696\) 0 0
\(697\) −4.26320 7.38408i −0.161480 0.279692i
\(698\) −36.2164 −1.37081
\(699\) 0 0
\(700\) −13.1316 + 3.37690i −0.496328 + 0.127635i
\(701\) −10.2711 −0.387935 −0.193967 0.981008i \(-0.562136\pi\)
−0.193967 + 0.981008i \(0.562136\pi\)
\(702\) 0 0
\(703\) 0.641315 1.11079i 0.0241877 0.0418942i
\(704\) −3.18194 −0.119924
\(705\) 0 0
\(706\) −5.24433 + 9.08344i −0.197373 + 0.341860i
\(707\) −13.2083 + 47.3760i −0.496751 + 1.78176i
\(708\) 0 0
\(709\) −21.7427 + 37.6594i −0.816564 + 1.41433i 0.0916356 + 0.995793i \(0.470790\pi\)
−0.908200 + 0.418538i \(0.862543\pi\)
\(710\) 13.8256 23.9466i 0.518865 0.898700i
\(711\) 0 0
\(712\) −0.112725 0.195246i −0.00422455 0.00731714i
\(713\) −10.5475 18.2687i −0.395006 0.684170i
\(714\) 0 0
\(715\) −28.8743 + 50.0117i −1.07984 + 1.87033i
\(716\) 7.03775 0.263013
\(717\) 0 0
\(718\) 32.4419 1.21072
\(719\) −25.4412 44.0654i −0.948796 1.64336i −0.747966 0.663737i \(-0.768969\pi\)
−0.200830 0.979626i \(-0.564364\pi\)
\(720\) 0 0
\(721\) −0.200818 + 0.720299i −0.00747886 + 0.0268253i
\(722\) 8.67743 + 15.0297i 0.322941 + 0.559349i
\(723\) 0 0
\(724\) 6.48345 + 11.2297i 0.240955 + 0.417347i
\(725\) 18.1449 + 31.4279i 0.673884 + 1.16720i
\(726\) 0 0
\(727\) 6.07210 + 10.5172i 0.225202 + 0.390061i 0.956380 0.292126i \(-0.0943626\pi\)
−0.731178 + 0.682186i \(0.761029\pi\)
\(728\) −10.5624 10.7778i −0.391468 0.399452i
\(729\) 0 0
\(730\) −7.90219 13.6870i −0.292473 0.506579i
\(731\) 10.3912 0.384334
\(732\) 0 0
\(733\) −46.1696 −1.70531 −0.852657 0.522470i \(-0.825011\pi\)
−0.852657 + 0.522470i \(0.825011\pi\)
\(734\) 9.05555 15.6847i 0.334246 0.578932i
\(735\) 0 0
\(736\) 1.11956 + 1.93914i 0.0412676 + 0.0714776i
\(737\) 17.4480 + 30.2209i 0.642706 + 1.11320i
\(738\) 0 0
\(739\) −2.49604 + 4.32327i −0.0918184 + 0.159034i −0.908276 0.418371i \(-0.862601\pi\)
0.816458 + 0.577405i \(0.195935\pi\)
\(740\) 1.59097 2.75564i 0.0584853 0.101299i
\(741\) 0 0
\(742\) −5.27128 + 1.35556i −0.193515 + 0.0497640i
\(743\) 15.7060 27.2036i 0.576198 0.998004i −0.419712 0.907657i \(-0.637869\pi\)
0.995910 0.0903470i \(-0.0287976\pi\)
\(744\) 0 0
\(745\) 74.0118 2.71158
\(746\) 5.83530 10.1070i 0.213645 0.370045i
\(747\) 0 0
\(748\) 4.84213 0.177046
\(749\) −29.1537 + 7.49711i −1.06525 + 0.273939i
\(750\) 0 0
\(751\) 3.29630 0.120284 0.0601419 0.998190i \(-0.480845\pi\)
0.0601419 + 0.998190i \(0.480845\pi\)
\(752\) −2.91423 5.04759i −0.106271 0.184067i
\(753\) 0 0
\(754\) −20.1947 + 34.9782i −0.735447 + 1.27383i
\(755\) −25.8525 −0.940870
\(756\) 0 0
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) −7.13448 + 12.3573i −0.259136 + 0.448837i
\(759\) 0 0
\(760\) −2.04063 3.53447i −0.0740214 0.128209i
\(761\) −14.0676 −0.509950 −0.254975 0.966948i \(-0.582067\pi\)
−0.254975 + 0.966948i \(0.582067\pi\)
\(762\) 0 0
\(763\) 8.18715 + 8.35413i 0.296395 + 0.302440i
\(764\) −1.98057 −0.0716545
\(765\) 0 0
\(766\) −0.824893 + 1.42876i −0.0298046 + 0.0516231i
\(767\) −6.41531 −0.231643
\(768\) 0 0
\(769\) 11.3461 19.6520i 0.409151 0.708669i −0.585644 0.810568i \(-0.699158\pi\)
0.994795 + 0.101899i \(0.0324918\pi\)
\(770\) −18.7495 19.1319i −0.675686 0.689467i
\(771\) 0 0
\(772\) 2.27292 3.93680i 0.0818040 0.141689i
\(773\) −0.327772 + 0.567717i −0.0117891 + 0.0204194i −0.871860 0.489756i \(-0.837086\pi\)
0.860071 + 0.510175i \(0.170419\pi\)
\(774\) 0 0
\(775\) 24.1404 + 41.8123i 0.867148 + 1.50194i
\(776\) 7.42107 + 12.8537i 0.266401 + 0.461420i
\(777\) 0 0
\(778\) −16.0338 + 27.7713i −0.574839 + 0.995651i
\(779\) −7.18659 −0.257486
\(780\) 0 0
\(781\) 27.6512 0.989436
\(782\) −1.70370 2.95089i −0.0609241 0.105524i
\(783\) 0 0
\(784\) 6.13160 3.37690i 0.218986 0.120604i
\(785\) 17.9194 + 31.0374i 0.639572 + 1.10777i
\(786\) 0 0
\(787\) −0.270036 0.467717i −0.00962576 0.0166723i 0.861172 0.508313i \(-0.169731\pi\)
−0.870798 + 0.491641i \(0.836397\pi\)
\(788\) −10.9074 18.8922i −0.388560 0.673005i
\(789\) 0 0
\(790\) 6.58414 + 11.4041i 0.234253 + 0.405738i
\(791\) −5.95378 6.07521i −0.211692 0.216010i
\(792\) 0 0
\(793\) 8.91135 + 15.4349i 0.316451 + 0.548110i
\(794\) 37.9338 1.34622
\(795\) 0 0
\(796\) −12.2826 −0.435346
\(797\) 12.5550 21.7459i 0.444721 0.770279i −0.553312 0.832974i \(-0.686636\pi\)
0.998033 + 0.0626954i \(0.0199697\pi\)
\(798\) 0 0
\(799\) 4.43474 + 7.68119i 0.156890 + 0.271741i
\(800\) −2.56238 4.43818i −0.0905939 0.156913i
\(801\) 0 0
\(802\) 5.30959 9.19647i 0.187488 0.324739i
\(803\) 7.90219 13.6870i 0.278862 0.483004i
\(804\) 0 0
\(805\) −5.06238 + 18.1579i −0.178426 + 0.639981i
\(806\) −26.8675 + 46.5358i −0.946366 + 1.63915i
\(807\) 0 0
\(808\) −18.5893 −0.653971
\(809\) 14.5865 25.2645i 0.512833 0.888252i −0.487057 0.873370i \(-0.661929\pi\)
0.999889 0.0148817i \(-0.00473717\pi\)
\(810\) 0 0
\(811\) −15.4290 −0.541785 −0.270892 0.962610i \(-0.587319\pi\)
−0.270892 + 0.962610i \(0.587319\pi\)
\(812\) −13.1134 13.3809i −0.460191 0.469577i
\(813\) 0 0
\(814\) 3.18194 0.111527
\(815\) −6.33297 10.9690i −0.221834 0.384228i
\(816\) 0 0
\(817\) 4.37919 7.58499i 0.153209 0.265365i
\(818\) 5.54583 0.193905
\(819\) 0 0
\(820\) −17.8285 −0.622597
\(821\) 4.24364 7.35019i 0.148104 0.256524i −0.782423 0.622748i \(-0.786016\pi\)
0.930527 + 0.366224i \(0.119350\pi\)
\(822\) 0 0
\(823\) −14.5487 25.1991i −0.507136 0.878385i −0.999966 0.00825976i \(-0.997371\pi\)
0.492830 0.870126i \(-0.335963\pi\)
\(824\) −0.282630 −0.00984589
\(825\) 0 0
\(826\) 0.799182 2.86652i 0.0278071 0.0997391i
\(827\) 25.9396 0.902007 0.451003 0.892522i \(-0.351066\pi\)
0.451003 + 0.892522i \(0.351066\pi\)
\(828\) 0 0
\(829\) 3.10821 5.38358i 0.107953 0.186979i −0.806988 0.590568i \(-0.798904\pi\)
0.914941 + 0.403588i \(0.132237\pi\)
\(830\) −25.6706 −0.891039
\(831\) 0 0
\(832\) 2.85185 4.93955i 0.0988701 0.171248i
\(833\) −9.33078 + 5.13882i −0.323292 + 0.178049i
\(834\) 0 0
\(835\) −8.33530 + 14.4372i −0.288455 + 0.499618i
\(836\) 2.04063 3.53447i 0.0705766 0.122242i
\(837\) 0 0
\(838\) −2.77455 4.80566i −0.0958452 0.166009i
\(839\) −21.2947 36.8834i −0.735174 1.27336i −0.954647 0.297740i \(-0.903767\pi\)
0.219474 0.975618i \(-0.429566\pi\)
\(840\) 0 0
\(841\) −10.5721 + 18.3114i −0.364555 + 0.631428i
\(842\) 6.84213 0.235795
\(843\) 0 0
\(844\) 16.6569 0.573355
\(845\) −31.0751 53.8237i −1.06902 1.85159i
\(846\) 0 0
\(847\) −0.621885 + 2.23059i −0.0213682 + 0.0766440i
\(848\) −1.02859 1.78157i −0.0353219 0.0611794i
\(849\) 0 0
\(850\) 3.89931 + 6.75381i 0.133745 + 0.231654i
\(851\) −1.11956 1.93914i −0.0383781 0.0664728i
\(852\) 0 0
\(853\) −10.6969 18.5275i −0.366254 0.634370i 0.622723 0.782442i \(-0.286026\pi\)
−0.988976 + 0.148073i \(0.952693\pi\)
\(854\) −8.00684 + 2.05903i −0.273988 + 0.0704585i
\(855\) 0 0
\(856\) −5.68878 9.85326i −0.194438 0.336777i
\(857\) 36.8435 1.25855 0.629275 0.777183i \(-0.283352\pi\)
0.629275 + 0.777183i \(0.283352\pi\)
\(858\) 0 0
\(859\) −17.6375 −0.601783 −0.300892 0.953658i \(-0.597284\pi\)
−0.300892 + 0.953658i \(0.597284\pi\)
\(860\) 10.8639 18.8168i 0.370455 0.641648i
\(861\) 0 0
\(862\) −16.5539 28.6722i −0.563828 0.976579i
\(863\) 0.380438 + 0.658939i 0.0129503 + 0.0224305i 0.872428 0.488743i \(-0.162544\pi\)
−0.859478 + 0.511173i \(0.829211\pi\)
\(864\) 0 0
\(865\) 4.05950 7.03127i 0.138027 0.239070i
\(866\) 6.05555 10.4885i 0.205776 0.356414i
\(867\) 0 0
\(868\) −17.4464 17.8022i −0.592169 0.604247i
\(869\) −6.58414 + 11.4041i −0.223351 + 0.386856i
\(870\) 0 0
\(871\) −62.5519 −2.11949
\(872\) −2.21053 + 3.82876i −0.0748581 + 0.129658i
\(873\) 0 0
\(874\) −2.87197 −0.0971457
\(875\) 0.282075 1.01175i 0.00953586 0.0342035i
\(876\) 0 0
\(877\) −41.4991 −1.40132 −0.700662 0.713494i \(-0.747112\pi\)
−0.700662 + 0.713494i \(0.747112\pi\)
\(878\) 4.41711 + 7.65066i 0.149070 + 0.258197i
\(879\) 0 0
\(880\) 5.06238 8.76830i 0.170653 0.295579i
\(881\) −8.35486 −0.281482 −0.140741 0.990046i \(-0.544949\pi\)
−0.140741 + 0.990046i \(0.544949\pi\)
\(882\) 0 0
\(883\) 35.6181 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(884\) −4.33981 + 7.51677i −0.145964 + 0.252816i
\(885\) 0 0
\(886\) 8.75924 + 15.1715i 0.294272 + 0.509695i
\(887\) 37.1100 1.24603 0.623016 0.782209i \(-0.285907\pi\)
0.623016 + 0.782209i \(0.285907\pi\)
\(888\) 0 0
\(889\) 14.2855 51.2396i 0.479121 1.71852i
\(890\) 0.717370 0.0240463
\(891\) 0 0
\(892\) −5.32846 + 9.22916i −0.178410 + 0.309015i
\(893\) 7.47576 0.250167
\(894\) 0 0
\(895\) −11.1969 + 19.3935i −0.374270 + 0.648254i
\(896\) 1.85185 + 1.88962i 0.0618659 + 0.0631277i
\(897\) 0 0
\(898\) 15.6150 27.0461i 0.521081 0.902539i
\(899\) −33.3565 + 57.7751i −1.11250 + 1.92691i
\(900\) 0 0
\(901\) 1.56526 + 2.71111i 0.0521464 + 0.0903202i
\(902\) −8.91423 15.4399i −0.296811 0.514092i
\(903\) 0 0
\(904\) 1.60752 2.78431i 0.0534654 0.0926048i
\(905\) −41.2599 −1.37153
\(906\) 0 0
\(907\) −48.1502 −1.59880 −0.799401 0.600798i \(-0.794850\pi\)
−0.799401 + 0.600798i \(0.794850\pi\)
\(908\) −7.25404 12.5644i −0.240734 0.416963i
\(909\) 0 0
\(910\) 46.5043 11.9590i 1.54160 0.396436i
\(911\) −17.4428 30.2119i −0.577906 1.00096i −0.995719 0.0924301i \(-0.970537\pi\)
0.417813 0.908533i \(-0.362797\pi\)
\(912\) 0 0
\(913\) −12.8353 22.2314i −0.424786 0.735751i
\(914\) 16.0624 + 27.8209i 0.531296 + 0.920232i
\(915\) 0 0
\(916\) −5.12476 8.87635i −0.169327 0.293283i
\(917\) −4.52175 + 16.2187i −0.149321 + 0.535590i
\(918\) 0 0
\(919\) −25.8675 44.8037i −0.853289 1.47794i −0.878224 0.478250i \(-0.841271\pi\)
0.0249351 0.999689i \(-0.492062\pi\)
\(920\) −7.12476 −0.234896
\(921\) 0 0
\(922\) 2.46457 0.0811664
\(923\) −24.7826 + 42.9248i −0.815730 + 1.41289i
\(924\) 0 0
\(925\) 2.56238 + 4.43818i 0.0842506 + 0.145926i
\(926\) 15.1735 + 26.2812i 0.498631 + 0.863655i
\(927\) 0 0
\(928\) 3.54063 6.13255i 0.116227 0.201311i
\(929\) −25.4142 + 44.0187i −0.833814 + 1.44421i 0.0611787 + 0.998127i \(0.480514\pi\)
−0.894993 + 0.446081i \(0.852819\pi\)
\(930\) 0 0
\(931\) −0.181255 + 8.97658i −0.00594039 + 0.294196i
\(932\) −0.540628 + 0.936396i −0.0177089 + 0.0306727i
\(933\) 0 0
\(934\) −15.9636 −0.522346
\(935\) −7.70370 + 13.3432i −0.251938 + 0.436369i
\(936\) 0 0
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) 7.79235 27.9498i 0.254429 0.912592i
\(939\) 0 0
\(940\) 18.5458 0.604898
\(941\) 0.578933 + 1.00274i 0.0188727 + 0.0326885i 0.875308 0.483567i \(-0.160659\pi\)
−0.856435 + 0.516255i \(0.827326\pi\)
\(942\) 0 0
\(943\) −6.27292 + 10.8650i −0.204274 + 0.353813i
\(944\) 1.12476 0.0366079
\(945\) 0 0
\(946\) 21.7278 0.706431
\(947\) 4.90739 8.49985i 0.159469 0.276208i −0.775208 0.631706i \(-0.782355\pi\)
0.934677 + 0.355497i \(0.115689\pi\)
\(948\) 0 0
\(949\) 14.1648 + 24.5342i 0.459810 + 0.796414i
\(950\) 6.57318 0.213262
\(951\) 0 0
\(952\) −2.81806 2.87553i −0.0913337 0.0931966i
\(953\) −6.53791 −0.211784 −0.105892 0.994378i \(-0.533770\pi\)
−0.105892 + 0.994378i \(0.533770\pi\)
\(954\) 0 0
\(955\) 3.15103 5.45774i 0.101965 0.176608i
\(956\) −12.3204 −0.398470
\(957\) 0 0
\(958\) −11.5865 + 20.0683i −0.374341 + 0.648378i
\(959\) −1.94789 + 6.98673i −0.0629006 + 0.225613i
\(960\) 0 0
\(961\) −28.8782 + 50.0186i −0.931556 + 1.61350i
\(962\) −2.85185 + 4.93955i −0.0919473 + 0.159257i
\(963\) 0 0
\(964\) 6.50000 + 11.2583i 0.209351 + 0.362606i
\(965\) 7.23229 + 12.5267i 0.232816 + 0.403248i
\(966\) 0 0
\(967\) 14.4445 25.0185i 0.464502 0.804542i −0.534677 0.845057i \(-0.679567\pi\)
0.999179 + 0.0405151i \(0.0128999\pi\)
\(968\) −0.875237 −0.0281312
\(969\) 0 0
\(970\) −47.2268 −1.51636
\(971\) −2.66827 4.62158i −0.0856289 0.148314i 0.820030 0.572320i \(-0.193957\pi\)
−0.905659 + 0.424007i \(0.860623\pi\)
\(972\) 0 0
\(973\) 14.7535 + 15.0544i 0.472975 + 0.482622i
\(974\) 1.70658 + 2.95588i 0.0546822 + 0.0947124i
\(975\) 0 0
\(976\) −1.56238 2.70612i −0.0500106 0.0866209i
\(977\) −24.0361 41.6318i −0.768983 1.33192i −0.938115 0.346325i \(-0.887429\pi\)
0.169131 0.985594i \(-0.445904\pi\)
\(978\) 0 0
\(979\) 0.358685 + 0.621261i 0.0114636 + 0.0198556i
\(980\) −0.449657 + 22.2691i −0.0143638 + 0.711359i
\(981\) 0 0
\(982\) 9.58414 + 16.6002i 0.305842 + 0.529734i
\(983\) −29.4627 −0.939714 −0.469857 0.882743i \(-0.655694\pi\)
−0.469857 + 0.882743i \(0.655694\pi\)
\(984\) 0 0
\(985\) 69.4134 2.21170
\(986\) −5.38796 + 9.33223i −0.171588 + 0.297199i
\(987\) 0 0
\(988\) 3.65787 + 6.33561i 0.116372 + 0.201563i
\(989\) −7.64488 13.2413i −0.243093 0.421050i
\(990\) 0 0
\(991\) 15.4142 26.6982i 0.489649 0.848097i −0.510280 0.860008i \(-0.670458\pi\)
0.999929 + 0.0119112i \(0.00379153\pi\)
\(992\) 4.71053 8.15888i 0.149560 0.259045i
\(993\) 0 0
\(994\) −16.0926 16.4208i −0.510426 0.520837i
\(995\) 19.5413 33.8466i 0.619501 1.07301i
\(996\) 0 0
\(997\) 5.54583 0.175638 0.0878191 0.996136i \(-0.472010\pi\)
0.0878191 + 0.996136i \(0.472010\pi\)
\(998\) −20.5848 + 35.6540i −0.651601 + 1.12861i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.2.h.c.361.3 6
3.2 odd 2 126.2.h.d.67.1 yes 6
4.3 odd 2 3024.2.t.h.1873.3 6
7.2 even 3 378.2.e.d.37.1 6
7.3 odd 6 2646.2.f.m.1765.3 6
7.4 even 3 2646.2.f.l.1765.1 6
7.5 odd 6 2646.2.e.p.1549.3 6
7.6 odd 2 2646.2.h.o.361.1 6
9.2 odd 6 126.2.e.c.25.3 6
9.4 even 3 1134.2.g.l.487.1 6
9.5 odd 6 1134.2.g.m.487.3 6
9.7 even 3 378.2.e.d.235.1 6
12.11 even 2 1008.2.t.h.193.3 6
21.2 odd 6 126.2.e.c.121.3 yes 6
21.5 even 6 882.2.e.o.373.1 6
21.11 odd 6 882.2.f.n.589.2 6
21.17 even 6 882.2.f.o.589.2 6
21.20 even 2 882.2.h.p.67.3 6
28.23 odd 6 3024.2.q.g.2305.1 6
36.7 odd 6 3024.2.q.g.2881.1 6
36.11 even 6 1008.2.q.g.529.1 6
63.2 odd 6 126.2.h.d.79.1 yes 6
63.4 even 3 7938.2.a.ca.1.3 3
63.11 odd 6 882.2.f.n.295.2 6
63.16 even 3 inner 378.2.h.c.289.3 6
63.20 even 6 882.2.e.o.655.1 6
63.23 odd 6 1134.2.g.m.163.3 6
63.25 even 3 2646.2.f.l.883.1 6
63.31 odd 6 7938.2.a.bz.1.1 3
63.32 odd 6 7938.2.a.bv.1.1 3
63.34 odd 6 2646.2.e.p.2125.3 6
63.38 even 6 882.2.f.o.295.2 6
63.47 even 6 882.2.h.p.79.3 6
63.52 odd 6 2646.2.f.m.883.3 6
63.58 even 3 1134.2.g.l.163.1 6
63.59 even 6 7938.2.a.bw.1.3 3
63.61 odd 6 2646.2.h.o.667.1 6
84.23 even 6 1008.2.q.g.625.1 6
252.79 odd 6 3024.2.t.h.289.3 6
252.191 even 6 1008.2.t.h.961.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 9.2 odd 6
126.2.e.c.121.3 yes 6 21.2 odd 6
126.2.h.d.67.1 yes 6 3.2 odd 2
126.2.h.d.79.1 yes 6 63.2 odd 6
378.2.e.d.37.1 6 7.2 even 3
378.2.e.d.235.1 6 9.7 even 3
378.2.h.c.289.3 6 63.16 even 3 inner
378.2.h.c.361.3 6 1.1 even 1 trivial
882.2.e.o.373.1 6 21.5 even 6
882.2.e.o.655.1 6 63.20 even 6
882.2.f.n.295.2 6 63.11 odd 6
882.2.f.n.589.2 6 21.11 odd 6
882.2.f.o.295.2 6 63.38 even 6
882.2.f.o.589.2 6 21.17 even 6
882.2.h.p.67.3 6 21.20 even 2
882.2.h.p.79.3 6 63.47 even 6
1008.2.q.g.529.1 6 36.11 even 6
1008.2.q.g.625.1 6 84.23 even 6
1008.2.t.h.193.3 6 12.11 even 2
1008.2.t.h.961.3 6 252.191 even 6
1134.2.g.l.163.1 6 63.58 even 3
1134.2.g.l.487.1 6 9.4 even 3
1134.2.g.m.163.3 6 63.23 odd 6
1134.2.g.m.487.3 6 9.5 odd 6
2646.2.e.p.1549.3 6 7.5 odd 6
2646.2.e.p.2125.3 6 63.34 odd 6
2646.2.f.l.883.1 6 63.25 even 3
2646.2.f.l.1765.1 6 7.4 even 3
2646.2.f.m.883.3 6 63.52 odd 6
2646.2.f.m.1765.3 6 7.3 odd 6
2646.2.h.o.361.1 6 7.6 odd 2
2646.2.h.o.667.1 6 63.61 odd 6
3024.2.q.g.2305.1 6 28.23 odd 6
3024.2.q.g.2881.1 6 36.7 odd 6
3024.2.t.h.289.3 6 252.79 odd 6
3024.2.t.h.1873.3 6 4.3 odd 2
7938.2.a.bv.1.1 3 63.32 odd 6
7938.2.a.bw.1.3 3 63.59 even 6
7938.2.a.bz.1.1 3 63.31 odd 6
7938.2.a.ca.1.3 3 63.4 even 3