Properties

Label 378.2.h.c.289.1
Level $378$
Weight $2$
Character 378.289
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(289,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 378.289
Dual form 378.2.h.c.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} -1.58836 q^{5} +(-2.64400 + 0.0963576i) q^{7} +1.00000 q^{8} +(0.794182 + 1.37556i) q^{10} +1.58836 q^{11} +(2.40545 + 4.16635i) q^{13} +(1.40545 + 2.24159i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.69963 + 4.67589i) q^{17} +(-3.54944 + 6.14781i) q^{19} +(0.794182 - 1.37556i) q^{20} +(-0.794182 - 1.37556i) q^{22} -0.300372 q^{23} -2.47710 q^{25} +(2.40545 - 4.16635i) q^{26} +(1.23855 - 2.33795i) q^{28} +(-4.13781 + 7.16689i) q^{29} +(1.35600 - 2.34867i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.69963 - 4.67589i) q^{34} +(4.19963 - 0.153051i) q^{35} +(0.500000 - 0.866025i) q^{37} +7.09888 q^{38} -1.58836 q^{40} +(-2.93818 - 5.08907i) q^{41} +(-0.833104 + 1.44298i) q^{43} +(-0.794182 + 1.37556i) q^{44} +(0.150186 + 0.260130i) q^{46} +(1.33310 + 2.30900i) q^{47} +(6.98143 - 0.509538i) q^{49} +(1.23855 + 2.14523i) q^{50} -4.81089 q^{52} +(-2.44437 - 4.23377i) q^{53} -2.52290 q^{55} +(-2.64400 + 0.0963576i) q^{56} +8.27561 q^{58} +(3.23855 - 5.60933i) q^{59} +(2.23855 + 3.87728i) q^{61} -2.71201 q^{62} +1.00000 q^{64} +(-3.82072 - 6.61769i) q^{65} +(5.02654 - 8.70623i) q^{67} -5.39926 q^{68} +(-2.23236 - 3.56046i) q^{70} -12.7207 q^{71} +(8.02654 + 13.9024i) q^{73} -1.00000 q^{74} +(-3.54944 - 6.14781i) q^{76} +(-4.19963 + 0.153051i) q^{77} +(-4.19344 - 7.26325i) q^{79} +(0.794182 + 1.37556i) q^{80} +(-2.93818 + 5.08907i) q^{82} +(-1.18292 + 2.04887i) q^{83} +(-4.28799 - 7.42702i) q^{85} +1.66621 q^{86} +1.58836 q^{88} +(-1.60507 + 2.78007i) q^{89} +(-6.76145 - 10.7840i) q^{91} +(0.150186 - 0.260130i) q^{92} +(1.33310 - 2.30900i) q^{94} +(5.63781 - 9.76497i) q^{95} +(0.712008 - 1.23323i) q^{97} +(-3.93199 - 5.79133i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 2 q^{5} - 4 q^{7} + 6 q^{8} - q^{10} - 2 q^{11} + 8 q^{13} + 2 q^{14} - 3 q^{16} + 4 q^{17} - 3 q^{19} - q^{20} + q^{22} - 14 q^{23} - 4 q^{25} + 8 q^{26} + 2 q^{28} + 5 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.58836 −0.710338 −0.355169 0.934802i \(-0.615577\pi\)
−0.355169 + 0.934802i \(0.615577\pi\)
\(6\) 0 0
\(7\) −2.64400 + 0.0963576i −0.999337 + 0.0364197i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.794182 + 1.37556i 0.251142 + 0.434991i
\(11\) 1.58836 0.478910 0.239455 0.970907i \(-0.423031\pi\)
0.239455 + 0.970907i \(0.423031\pi\)
\(12\) 0 0
\(13\) 2.40545 + 4.16635i 0.667151 + 1.15554i 0.978697 + 0.205308i \(0.0658196\pi\)
−0.311547 + 0.950231i \(0.600847\pi\)
\(14\) 1.40545 + 2.24159i 0.375621 + 0.599090i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.69963 + 4.67589i 0.654756 + 1.13407i 0.981955 + 0.189115i \(0.0605620\pi\)
−0.327199 + 0.944955i \(0.606105\pi\)
\(18\) 0 0
\(19\) −3.54944 + 6.14781i −0.814298 + 1.41041i 0.0955331 + 0.995426i \(0.469544\pi\)
−0.909831 + 0.414979i \(0.863789\pi\)
\(20\) 0.794182 1.37556i 0.177584 0.307585i
\(21\) 0 0
\(22\) −0.794182 1.37556i −0.169320 0.293271i
\(23\) −0.300372 −0.0626319 −0.0313159 0.999510i \(-0.509970\pi\)
−0.0313159 + 0.999510i \(0.509970\pi\)
\(24\) 0 0
\(25\) −2.47710 −0.495420
\(26\) 2.40545 4.16635i 0.471747 0.817089i
\(27\) 0 0
\(28\) 1.23855 2.33795i 0.234064 0.441830i
\(29\) −4.13781 + 7.16689i −0.768371 + 1.33086i 0.170074 + 0.985431i \(0.445599\pi\)
−0.938446 + 0.345427i \(0.887734\pi\)
\(30\) 0 0
\(31\) 1.35600 2.34867i 0.243545 0.421833i −0.718176 0.695861i \(-0.755023\pi\)
0.961722 + 0.274028i \(0.0883561\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2.69963 4.67589i 0.462982 0.801909i
\(35\) 4.19963 0.153051i 0.709867 0.0258703i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 7.09888 1.15159
\(39\) 0 0
\(40\) −1.58836 −0.251142
\(41\) −2.93818 5.08907i −0.458866 0.794780i 0.540035 0.841643i \(-0.318411\pi\)
−0.998901 + 0.0468628i \(0.985078\pi\)
\(42\) 0 0
\(43\) −0.833104 + 1.44298i −0.127047 + 0.220052i −0.922531 0.385922i \(-0.873883\pi\)
0.795484 + 0.605974i \(0.207217\pi\)
\(44\) −0.794182 + 1.37556i −0.119727 + 0.207374i
\(45\) 0 0
\(46\) 0.150186 + 0.260130i 0.0221437 + 0.0383540i
\(47\) 1.33310 + 2.30900i 0.194453 + 0.336803i 0.946721 0.322055i \(-0.104373\pi\)
−0.752268 + 0.658857i \(0.771040\pi\)
\(48\) 0 0
\(49\) 6.98143 0.509538i 0.997347 0.0727912i
\(50\) 1.23855 + 2.14523i 0.175157 + 0.303382i
\(51\) 0 0
\(52\) −4.81089 −0.667151
\(53\) −2.44437 4.23377i −0.335760 0.581553i 0.647871 0.761750i \(-0.275660\pi\)
−0.983630 + 0.180197i \(0.942326\pi\)
\(54\) 0 0
\(55\) −2.52290 −0.340188
\(56\) −2.64400 + 0.0963576i −0.353319 + 0.0128763i
\(57\) 0 0
\(58\) 8.27561 1.08664
\(59\) 3.23855 5.60933i 0.421623 0.730273i −0.574475 0.818522i \(-0.694794\pi\)
0.996098 + 0.0882491i \(0.0281271\pi\)
\(60\) 0 0
\(61\) 2.23855 + 3.87728i 0.286617 + 0.496435i 0.973000 0.230805i \(-0.0741360\pi\)
−0.686383 + 0.727240i \(0.740803\pi\)
\(62\) −2.71201 −0.344425
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.82072 6.61769i −0.473902 0.820823i
\(66\) 0 0
\(67\) 5.02654 8.70623i 0.614090 1.06363i −0.376454 0.926435i \(-0.622857\pi\)
0.990543 0.137199i \(-0.0438101\pi\)
\(68\) −5.39926 −0.654756
\(69\) 0 0
\(70\) −2.23236 3.56046i −0.266818 0.425556i
\(71\) −12.7207 −1.50967 −0.754833 0.655917i \(-0.772282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(72\) 0 0
\(73\) 8.02654 + 13.9024i 0.939436 + 1.62715i 0.766527 + 0.642213i \(0.221983\pi\)
0.172909 + 0.984938i \(0.444683\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −3.54944 6.14781i −0.407149 0.705203i
\(77\) −4.19963 + 0.153051i −0.478592 + 0.0174418i
\(78\) 0 0
\(79\) −4.19344 7.26325i −0.471799 0.817179i 0.527681 0.849443i \(-0.323062\pi\)
−0.999479 + 0.0322635i \(0.989728\pi\)
\(80\) 0.794182 + 1.37556i 0.0887922 + 0.153793i
\(81\) 0 0
\(82\) −2.93818 + 5.08907i −0.324467 + 0.561994i
\(83\) −1.18292 + 2.04887i −0.129842 + 0.224893i −0.923615 0.383321i \(-0.874780\pi\)
0.793773 + 0.608214i \(0.208114\pi\)
\(84\) 0 0
\(85\) −4.28799 7.42702i −0.465098 0.805573i
\(86\) 1.66621 0.179672
\(87\) 0 0
\(88\) 1.58836 0.169320
\(89\) −1.60507 + 2.78007i −0.170138 + 0.294687i −0.938468 0.345367i \(-0.887755\pi\)
0.768330 + 0.640054i \(0.221088\pi\)
\(90\) 0 0
\(91\) −6.76145 10.7840i −0.708793 1.13047i
\(92\) 0.150186 0.260130i 0.0156580 0.0271204i
\(93\) 0 0
\(94\) 1.33310 2.30900i 0.137499 0.238156i
\(95\) 5.63781 9.76497i 0.578427 1.00186i
\(96\) 0 0
\(97\) 0.712008 1.23323i 0.0722934 0.125216i −0.827613 0.561300i \(-0.810302\pi\)
0.899906 + 0.436084i \(0.143635\pi\)
\(98\) −3.93199 5.79133i −0.397191 0.585012i
\(99\) 0 0
\(100\) 1.23855 2.14523i 0.123855 0.214523i
\(101\) −12.0334 −1.19737 −0.598685 0.800985i \(-0.704310\pi\)
−0.598685 + 0.800985i \(0.704310\pi\)
\(102\) 0 0
\(103\) −6.09888 −0.600941 −0.300470 0.953791i \(-0.597144\pi\)
−0.300470 + 0.953791i \(0.597144\pi\)
\(104\) 2.40545 + 4.16635i 0.235873 + 0.408545i
\(105\) 0 0
\(106\) −2.44437 + 4.23377i −0.237418 + 0.411220i
\(107\) 1.54325 2.67299i 0.149192 0.258408i −0.781737 0.623608i \(-0.785666\pi\)
0.930929 + 0.365200i \(0.118999\pi\)
\(108\) 0 0
\(109\) 1.14400 + 1.98146i 0.109575 + 0.189789i 0.915598 0.402095i \(-0.131718\pi\)
−0.806023 + 0.591884i \(0.798384\pi\)
\(110\) 1.26145 + 2.18490i 0.120275 + 0.208322i
\(111\) 0 0
\(112\) 1.40545 + 2.24159i 0.132802 + 0.211810i
\(113\) 9.73236 + 16.8569i 0.915543 + 1.58577i 0.806104 + 0.591774i \(0.201572\pi\)
0.109440 + 0.993993i \(0.465094\pi\)
\(114\) 0 0
\(115\) 0.477100 0.0444898
\(116\) −4.13781 7.16689i −0.384186 0.665429i
\(117\) 0 0
\(118\) −6.47710 −0.596265
\(119\) −7.58836 12.1029i −0.695624 1.10947i
\(120\) 0 0
\(121\) −8.47710 −0.770645
\(122\) 2.23855 3.87728i 0.202669 0.351033i
\(123\) 0 0
\(124\) 1.35600 + 2.34867i 0.121773 + 0.210917i
\(125\) 11.8764 1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −3.82072 + 6.61769i −0.335100 + 0.580410i
\(131\) 3.17673 0.277552 0.138776 0.990324i \(-0.455683\pi\)
0.138776 + 0.990324i \(0.455683\pi\)
\(132\) 0 0
\(133\) 8.79232 16.5968i 0.762391 1.43913i
\(134\) −10.0531 −0.868454
\(135\) 0 0
\(136\) 2.69963 + 4.67589i 0.231491 + 0.400955i
\(137\) 21.2632 1.81664 0.908320 0.418275i \(-0.137365\pi\)
0.908320 + 0.418275i \(0.137365\pi\)
\(138\) 0 0
\(139\) 6.52654 + 11.3043i 0.553574 + 0.958818i 0.998013 + 0.0630092i \(0.0200698\pi\)
−0.444439 + 0.895809i \(0.646597\pi\)
\(140\) −1.96727 + 3.71351i −0.166264 + 0.313849i
\(141\) 0 0
\(142\) 6.36033 + 11.0164i 0.533747 + 0.924478i
\(143\) 3.82072 + 6.61769i 0.319505 + 0.553399i
\(144\) 0 0
\(145\) 6.57234 11.3836i 0.545803 0.945359i
\(146\) 8.02654 13.9024i 0.664281 1.15057i
\(147\) 0 0
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) −5.20877 −0.426719 −0.213360 0.976974i \(-0.568441\pi\)
−0.213360 + 0.976974i \(0.568441\pi\)
\(150\) 0 0
\(151\) −0.522900 −0.0425530 −0.0212765 0.999774i \(-0.506773\pi\)
−0.0212765 + 0.999774i \(0.506773\pi\)
\(152\) −3.54944 + 6.14781i −0.287898 + 0.498654i
\(153\) 0 0
\(154\) 2.23236 + 3.56046i 0.179889 + 0.286910i
\(155\) −2.15383 + 3.73054i −0.173000 + 0.299644i
\(156\) 0 0
\(157\) −4.43199 + 7.67643i −0.353711 + 0.612646i −0.986897 0.161354i \(-0.948414\pi\)
0.633185 + 0.774000i \(0.281747\pi\)
\(158\) −4.19344 + 7.26325i −0.333612 + 0.577833i
\(159\) 0 0
\(160\) 0.794182 1.37556i 0.0627856 0.108748i
\(161\) 0.794182 0.0289431i 0.0625903 0.00228104i
\(162\) 0 0
\(163\) 10.9814 19.0204i 0.860132 1.48979i −0.0116689 0.999932i \(-0.503714\pi\)
0.871801 0.489860i \(-0.162952\pi\)
\(164\) 5.87636 0.458866
\(165\) 0 0
\(166\) 2.36584 0.183624
\(167\) −1.65019 2.85821i −0.127695 0.221175i 0.795088 0.606494i \(-0.207425\pi\)
−0.922783 + 0.385319i \(0.874091\pi\)
\(168\) 0 0
\(169\) −5.07234 + 8.78555i −0.390180 + 0.675812i
\(170\) −4.28799 + 7.42702i −0.328874 + 0.569626i
\(171\) 0 0
\(172\) −0.833104 1.44298i −0.0635236 0.110026i
\(173\) 9.55377 + 16.5476i 0.726360 + 1.25809i 0.958412 + 0.285389i \(0.0921227\pi\)
−0.232052 + 0.972703i \(0.574544\pi\)
\(174\) 0 0
\(175\) 6.54944 0.238687i 0.495091 0.0180431i
\(176\) −0.794182 1.37556i −0.0598637 0.103687i
\(177\) 0 0
\(178\) 3.21015 0.240611
\(179\) 8.03706 + 13.9206i 0.600718 + 1.04047i 0.992712 + 0.120507i \(0.0384520\pi\)
−0.391994 + 0.919968i \(0.628215\pi\)
\(180\) 0 0
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) −5.95853 + 11.2476i −0.441676 + 0.833728i
\(183\) 0 0
\(184\) −0.300372 −0.0221437
\(185\) −0.794182 + 1.37556i −0.0583894 + 0.101133i
\(186\) 0 0
\(187\) 4.28799 + 7.42702i 0.313569 + 0.543118i
\(188\) −2.66621 −0.194453
\(189\) 0 0
\(190\) −11.2756 −0.818019
\(191\) −11.9814 20.7524i −0.866946 1.50159i −0.865102 0.501596i \(-0.832746\pi\)
−0.00184390 0.999998i \(-0.500587\pi\)
\(192\) 0 0
\(193\) −4.88255 + 8.45682i −0.351453 + 0.608735i −0.986504 0.163735i \(-0.947646\pi\)
0.635051 + 0.772470i \(0.280979\pi\)
\(194\) −1.42402 −0.102238
\(195\) 0 0
\(196\) −3.04944 + 6.30087i −0.217817 + 0.450062i
\(197\) 18.2436 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(198\) 0 0
\(199\) 9.04944 + 15.6741i 0.641498 + 1.11111i 0.985098 + 0.171991i \(0.0550200\pi\)
−0.343601 + 0.939116i \(0.611647\pi\)
\(200\) −2.47710 −0.175157
\(201\) 0 0
\(202\) 6.01671 + 10.4212i 0.423334 + 0.733236i
\(203\) 10.2498 19.3479i 0.719392 1.35796i
\(204\) 0 0
\(205\) 4.66690 + 8.08330i 0.325950 + 0.564562i
\(206\) 3.04944 + 5.28179i 0.212465 + 0.368000i
\(207\) 0 0
\(208\) 2.40545 4.16635i 0.166788 0.288885i
\(209\) −5.63781 + 9.76497i −0.389975 + 0.675457i
\(210\) 0 0
\(211\) 0.166208 + 0.287880i 0.0114422 + 0.0198185i 0.871690 0.490058i \(-0.163024\pi\)
−0.860248 + 0.509877i \(0.829691\pi\)
\(212\) 4.88874 0.335760
\(213\) 0 0
\(214\) −3.08650 −0.210989
\(215\) 1.32327 2.29197i 0.0902464 0.156311i
\(216\) 0 0
\(217\) −3.35896 + 6.34053i −0.228021 + 0.430423i
\(218\) 1.14400 1.98146i 0.0774812 0.134201i
\(219\) 0 0
\(220\) 1.26145 2.18490i 0.0850469 0.147306i
\(221\) −12.9876 + 22.4952i −0.873642 + 1.51319i
\(222\) 0 0
\(223\) 3.16621 5.48403i 0.212025 0.367238i −0.740323 0.672251i \(-0.765328\pi\)
0.952348 + 0.305013i \(0.0986609\pi\)
\(224\) 1.23855 2.33795i 0.0827541 0.156211i
\(225\) 0 0
\(226\) 9.73236 16.8569i 0.647387 1.12131i
\(227\) 23.3090 1.54707 0.773537 0.633751i \(-0.218485\pi\)
0.773537 + 0.633751i \(0.218485\pi\)
\(228\) 0 0
\(229\) −4.95420 −0.327383 −0.163691 0.986512i \(-0.552340\pi\)
−0.163691 + 0.986512i \(0.552340\pi\)
\(230\) −0.238550 0.413181i −0.0157295 0.0272443i
\(231\) 0 0
\(232\) −4.13781 + 7.16689i −0.271660 + 0.470529i
\(233\) 7.13781 12.3630i 0.467613 0.809930i −0.531702 0.846932i \(-0.678447\pi\)
0.999315 + 0.0370017i \(0.0117807\pi\)
\(234\) 0 0
\(235\) −2.11745 3.66754i −0.138127 0.239244i
\(236\) 3.23855 + 5.60933i 0.210812 + 0.365136i
\(237\) 0 0
\(238\) −6.68725 + 12.6232i −0.433470 + 0.818239i
\(239\) −2.48762 4.30868i −0.160911 0.278706i 0.774285 0.632837i \(-0.218110\pi\)
−0.935196 + 0.354132i \(0.884776\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 4.23855 + 7.34138i 0.272464 + 0.471922i
\(243\) 0 0
\(244\) −4.47710 −0.286617
\(245\) −11.0891 + 0.809332i −0.708454 + 0.0517063i
\(246\) 0 0
\(247\) −34.1520 −2.17304
\(248\) 1.35600 2.34867i 0.0861063 0.149141i
\(249\) 0 0
\(250\) −5.93818 10.2852i −0.375563 0.650495i
\(251\) −2.43268 −0.153549 −0.0767746 0.997048i \(-0.524462\pi\)
−0.0767746 + 0.997048i \(0.524462\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) 6.71998 + 11.6393i 0.421649 + 0.730318i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.987620 0.0616061 0.0308030 0.999525i \(-0.490194\pi\)
0.0308030 + 0.999525i \(0.490194\pi\)
\(258\) 0 0
\(259\) −1.23855 + 2.33795i −0.0769597 + 0.145273i
\(260\) 7.64145 0.473902
\(261\) 0 0
\(262\) −1.58836 2.75113i −0.0981295 0.169965i
\(263\) −17.1854 −1.05970 −0.529848 0.848092i \(-0.677751\pi\)
−0.529848 + 0.848092i \(0.677751\pi\)
\(264\) 0 0
\(265\) 3.88255 + 6.72477i 0.238503 + 0.413099i
\(266\) −18.7694 + 0.684031i −1.15083 + 0.0419407i
\(267\) 0 0
\(268\) 5.02654 + 8.70623i 0.307045 + 0.531817i
\(269\) −11.4523 19.8360i −0.698262 1.20942i −0.969069 0.246791i \(-0.920624\pi\)
0.270807 0.962634i \(-0.412709\pi\)
\(270\) 0 0
\(271\) 7.00364 12.1307i 0.425441 0.736885i −0.571021 0.820936i \(-0.693452\pi\)
0.996462 + 0.0840504i \(0.0267857\pi\)
\(272\) 2.69963 4.67589i 0.163689 0.283518i
\(273\) 0 0
\(274\) −10.6316 18.4145i −0.642279 1.11246i
\(275\) −3.93454 −0.237261
\(276\) 0 0
\(277\) 28.2953 1.70010 0.850049 0.526703i \(-0.176572\pi\)
0.850049 + 0.526703i \(0.176572\pi\)
\(278\) 6.52654 11.3043i 0.391436 0.677987i
\(279\) 0 0
\(280\) 4.19963 0.153051i 0.250976 0.00914654i
\(281\) 8.79782 15.2383i 0.524834 0.909039i −0.474748 0.880122i \(-0.657461\pi\)
0.999582 0.0289175i \(-0.00920600\pi\)
\(282\) 0 0
\(283\) 9.26145 16.0413i 0.550536 0.953556i −0.447700 0.894184i \(-0.647757\pi\)
0.998236 0.0593725i \(-0.0189100\pi\)
\(284\) 6.36033 11.0164i 0.377416 0.653704i
\(285\) 0 0
\(286\) 3.82072 6.61769i 0.225924 0.391312i
\(287\) 8.25890 + 13.1724i 0.487508 + 0.777541i
\(288\) 0 0
\(289\) −6.07598 + 10.5239i −0.357411 + 0.619054i
\(290\) −13.1447 −0.771882
\(291\) 0 0
\(292\) −16.0531 −0.939436
\(293\) 7.04256 + 12.1981i 0.411431 + 0.712619i 0.995046 0.0994108i \(-0.0316958\pi\)
−0.583616 + 0.812030i \(0.698362\pi\)
\(294\) 0 0
\(295\) −5.14400 + 8.90966i −0.299495 + 0.518741i
\(296\) 0.500000 0.866025i 0.0290619 0.0503367i
\(297\) 0 0
\(298\) 2.60439 + 4.51093i 0.150868 + 0.261311i
\(299\) −0.722528 1.25146i −0.0417849 0.0723736i
\(300\) 0 0
\(301\) 2.06368 3.89550i 0.118949 0.224533i
\(302\) 0.261450 + 0.452845i 0.0150448 + 0.0260583i
\(303\) 0 0
\(304\) 7.09888 0.407149
\(305\) −3.55563 6.15854i −0.203595 0.352637i
\(306\) 0 0
\(307\) −5.85532 −0.334180 −0.167090 0.985942i \(-0.553437\pi\)
−0.167090 + 0.985942i \(0.553437\pi\)
\(308\) 1.96727 3.71351i 0.112096 0.211597i
\(309\) 0 0
\(310\) 4.30766 0.244658
\(311\) 0.405446 0.702253i 0.0229907 0.0398211i −0.854301 0.519778i \(-0.826015\pi\)
0.877292 + 0.479957i \(0.159348\pi\)
\(312\) 0 0
\(313\) −5.28799 9.15907i −0.298895 0.517701i 0.676988 0.735994i \(-0.263285\pi\)
−0.975883 + 0.218292i \(0.929951\pi\)
\(314\) 8.86398 0.500223
\(315\) 0 0
\(316\) 8.38688 0.471799
\(317\) 6.09820 + 10.5624i 0.342509 + 0.593243i 0.984898 0.173136i \(-0.0553900\pi\)
−0.642389 + 0.766379i \(0.722057\pi\)
\(318\) 0 0
\(319\) −6.57234 + 11.3836i −0.367981 + 0.637361i
\(320\) −1.58836 −0.0887922
\(321\) 0 0
\(322\) −0.422156 0.673310i −0.0235259 0.0375221i
\(323\) −38.3287 −2.13267
\(324\) 0 0
\(325\) −5.95853 10.3205i −0.330520 0.572477i
\(326\) −21.9629 −1.21641
\(327\) 0 0
\(328\) −2.93818 5.08907i −0.162234 0.280997i
\(329\) −3.74721 5.97654i −0.206590 0.329497i
\(330\) 0 0
\(331\) 7.83310 + 13.5673i 0.430546 + 0.745728i 0.996920 0.0784202i \(-0.0249876\pi\)
−0.566374 + 0.824148i \(0.691654\pi\)
\(332\) −1.18292 2.04887i −0.0649211 0.112447i
\(333\) 0 0
\(334\) −1.65019 + 2.85821i −0.0902942 + 0.156394i
\(335\) −7.98398 + 13.8287i −0.436211 + 0.755540i
\(336\) 0 0
\(337\) −4.21201 7.29541i −0.229443 0.397406i 0.728200 0.685364i \(-0.240357\pi\)
−0.957643 + 0.287958i \(0.907024\pi\)
\(338\) 10.1447 0.551798
\(339\) 0 0
\(340\) 8.57598 0.465098
\(341\) 2.15383 3.73054i 0.116636 0.202020i
\(342\) 0 0
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) −0.833104 + 1.44298i −0.0449179 + 0.0778002i
\(345\) 0 0
\(346\) 9.55377 16.5476i 0.513614 0.889606i
\(347\) 0.283662 0.491316i 0.0152277 0.0263752i −0.858311 0.513130i \(-0.828486\pi\)
0.873539 + 0.486754i \(0.161819\pi\)
\(348\) 0 0
\(349\) −0.00364189 + 0.00630794i −0.000194946 + 0.000337656i −0.866123 0.499831i \(-0.833395\pi\)
0.865928 + 0.500169i \(0.166729\pi\)
\(350\) −3.48143 5.55264i −0.186090 0.296801i
\(351\) 0 0
\(352\) −0.794182 + 1.37556i −0.0423300 + 0.0733178i
\(353\) −6.65383 −0.354148 −0.177074 0.984198i \(-0.556663\pi\)
−0.177074 + 0.984198i \(0.556663\pi\)
\(354\) 0 0
\(355\) 20.2051 1.07237
\(356\) −1.60507 2.78007i −0.0850688 0.147343i
\(357\) 0 0
\(358\) 8.03706 13.9206i 0.424772 0.735727i
\(359\) 0.398568 0.690339i 0.0210356 0.0364347i −0.855316 0.518107i \(-0.826637\pi\)
0.876352 + 0.481672i \(0.159970\pi\)
\(360\) 0 0
\(361\) −15.6971 27.1881i −0.826162 1.43095i
\(362\) −4.02654 6.97418i −0.211630 0.366555i
\(363\) 0 0
\(364\) 12.7200 0.463566i 0.666708 0.0242975i
\(365\) −12.7491 22.0820i −0.667317 1.15583i
\(366\) 0 0
\(367\) −15.4327 −0.805579 −0.402790 0.915293i \(-0.631959\pi\)
−0.402790 + 0.915293i \(0.631959\pi\)
\(368\) 0.150186 + 0.260130i 0.00782898 + 0.0135602i
\(369\) 0 0
\(370\) 1.58836 0.0825751
\(371\) 6.87085 + 10.9585i 0.356717 + 0.568939i
\(372\) 0 0
\(373\) 10.2422 0.530321 0.265160 0.964204i \(-0.414575\pi\)
0.265160 + 0.964204i \(0.414575\pi\)
\(374\) 4.28799 7.42702i 0.221727 0.384042i
\(375\) 0 0
\(376\) 1.33310 + 2.30900i 0.0687496 + 0.119078i
\(377\) −39.8131 −2.05048
\(378\) 0 0
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) 5.63781 + 9.76497i 0.289213 + 0.500932i
\(381\) 0 0
\(382\) −11.9814 + 20.7524i −0.613023 + 1.06179i
\(383\) 6.26695 0.320226 0.160113 0.987099i \(-0.448814\pi\)
0.160113 + 0.987099i \(0.448814\pi\)
\(384\) 0 0
\(385\) 6.67054 0.243101i 0.339962 0.0123896i
\(386\) 9.76509 0.497030
\(387\) 0 0
\(388\) 0.712008 + 1.23323i 0.0361467 + 0.0626080i
\(389\) 21.6342 1.09690 0.548448 0.836185i \(-0.315219\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(390\) 0 0
\(391\) −0.810892 1.40451i −0.0410086 0.0710290i
\(392\) 6.98143 0.509538i 0.352615 0.0257356i
\(393\) 0 0
\(394\) −9.12178 15.7994i −0.459549 0.795962i
\(395\) 6.66071 + 11.5367i 0.335137 + 0.580473i
\(396\) 0 0
\(397\) 2.05308 3.55605i 0.103041 0.178473i −0.809895 0.586575i \(-0.800476\pi\)
0.912936 + 0.408102i \(0.133809\pi\)
\(398\) 9.04944 15.6741i 0.453608 0.785671i
\(399\) 0 0
\(400\) 1.23855 + 2.14523i 0.0619275 + 0.107262i
\(401\) −16.7417 −0.836041 −0.418021 0.908438i \(-0.637276\pi\)
−0.418021 + 0.908438i \(0.637276\pi\)
\(402\) 0 0
\(403\) 13.0472 0.649926
\(404\) 6.01671 10.4212i 0.299343 0.518476i
\(405\) 0 0
\(406\) −21.8807 + 0.797418i −1.08592 + 0.0395752i
\(407\) 0.794182 1.37556i 0.0393661 0.0681842i
\(408\) 0 0
\(409\) 4.38255 7.59079i 0.216703 0.375341i −0.737095 0.675789i \(-0.763803\pi\)
0.953798 + 0.300449i \(0.0971364\pi\)
\(410\) 4.66690 8.08330i 0.230482 0.399206i
\(411\) 0 0
\(412\) 3.04944 5.28179i 0.150235 0.260215i
\(413\) −8.02221 + 15.1431i −0.394747 + 0.745144i
\(414\) 0 0
\(415\) 1.87890 3.25436i 0.0922318 0.159750i
\(416\) −4.81089 −0.235873
\(417\) 0 0
\(418\) 11.2756 0.551508
\(419\) 0.210149 + 0.363988i 0.0102664 + 0.0177820i 0.871113 0.491083i \(-0.163399\pi\)
−0.860847 + 0.508865i \(0.830065\pi\)
\(420\) 0 0
\(421\) 3.28799 5.69497i 0.160247 0.277556i −0.774710 0.632316i \(-0.782104\pi\)
0.934957 + 0.354761i \(0.115438\pi\)
\(422\) 0.166208 0.287880i 0.00809086 0.0140138i
\(423\) 0 0
\(424\) −2.44437 4.23377i −0.118709 0.205610i
\(425\) −6.68725 11.5827i −0.324379 0.561841i
\(426\) 0 0
\(427\) −6.29232 10.0358i −0.304507 0.485667i
\(428\) 1.54325 + 2.67299i 0.0745959 + 0.129204i
\(429\) 0 0
\(430\) −2.64654 −0.127628
\(431\) −11.0439 19.1287i −0.531968 0.921395i −0.999304 0.0373155i \(-0.988119\pi\)
0.467336 0.884080i \(-0.345214\pi\)
\(432\) 0 0
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) 7.17054 0.261323i 0.344197 0.0125439i
\(435\) 0 0
\(436\) −2.28799 −0.109575
\(437\) 1.06615 1.84663i 0.0510010 0.0883363i
\(438\) 0 0
\(439\) 15.6032 + 27.0256i 0.744701 + 1.28986i 0.950334 + 0.311231i \(0.100741\pi\)
−0.205634 + 0.978629i \(0.565926\pi\)
\(440\) −2.52290 −0.120275
\(441\) 0 0
\(442\) 25.9752 1.23552
\(443\) 6.52723 + 11.3055i 0.310118 + 0.537140i 0.978388 0.206779i \(-0.0662981\pi\)
−0.668270 + 0.743919i \(0.732965\pi\)
\(444\) 0 0
\(445\) 2.54944 4.41576i 0.120855 0.209327i
\(446\) −6.33242 −0.299849
\(447\) 0 0
\(448\) −2.64400 + 0.0963576i −0.124917 + 0.00455247i
\(449\) 9.91706 0.468015 0.234008 0.972235i \(-0.424816\pi\)
0.234008 + 0.972235i \(0.424816\pi\)
\(450\) 0 0
\(451\) −4.66690 8.08330i −0.219756 0.380628i
\(452\) −19.4647 −0.915543
\(453\) 0 0
\(454\) −11.6545 20.1862i −0.546974 0.947386i
\(455\) 10.7396 + 17.1290i 0.503482 + 0.803019i
\(456\) 0 0
\(457\) 12.2615 + 21.2375i 0.573566 + 0.993446i 0.996196 + 0.0871436i \(0.0277739\pi\)
−0.422629 + 0.906303i \(0.638893\pi\)
\(458\) 2.47710 + 4.29046i 0.115747 + 0.200480i
\(459\) 0 0
\(460\) −0.238550 + 0.413181i −0.0111224 + 0.0192646i
\(461\) −1.75526 + 3.04020i −0.0817506 + 0.141596i −0.904002 0.427528i \(-0.859384\pi\)
0.822251 + 0.569125i \(0.192718\pi\)
\(462\) 0 0
\(463\) 8.69413 + 15.0587i 0.404050 + 0.699836i 0.994210 0.107451i \(-0.0342687\pi\)
−0.590160 + 0.807286i \(0.700935\pi\)
\(464\) 8.27561 0.384186
\(465\) 0 0
\(466\) −14.2756 −0.661305
\(467\) −6.69894 + 11.6029i −0.309990 + 0.536918i −0.978360 0.206911i \(-0.933659\pi\)
0.668370 + 0.743829i \(0.266992\pi\)
\(468\) 0 0
\(469\) −12.4512 + 23.5036i −0.574945 + 1.08529i
\(470\) −2.11745 + 3.66754i −0.0976709 + 0.169171i
\(471\) 0 0
\(472\) 3.23855 5.60933i 0.149066 0.258190i
\(473\) −1.32327 + 2.29197i −0.0608441 + 0.105385i
\(474\) 0 0
\(475\) 8.79232 15.2287i 0.403419 0.698743i
\(476\) 14.2756 0.520259i 0.654322 0.0238460i
\(477\) 0 0
\(478\) −2.48762 + 4.30868i −0.113781 + 0.197075i
\(479\) −20.8058 −0.950641 −0.475321 0.879813i \(-0.657668\pi\)
−0.475321 + 0.879813i \(0.657668\pi\)
\(480\) 0 0
\(481\) 4.81089 0.219358
\(482\) 6.50000 + 11.2583i 0.296067 + 0.512803i
\(483\) 0 0
\(484\) 4.23855 7.34138i 0.192661 0.333699i
\(485\) −1.13093 + 1.95882i −0.0513528 + 0.0889456i
\(486\) 0 0
\(487\) 16.2472 + 28.1410i 0.736231 + 1.27519i 0.954181 + 0.299230i \(0.0967298\pi\)
−0.217950 + 0.975960i \(0.569937\pi\)
\(488\) 2.23855 + 3.87728i 0.101334 + 0.175516i
\(489\) 0 0
\(490\) 6.24543 + 9.19874i 0.282140 + 0.415557i
\(491\) 9.66071 + 16.7328i 0.435982 + 0.755142i 0.997375 0.0724067i \(-0.0230679\pi\)
−0.561394 + 0.827549i \(0.689735\pi\)
\(492\) 0 0
\(493\) −44.6822 −2.01238
\(494\) 17.0760 + 29.5765i 0.768285 + 1.33071i
\(495\) 0 0
\(496\) −2.71201 −0.121773
\(497\) 33.6334 1.22573i 1.50866 0.0549816i
\(498\) 0 0
\(499\) −11.1506 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(500\) −5.93818 + 10.2852i −0.265563 + 0.459969i
\(501\) 0 0
\(502\) 1.21634 + 2.10676i 0.0542878 + 0.0940293i
\(503\) 40.7651 1.81763 0.908813 0.417204i \(-0.136990\pi\)
0.908813 + 0.417204i \(0.136990\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) 0.238550 + 0.413181i 0.0106048 + 0.0183681i
\(507\) 0 0
\(508\) 6.71998 11.6393i 0.298151 0.516413i
\(509\) −1.44506 −0.0640510 −0.0320255 0.999487i \(-0.510196\pi\)
−0.0320255 + 0.999487i \(0.510196\pi\)
\(510\) 0 0
\(511\) −22.5617 35.9844i −0.998073 1.59186i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −0.493810 0.855304i −0.0217810 0.0377259i
\(515\) 9.68725 0.426871
\(516\) 0 0
\(517\) 2.11745 + 3.66754i 0.0931255 + 0.161298i
\(518\) 2.64400 0.0963576i 0.116171 0.00423371i
\(519\) 0 0
\(520\) −3.82072 6.61769i −0.167550 0.290205i
\(521\) −9.64214 16.7007i −0.422430 0.731670i 0.573747 0.819033i \(-0.305489\pi\)
−0.996177 + 0.0873630i \(0.972156\pi\)
\(522\) 0 0
\(523\) −18.3454 + 31.7752i −0.802189 + 1.38943i 0.115984 + 0.993251i \(0.462998\pi\)
−0.918173 + 0.396180i \(0.870335\pi\)
\(524\) −1.58836 + 2.75113i −0.0693880 + 0.120184i
\(525\) 0 0
\(526\) 8.59269 + 14.8830i 0.374659 + 0.648929i
\(527\) 14.6428 0.637851
\(528\) 0 0
\(529\) −22.9098 −0.996077
\(530\) 3.88255 6.72477i 0.168647 0.292105i
\(531\) 0 0
\(532\) 9.97710 + 15.9128i 0.432562 + 0.689907i
\(533\) 14.1353 24.4830i 0.612266 1.06048i
\(534\) 0 0
\(535\) −2.45125 + 4.24568i −0.105977 + 0.183557i
\(536\) 5.02654 8.70623i 0.217114 0.376052i
\(537\) 0 0
\(538\) −11.4523 + 19.8360i −0.493745 + 0.855192i
\(539\) 11.0891 0.809332i 0.477639 0.0348604i
\(540\) 0 0
\(541\) −1.62543 + 2.81532i −0.0698825 + 0.121040i −0.898849 0.438258i \(-0.855596\pi\)
0.828967 + 0.559298i \(0.188929\pi\)
\(542\) −14.0073 −0.601664
\(543\) 0 0
\(544\) −5.39926 −0.231491
\(545\) −1.81708 3.14728i −0.0778352 0.134815i
\(546\) 0 0
\(547\) −2.95853 + 5.12432i −0.126498 + 0.219100i −0.922317 0.386433i \(-0.873707\pi\)
0.795820 + 0.605534i \(0.207040\pi\)
\(548\) −10.6316 + 18.4145i −0.454160 + 0.786628i
\(549\) 0 0
\(550\) 1.96727 + 3.40741i 0.0838846 + 0.145292i
\(551\) −29.3738 50.8769i −1.25137 2.16743i
\(552\) 0 0
\(553\) 11.7873 + 18.7999i 0.501247 + 0.799454i
\(554\) −14.1476 24.5044i −0.601076 1.04109i
\(555\) 0 0
\(556\) −13.0531 −0.553574
\(557\) −12.8040 22.1772i −0.542523 0.939678i −0.998758 0.0498188i \(-0.984136\pi\)
0.456235 0.889859i \(-0.349198\pi\)
\(558\) 0 0
\(559\) −8.01594 −0.339038
\(560\) −2.23236 3.56046i −0.0943344 0.150457i
\(561\) 0 0
\(562\) −17.5956 −0.742228
\(563\) −23.3189 + 40.3895i −0.982773 + 1.70221i −0.331330 + 0.943515i \(0.607497\pi\)
−0.651443 + 0.758698i \(0.725836\pi\)
\(564\) 0 0
\(565\) −15.4585 26.7750i −0.650345 1.12643i
\(566\) −18.5229 −0.778576
\(567\) 0 0
\(568\) −12.7207 −0.533747
\(569\) 15.5989 + 27.0181i 0.653939 + 1.13266i 0.982159 + 0.188054i \(0.0602182\pi\)
−0.328219 + 0.944602i \(0.606449\pi\)
\(570\) 0 0
\(571\) 7.83812 13.5760i 0.328015 0.568139i −0.654103 0.756406i \(-0.726954\pi\)
0.982118 + 0.188267i \(0.0602869\pi\)
\(572\) −7.64145 −0.319505
\(573\) 0 0
\(574\) 7.27816 13.7386i 0.303785 0.573438i
\(575\) 0.744051 0.0310291
\(576\) 0 0
\(577\) 6.99567 + 12.1169i 0.291234 + 0.504431i 0.974102 0.226110i \(-0.0726010\pi\)
−0.682868 + 0.730542i \(0.739268\pi\)
\(578\) 12.1520 0.505455
\(579\) 0 0
\(580\) 6.57234 + 11.3836i 0.272902 + 0.472680i
\(581\) 2.93021 5.53120i 0.121565 0.229473i
\(582\) 0 0
\(583\) −3.88255 6.72477i −0.160799 0.278511i
\(584\) 8.02654 + 13.9024i 0.332141 + 0.575285i
\(585\) 0 0
\(586\) 7.04256 12.1981i 0.290926 0.503898i
\(587\) −1.44801 + 2.50803i −0.0597658 + 0.103517i −0.894360 0.447348i \(-0.852369\pi\)
0.834594 + 0.550865i \(0.185702\pi\)
\(588\) 0 0
\(589\) 9.62612 + 16.6729i 0.396637 + 0.686996i
\(590\) 10.2880 0.423550
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 2.04394 3.54021i 0.0839346 0.145379i −0.821002 0.570925i \(-0.806585\pi\)
0.904937 + 0.425546i \(0.139918\pi\)
\(594\) 0 0
\(595\) 12.0531 + 19.2238i 0.494128 + 0.788100i
\(596\) 2.60439 4.51093i 0.106680 0.184775i
\(597\) 0 0
\(598\) −0.722528 + 1.25146i −0.0295464 + 0.0511758i
\(599\) −9.88255 + 17.1171i −0.403790 + 0.699385i −0.994180 0.107734i \(-0.965641\pi\)
0.590390 + 0.807118i \(0.298974\pi\)
\(600\) 0 0
\(601\) −13.4320 + 23.2649i −0.547902 + 0.948994i 0.450516 + 0.892768i \(0.351240\pi\)
−0.998418 + 0.0562261i \(0.982093\pi\)
\(602\) −4.40545 + 0.160552i −0.179553 + 0.00654360i
\(603\) 0 0
\(604\) 0.261450 0.452845i 0.0106383 0.0184260i
\(605\) 13.4647 0.547419
\(606\) 0 0
\(607\) −15.2422 −0.618661 −0.309331 0.950955i \(-0.600105\pi\)
−0.309331 + 0.950955i \(0.600105\pi\)
\(608\) −3.54944 6.14781i −0.143949 0.249327i
\(609\) 0 0
\(610\) −3.55563 + 6.15854i −0.143963 + 0.249352i
\(611\) −6.41342 + 11.1084i −0.259459 + 0.449396i
\(612\) 0 0
\(613\) −1.36033 2.35617i −0.0549434 0.0951648i 0.837246 0.546827i \(-0.184165\pi\)
−0.892189 + 0.451662i \(0.850831\pi\)
\(614\) 2.92766 + 5.07085i 0.118151 + 0.204643i
\(615\) 0 0
\(616\) −4.19963 + 0.153051i −0.169208 + 0.00616660i
\(617\) 9.21812 + 15.9663i 0.371108 + 0.642777i 0.989736 0.142906i \(-0.0456448\pi\)
−0.618629 + 0.785684i \(0.712311\pi\)
\(618\) 0 0
\(619\) 0.107546 0.00432262 0.00216131 0.999998i \(-0.499312\pi\)
0.00216131 + 0.999998i \(0.499312\pi\)
\(620\) −2.15383 3.73054i −0.0864998 0.149822i
\(621\) 0 0
\(622\) −0.810892 −0.0325138
\(623\) 3.97593 7.50516i 0.159292 0.300688i
\(624\) 0 0
\(625\) −6.47848 −0.259139
\(626\) −5.28799 + 9.15907i −0.211351 + 0.366070i
\(627\) 0 0
\(628\) −4.43199 7.67643i −0.176856 0.306323i
\(629\) 5.39926 0.215282
\(630\) 0 0
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) −4.19344 7.26325i −0.166806 0.288916i
\(633\) 0 0
\(634\) 6.09820 10.5624i 0.242190 0.419486i
\(635\) 21.3475 0.847152
\(636\) 0 0
\(637\) 18.9164 + 27.8615i 0.749494 + 1.10391i
\(638\) 13.1447 0.520403
\(639\) 0 0
\(640\) 0.794182 + 1.37556i 0.0313928 + 0.0543739i
\(641\) −17.3128 −0.683813 −0.341906 0.939734i \(-0.611073\pi\)
−0.341906 + 0.939734i \(0.611073\pi\)
\(642\) 0 0
\(643\) 14.4821 + 25.0838i 0.571119 + 0.989207i 0.996451 + 0.0841700i \(0.0268239\pi\)
−0.425332 + 0.905037i \(0.639843\pi\)
\(644\) −0.372026 + 0.702253i −0.0146599 + 0.0276727i
\(645\) 0 0
\(646\) 19.1643 + 33.1936i 0.754011 + 1.30599i
\(647\) −1.27816 2.21384i −0.0502497 0.0870350i 0.839807 0.542886i \(-0.182668\pi\)
−0.890056 + 0.455851i \(0.849335\pi\)
\(648\) 0 0
\(649\) 5.14400 8.90966i 0.201920 0.349735i
\(650\) −5.95853 + 10.3205i −0.233713 + 0.404802i
\(651\) 0 0
\(652\) 10.9814 + 19.0204i 0.430066 + 0.744896i
\(653\) −29.9766 −1.17308 −0.586538 0.809922i \(-0.699509\pi\)
−0.586538 + 0.809922i \(0.699509\pi\)
\(654\) 0 0
\(655\) −5.04580 −0.197156
\(656\) −2.93818 + 5.08907i −0.114717 + 0.198695i
\(657\) 0 0
\(658\) −3.30223 + 6.23345i −0.128734 + 0.243005i
\(659\) 7.63162 13.2183i 0.297286 0.514914i −0.678228 0.734851i \(-0.737252\pi\)
0.975514 + 0.219937i \(0.0705853\pi\)
\(660\) 0 0
\(661\) 13.6261 23.6011i 0.529994 0.917977i −0.469393 0.882989i \(-0.655527\pi\)
0.999388 0.0349881i \(-0.0111393\pi\)
\(662\) 7.83310 13.5673i 0.304442 0.527309i
\(663\) 0 0
\(664\) −1.18292 + 2.04887i −0.0459061 + 0.0795117i
\(665\) −13.9654 + 26.3618i −0.541555 + 1.02227i
\(666\) 0 0
\(667\) 1.24288 2.15273i 0.0481245 0.0833541i
\(668\) 3.30037 0.127695
\(669\) 0 0
\(670\) 15.9680 0.616896
\(671\) 3.55563 + 6.15854i 0.137264 + 0.237748i
\(672\) 0 0
\(673\) 23.2280 40.2320i 0.895372 1.55083i 0.0620280 0.998074i \(-0.480243\pi\)
0.833344 0.552755i \(-0.186423\pi\)
\(674\) −4.21201 + 7.29541i −0.162240 + 0.281009i
\(675\) 0 0
\(676\) −5.07234 8.78555i −0.195090 0.337906i
\(677\) 2.54944 + 4.41576i 0.0979830 + 0.169712i 0.910850 0.412738i \(-0.135428\pi\)
−0.812867 + 0.582450i \(0.802094\pi\)
\(678\) 0 0
\(679\) −1.76371 + 3.32927i −0.0676852 + 0.127766i
\(680\) −4.28799 7.42702i −0.164437 0.284813i
\(681\) 0 0
\(682\) −4.30766 −0.164949
\(683\) 7.77197 + 13.4614i 0.297386 + 0.515088i 0.975537 0.219835i \(-0.0705518\pi\)
−0.678151 + 0.734923i \(0.737218\pi\)
\(684\) 0 0
\(685\) −33.7738 −1.29043
\(686\) 10.9542 + 14.9334i 0.418233 + 0.570159i
\(687\) 0 0
\(688\) 1.66621 0.0635236
\(689\) 11.7596 20.3682i 0.448005 0.775967i
\(690\) 0 0
\(691\) −11.6483 20.1755i −0.443123 0.767512i 0.554796 0.831986i \(-0.312796\pi\)
−0.997919 + 0.0644744i \(0.979463\pi\)
\(692\) −19.1075 −0.726360
\(693\) 0 0
\(694\) −0.567323 −0.0215353
\(695\) −10.3665 17.9553i −0.393225 0.681085i
\(696\) 0 0
\(697\) 15.8640 27.4772i 0.600891 1.04077i
\(698\) 0.00728378 0.000275695
\(699\) 0 0
\(700\) −3.06801 + 5.79133i −0.115960 + 0.218892i
\(701\) 45.6464 1.72404 0.862020 0.506874i \(-0.169199\pi\)
0.862020 + 0.506874i \(0.169199\pi\)
\(702\) 0 0
\(703\) 3.54944 + 6.14781i 0.133870 + 0.231869i
\(704\) 1.58836 0.0598637
\(705\) 0 0
\(706\) 3.32691 + 5.76238i 0.125210 + 0.216870i
\(707\) 31.8163 1.15951i 1.19658 0.0436079i
\(708\) 0 0
\(709\) −9.00069 15.5897i −0.338028 0.585482i 0.646034 0.763309i \(-0.276427\pi\)
−0.984062 + 0.177827i \(0.943093\pi\)
\(710\) −10.1025 17.4981i −0.379141 0.656692i
\(711\) 0 0
\(712\) −1.60507 + 2.78007i −0.0601527 + 0.104188i
\(713\) −0.407305 + 0.705474i −0.0152537 + 0.0264202i
\(714\) 0 0
\(715\) −6.06870 10.5113i −0.226957 0.393100i
\(716\) −16.0741 −0.600718
\(717\) 0 0
\(718\) −0.797135 −0.0297488
\(719\) −18.4389 + 31.9371i −0.687654 + 1.19105i 0.284941 + 0.958545i \(0.408026\pi\)
−0.972595 + 0.232506i \(0.925307\pi\)
\(720\) 0 0
\(721\) 16.1254 0.587674i 0.600542 0.0218861i
\(722\) −15.6971 + 27.1881i −0.584185 + 1.01184i
\(723\) 0 0
\(724\) −4.02654 + 6.97418i −0.149645 + 0.259193i
\(725\) 10.2498 17.7531i 0.380666 0.659334i
\(726\) 0 0
\(727\) 15.2429 26.4014i 0.565327 0.979175i −0.431692 0.902021i \(-0.642083\pi\)
0.997019 0.0771543i \(-0.0245834\pi\)
\(728\) −6.76145 10.7840i −0.250596 0.399683i
\(729\) 0 0
\(730\) −12.7491 + 22.0820i −0.471864 + 0.817293i
\(731\) −8.99628 −0.332739
\(732\) 0 0
\(733\) 6.15059 0.227177 0.113589 0.993528i \(-0.463765\pi\)
0.113589 + 0.993528i \(0.463765\pi\)
\(734\) 7.71634 + 13.3651i 0.284815 + 0.493314i
\(735\) 0 0
\(736\) 0.150186 0.260130i 0.00553593 0.00958851i
\(737\) 7.98398 13.8287i 0.294094 0.509385i
\(738\) 0 0
\(739\) −20.3912 35.3186i −0.750103 1.29922i −0.947772 0.318947i \(-0.896671\pi\)
0.197670 0.980269i \(-0.436663\pi\)
\(740\) −0.794182 1.37556i −0.0291947 0.0505667i
\(741\) 0 0
\(742\) 6.05494 11.4296i 0.222284 0.419594i
\(743\) −7.25271 12.5621i −0.266076 0.460858i 0.701769 0.712405i \(-0.252394\pi\)
−0.967845 + 0.251547i \(0.919061\pi\)
\(744\) 0 0
\(745\) 8.27342 0.303115
\(746\) −5.12110 8.87000i −0.187497 0.324754i
\(747\) 0 0
\(748\) −8.57598 −0.313569
\(749\) −3.82279 + 7.21608i −0.139682 + 0.263670i
\(750\) 0 0
\(751\) 4.18911 0.152863 0.0764314 0.997075i \(-0.475647\pi\)
0.0764314 + 0.997075i \(0.475647\pi\)
\(752\) 1.33310 2.30900i 0.0486133 0.0842007i
\(753\) 0 0
\(754\) 19.9065 + 34.4791i 0.724953 + 1.25566i
\(755\) 0.830556 0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) −12.5043 21.6581i −0.454178 0.786659i
\(759\) 0 0
\(760\) 5.63781 9.76497i 0.204505 0.354213i
\(761\) −3.63416 −0.131738 −0.0658692 0.997828i \(-0.520982\pi\)
−0.0658692 + 0.997828i \(0.520982\pi\)
\(762\) 0 0
\(763\) −3.21565 5.12874i −0.116414 0.185673i
\(764\) 23.9629 0.866946
\(765\) 0 0
\(766\) −3.13348 5.42734i −0.113217 0.196098i
\(767\) 31.1606 1.12515
\(768\) 0 0
\(769\) −19.9672 34.5842i −0.720035 1.24714i −0.960985 0.276600i \(-0.910792\pi\)
0.240950 0.970538i \(-0.422541\pi\)
\(770\) −3.54580 5.65531i −0.127782 0.203803i
\(771\) 0 0
\(772\) −4.88255 8.45682i −0.175727 0.304368i
\(773\) −18.0698 31.2978i −0.649925 1.12570i −0.983140 0.182853i \(-0.941467\pi\)
0.333215 0.942851i \(-0.391867\pi\)
\(774\) 0 0
\(775\) −3.35896 + 5.81788i −0.120657 + 0.208985i
\(776\) 0.712008 1.23323i 0.0255596 0.0442705i
\(777\) 0 0
\(778\) −10.8171 18.7357i −0.387811 0.671709i
\(779\) 41.7156 1.49462
\(780\) 0 0
\(781\) −20.2051 −0.722994
\(782\) −0.810892 + 1.40451i −0.0289974 + 0.0502251i
\(783\) 0 0
\(784\) −3.93199 5.79133i −0.140428 0.206833i
\(785\) 7.03961 12.1930i 0.251254 0.435186i