Defining parameters
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.h (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 16 | 152 |
Cusp forms | 120 | 16 | 104 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
378.2.h.a | $2$ | $3.018$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(-6\) | \(5\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}+(3+\cdots)q^{7}+\cdots\) |
378.2.h.b | $2$ | $3.018$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(6\) | \(-1\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3q^{5}+(1-3\zeta_{6})q^{7}+\cdots\) |
378.2.h.c | $6$ | $3.018$ | 6.0.309123.1 | None | \(-3\) | \(0\) | \(2\) | \(-4\) | \(q+(-1+\beta _{4})q^{2}-\beta _{4}q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\) |
378.2.h.d | $6$ | $3.018$ | 6.0.309123.1 | None | \(3\) | \(0\) | \(-10\) | \(-2\) | \(q+\beta _{4}q^{2}+(-1+\beta _{4})q^{4}+(-2-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)