Properties

Label 378.2.h
Level $378$
Weight $2$
Character orbit 378.h
Rep. character $\chi_{378}(289,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $4$
Sturm bound $144$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).

Total New Old
Modular forms 168 16 152
Cusp forms 120 16 104
Eisenstein series 48 0 48

Trace form

\( 16 q - 8 q^{4} - 8 q^{5} - 2 q^{7} + 8 q^{11} + 2 q^{13} - 2 q^{14} - 8 q^{16} + 14 q^{17} - 4 q^{19} + 4 q^{20} - 4 q^{23} + 16 q^{25} + 16 q^{26} - 2 q^{28} + 10 q^{29} + 2 q^{31} + 14 q^{35} + 2 q^{37}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
378.2.h.a 378.h 63.g $2$ $3.018$ \(\Q(\sqrt{-3}) \) None 126.2.e.a \(-1\) \(0\) \(-6\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}+(3+\cdots)q^{7}+\cdots\)
378.2.h.b 378.h 63.g $2$ $3.018$ \(\Q(\sqrt{-3}) \) None 126.2.e.b \(1\) \(0\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3q^{5}+(1-3\zeta_{6})q^{7}+\cdots\)
378.2.h.c 378.h 63.g $6$ $3.018$ 6.0.309123.1 None 126.2.e.c \(-3\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\)
378.2.h.d 378.h 63.g $6$ $3.018$ 6.0.309123.1 None 126.2.e.d \(3\) \(0\) \(-10\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{2}+(-1+\beta _{4})q^{4}+(-2-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)