Newspace parameters
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.f (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 126) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(325\) |
\(\chi(n)\) | \(-\zeta_{6}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
127.1 |
|
−0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | −1.50000 | − | 2.59808i | 0 | −0.500000 | + | 0.866025i | 1.00000 | 0 | 3.00000 | ||||||||||||||||
253.1 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | −1.50000 | + | 2.59808i | 0 | −0.500000 | − | 0.866025i | 1.00000 | 0 | 3.00000 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 378.2.f.a | 2 | |
3.b | odd | 2 | 1 | 126.2.f.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 3024.2.r.a | 2 | ||
7.b | odd | 2 | 1 | 2646.2.f.c | 2 | ||
7.c | even | 3 | 1 | 2646.2.e.f | 2 | ||
7.c | even | 3 | 1 | 2646.2.h.e | 2 | ||
7.d | odd | 6 | 1 | 2646.2.e.j | 2 | ||
7.d | odd | 6 | 1 | 2646.2.h.a | 2 | ||
9.c | even | 3 | 1 | inner | 378.2.f.a | 2 | |
9.c | even | 3 | 1 | 1134.2.a.h | 1 | ||
9.d | odd | 6 | 1 | 126.2.f.a | ✓ | 2 | |
9.d | odd | 6 | 1 | 1134.2.a.a | 1 | ||
12.b | even | 2 | 1 | 1008.2.r.d | 2 | ||
21.c | even | 2 | 1 | 882.2.f.h | 2 | ||
21.g | even | 6 | 1 | 882.2.e.d | 2 | ||
21.g | even | 6 | 1 | 882.2.h.f | 2 | ||
21.h | odd | 6 | 1 | 882.2.e.b | 2 | ||
21.h | odd | 6 | 1 | 882.2.h.j | 2 | ||
36.f | odd | 6 | 1 | 3024.2.r.a | 2 | ||
36.f | odd | 6 | 1 | 9072.2.a.w | 1 | ||
36.h | even | 6 | 1 | 1008.2.r.d | 2 | ||
36.h | even | 6 | 1 | 9072.2.a.c | 1 | ||
63.g | even | 3 | 1 | 2646.2.e.f | 2 | ||
63.h | even | 3 | 1 | 2646.2.h.e | 2 | ||
63.i | even | 6 | 1 | 882.2.h.f | 2 | ||
63.j | odd | 6 | 1 | 882.2.h.j | 2 | ||
63.k | odd | 6 | 1 | 2646.2.e.j | 2 | ||
63.l | odd | 6 | 1 | 2646.2.f.c | 2 | ||
63.l | odd | 6 | 1 | 7938.2.a.u | 1 | ||
63.n | odd | 6 | 1 | 882.2.e.b | 2 | ||
63.o | even | 6 | 1 | 882.2.f.h | 2 | ||
63.o | even | 6 | 1 | 7938.2.a.l | 1 | ||
63.s | even | 6 | 1 | 882.2.e.d | 2 | ||
63.t | odd | 6 | 1 | 2646.2.h.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
126.2.f.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
126.2.f.a | ✓ | 2 | 9.d | odd | 6 | 1 | |
378.2.f.a | 2 | 1.a | even | 1 | 1 | trivial | |
378.2.f.a | 2 | 9.c | even | 3 | 1 | inner | |
882.2.e.b | 2 | 21.h | odd | 6 | 1 | ||
882.2.e.b | 2 | 63.n | odd | 6 | 1 | ||
882.2.e.d | 2 | 21.g | even | 6 | 1 | ||
882.2.e.d | 2 | 63.s | even | 6 | 1 | ||
882.2.f.h | 2 | 21.c | even | 2 | 1 | ||
882.2.f.h | 2 | 63.o | even | 6 | 1 | ||
882.2.h.f | 2 | 21.g | even | 6 | 1 | ||
882.2.h.f | 2 | 63.i | even | 6 | 1 | ||
882.2.h.j | 2 | 21.h | odd | 6 | 1 | ||
882.2.h.j | 2 | 63.j | odd | 6 | 1 | ||
1008.2.r.d | 2 | 12.b | even | 2 | 1 | ||
1008.2.r.d | 2 | 36.h | even | 6 | 1 | ||
1134.2.a.a | 1 | 9.d | odd | 6 | 1 | ||
1134.2.a.h | 1 | 9.c | even | 3 | 1 | ||
2646.2.e.f | 2 | 7.c | even | 3 | 1 | ||
2646.2.e.f | 2 | 63.g | even | 3 | 1 | ||
2646.2.e.j | 2 | 7.d | odd | 6 | 1 | ||
2646.2.e.j | 2 | 63.k | odd | 6 | 1 | ||
2646.2.f.c | 2 | 7.b | odd | 2 | 1 | ||
2646.2.f.c | 2 | 63.l | odd | 6 | 1 | ||
2646.2.h.a | 2 | 7.d | odd | 6 | 1 | ||
2646.2.h.a | 2 | 63.t | odd | 6 | 1 | ||
2646.2.h.e | 2 | 7.c | even | 3 | 1 | ||
2646.2.h.e | 2 | 63.h | even | 3 | 1 | ||
3024.2.r.a | 2 | 4.b | odd | 2 | 1 | ||
3024.2.r.a | 2 | 36.f | odd | 6 | 1 | ||
7938.2.a.l | 1 | 63.o | even | 6 | 1 | ||
7938.2.a.u | 1 | 63.l | odd | 6 | 1 | ||
9072.2.a.c | 1 | 36.h | even | 6 | 1 | ||
9072.2.a.w | 1 | 36.f | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 3T_{5} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + T + 1 \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 3T + 9 \)
$7$
\( T^{2} + T + 1 \)
$11$
\( T^{2} + 6T + 36 \)
$13$
\( T^{2} + 2T + 4 \)
$17$
\( (T + 6)^{2} \)
$19$
\( (T + 7)^{2} \)
$23$
\( T^{2} - 3T + 9 \)
$29$
\( T^{2} - 6T + 36 \)
$31$
\( T^{2} + 2T + 4 \)
$37$
\( (T - 2)^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} + 2T + 4 \)
$47$
\( T^{2} \)
$53$
\( (T + 6)^{2} \)
$59$
\( T^{2} \)
$61$
\( T^{2} + 5T + 25 \)
$67$
\( T^{2} + 8T + 64 \)
$71$
\( (T + 3)^{2} \)
$73$
\( (T - 2)^{2} \)
$79$
\( T^{2} + 5T + 25 \)
$83$
\( T^{2} - 12T + 144 \)
$89$
\( T^{2} \)
$97$
\( T^{2} + 2T + 4 \)
show more
show less