Properties

Label 378.2.e.c.235.3
Level $378$
Weight $2$
Character 378.235
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(37,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 378.235
Dual form 378.2.e.c.37.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(1.84981 - 3.20397i) q^{5} +(2.64400 + 0.0963576i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +(1.84981 - 3.20397i) q^{5} +(2.64400 + 0.0963576i) q^{7} -1.00000 q^{8} +(-1.84981 + 3.20397i) q^{10} +(-0.738550 - 1.27921i) q^{11} +(-1.34981 - 2.33795i) q^{13} +(-2.64400 - 0.0963576i) q^{14} +1.00000 q^{16} +(-3.28799 + 5.69497i) q^{17} +(-0.444368 - 0.769668i) q^{19} +(1.84981 - 3.20397i) q^{20} +(0.738550 + 1.27921i) q^{22} +(3.14400 - 5.44556i) q^{23} +(-4.34362 - 7.52338i) q^{25} +(1.34981 + 2.33795i) q^{26} +(2.64400 + 0.0963576i) q^{28} +(-1.25526 + 2.17417i) q^{29} +6.81089 q^{31} -1.00000 q^{32} +(3.28799 - 5.69497i) q^{34} +(5.19963 - 8.29305i) q^{35} +(-1.38874 - 2.40536i) q^{37} +(0.444368 + 0.769668i) q^{38} +(-1.84981 + 3.20397i) q^{40} +(2.05563 + 3.56046i) q^{41} +(0.00618986 - 0.0107211i) q^{43} +(-0.738550 - 1.27921i) q^{44} +(-3.14400 + 5.44556i) q^{46} +6.98762 q^{47} +(6.98143 + 0.509538i) q^{49} +(4.34362 + 7.52338i) q^{50} +(-1.34981 - 2.33795i) q^{52} +(1.60507 - 2.78007i) q^{53} -5.46472 q^{55} +(-2.64400 - 0.0963576i) q^{56} +(1.25526 - 2.17417i) q^{58} -6.90978 q^{59} -5.73305 q^{61} -6.81089 q^{62} +1.00000 q^{64} -9.98762 q^{65} -9.46472 q^{67} +(-3.28799 + 5.69497i) q^{68} +(-5.19963 + 8.29305i) q^{70} +5.46472 q^{71} +(-6.03273 + 10.4490i) q^{73} +(1.38874 + 2.40536i) q^{74} +(-0.444368 - 0.769668i) q^{76} +(-1.82946 - 3.45338i) q^{77} +11.4523 q^{79} +(1.84981 - 3.20397i) q^{80} +(-2.05563 - 3.56046i) q^{82} +(-2.23855 + 3.87728i) q^{83} +(12.1643 + 21.0693i) q^{85} +(-0.00618986 + 0.0107211i) q^{86} +(0.738550 + 1.27921i) q^{88} +(4.43818 + 7.68715i) q^{89} +(-3.34362 - 6.31159i) q^{91} +(3.14400 - 5.44556i) q^{92} -6.98762 q^{94} -3.28799 q^{95} +(-6.58836 + 11.4114i) q^{97} +(-6.98143 - 0.509538i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} + 5 q^{5} + 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 6 q^{4} + 5 q^{5} + 4 q^{7} - 6 q^{8} - 5 q^{10} + q^{11} - 2 q^{13} - 4 q^{14} + 6 q^{16} + 4 q^{17} - 3 q^{19} + 5 q^{20} - q^{22} + 7 q^{23} - 2 q^{25} + 2 q^{26} + 4 q^{28} + 5 q^{29} + 28 q^{31} - 6 q^{32} - 4 q^{34} + 19 q^{35} - 9 q^{37} + 3 q^{38} - 5 q^{40} + 12 q^{41} + 18 q^{43} + q^{44} - 7 q^{46} + 6 q^{47} - 12 q^{49} + 2 q^{50} - 2 q^{52} - 9 q^{53} + 14 q^{55} - 4 q^{56} - 5 q^{58} + 8 q^{59} - 8 q^{61} - 28 q^{62} + 6 q^{64} - 24 q^{65} - 10 q^{67} + 4 q^{68} - 19 q^{70} - 14 q^{71} - 25 q^{73} + 9 q^{74} - 3 q^{76} - 52 q^{77} - 14 q^{79} + 5 q^{80} - 12 q^{82} - 8 q^{83} + 14 q^{85} - 18 q^{86} - q^{88} + 9 q^{89} + 4 q^{91} + 7 q^{92} - 6 q^{94} + 4 q^{95} - 28 q^{97} + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.84981 3.20397i 0.827262 1.43286i −0.0729162 0.997338i \(-0.523231\pi\)
0.900178 0.435522i \(-0.143436\pi\)
\(6\) 0 0
\(7\) 2.64400 + 0.0963576i 0.999337 + 0.0364197i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.84981 + 3.20397i −0.584963 + 1.01318i
\(11\) −0.738550 1.27921i −0.222681 0.385695i 0.732940 0.680293i \(-0.238148\pi\)
−0.955621 + 0.294598i \(0.904814\pi\)
\(12\) 0 0
\(13\) −1.34981 2.33795i −0.374371 0.648430i 0.615862 0.787854i \(-0.288808\pi\)
−0.990233 + 0.139425i \(0.955475\pi\)
\(14\) −2.64400 0.0963576i −0.706638 0.0257526i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.28799 + 5.69497i −0.797455 + 1.38123i 0.123813 + 0.992306i \(0.460488\pi\)
−0.921268 + 0.388927i \(0.872846\pi\)
\(18\) 0 0
\(19\) −0.444368 0.769668i −0.101945 0.176574i 0.810541 0.585682i \(-0.199173\pi\)
−0.912486 + 0.409108i \(0.865840\pi\)
\(20\) 1.84981 3.20397i 0.413631 0.716430i
\(21\) 0 0
\(22\) 0.738550 + 1.27921i 0.157459 + 0.272728i
\(23\) 3.14400 5.44556i 0.655568 1.13548i −0.326182 0.945307i \(-0.605762\pi\)
0.981751 0.190171i \(-0.0609043\pi\)
\(24\) 0 0
\(25\) −4.34362 7.52338i −0.868725 1.50468i
\(26\) 1.34981 + 2.33795i 0.264720 + 0.458509i
\(27\) 0 0
\(28\) 2.64400 + 0.0963576i 0.499668 + 0.0182099i
\(29\) −1.25526 + 2.17417i −0.233096 + 0.403734i −0.958718 0.284360i \(-0.908219\pi\)
0.725622 + 0.688094i \(0.241552\pi\)
\(30\) 0 0
\(31\) 6.81089 1.22327 0.611636 0.791139i \(-0.290512\pi\)
0.611636 + 0.791139i \(0.290512\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 3.28799 5.69497i 0.563886 0.976679i
\(35\) 5.19963 8.29305i 0.878898 1.40178i
\(36\) 0 0
\(37\) −1.38874 2.40536i −0.228307 0.395439i 0.729000 0.684514i \(-0.239986\pi\)
−0.957306 + 0.289075i \(0.906652\pi\)
\(38\) 0.444368 + 0.769668i 0.0720860 + 0.124857i
\(39\) 0 0
\(40\) −1.84981 + 3.20397i −0.292481 + 0.506592i
\(41\) 2.05563 + 3.56046i 0.321036 + 0.556050i 0.980702 0.195508i \(-0.0626357\pi\)
−0.659666 + 0.751559i \(0.729302\pi\)
\(42\) 0 0
\(43\) 0.00618986 0.0107211i 0.000943944 0.00163496i −0.865553 0.500817i \(-0.833033\pi\)
0.866497 + 0.499182i \(0.166366\pi\)
\(44\) −0.738550 1.27921i −0.111341 0.192848i
\(45\) 0 0
\(46\) −3.14400 + 5.44556i −0.463557 + 0.802904i
\(47\) 6.98762 1.01925 0.509625 0.860397i \(-0.329784\pi\)
0.509625 + 0.860397i \(0.329784\pi\)
\(48\) 0 0
\(49\) 6.98143 + 0.509538i 0.997347 + 0.0727912i
\(50\) 4.34362 + 7.52338i 0.614281 + 1.06397i
\(51\) 0 0
\(52\) −1.34981 2.33795i −0.187186 0.324215i
\(53\) 1.60507 2.78007i 0.220474 0.381872i −0.734478 0.678632i \(-0.762573\pi\)
0.954952 + 0.296760i \(0.0959063\pi\)
\(54\) 0 0
\(55\) −5.46472 −0.736863
\(56\) −2.64400 0.0963576i −0.353319 0.0128763i
\(57\) 0 0
\(58\) 1.25526 2.17417i 0.164824 0.285483i
\(59\) −6.90978 −0.899576 −0.449788 0.893135i \(-0.648501\pi\)
−0.449788 + 0.893135i \(0.648501\pi\)
\(60\) 0 0
\(61\) −5.73305 −0.734042 −0.367021 0.930213i \(-0.619622\pi\)
−0.367021 + 0.930213i \(0.619622\pi\)
\(62\) −6.81089 −0.864984
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −9.98762 −1.23881
\(66\) 0 0
\(67\) −9.46472 −1.15630 −0.578150 0.815931i \(-0.696225\pi\)
−0.578150 + 0.815931i \(0.696225\pi\)
\(68\) −3.28799 + 5.69497i −0.398728 + 0.690616i
\(69\) 0 0
\(70\) −5.19963 + 8.29305i −0.621474 + 0.991209i
\(71\) 5.46472 0.648543 0.324271 0.945964i \(-0.394881\pi\)
0.324271 + 0.945964i \(0.394881\pi\)
\(72\) 0 0
\(73\) −6.03273 + 10.4490i −0.706078 + 1.22296i 0.260223 + 0.965548i \(0.416204\pi\)
−0.966301 + 0.257414i \(0.917130\pi\)
\(74\) 1.38874 + 2.40536i 0.161437 + 0.279618i
\(75\) 0 0
\(76\) −0.444368 0.769668i −0.0509725 0.0882870i
\(77\) −1.82946 3.45338i −0.208487 0.393549i
\(78\) 0 0
\(79\) 11.4523 1.28849 0.644244 0.764820i \(-0.277172\pi\)
0.644244 + 0.764820i \(0.277172\pi\)
\(80\) 1.84981 3.20397i 0.206816 0.358215i
\(81\) 0 0
\(82\) −2.05563 3.56046i −0.227007 0.393187i
\(83\) −2.23855 + 3.87728i −0.245713 + 0.425587i −0.962332 0.271878i \(-0.912355\pi\)
0.716619 + 0.697465i \(0.245689\pi\)
\(84\) 0 0
\(85\) 12.1643 + 21.0693i 1.31941 + 2.28528i
\(86\) −0.00618986 + 0.0107211i −0.000667469 + 0.00115609i
\(87\) 0 0
\(88\) 0.738550 + 1.27921i 0.0787297 + 0.136364i
\(89\) 4.43818 + 7.68715i 0.470446 + 0.814836i 0.999429 0.0337963i \(-0.0107597\pi\)
−0.528983 + 0.848633i \(0.677426\pi\)
\(90\) 0 0
\(91\) −3.34362 6.31159i −0.350507 0.661634i
\(92\) 3.14400 5.44556i 0.327784 0.567739i
\(93\) 0 0
\(94\) −6.98762 −0.720718
\(95\) −3.28799 −0.337341
\(96\) 0 0
\(97\) −6.58836 + 11.4114i −0.668947 + 1.15865i 0.309252 + 0.950980i \(0.399921\pi\)
−0.978199 + 0.207670i \(0.933412\pi\)
\(98\) −6.98143 0.509538i −0.705231 0.0514711i
\(99\) 0 0
\(100\) −4.34362 7.52338i −0.434362 0.752338i
\(101\) 2.62729 + 4.55059i 0.261425 + 0.452801i 0.966621 0.256212i \(-0.0824744\pi\)
−0.705196 + 0.709012i \(0.749141\pi\)
\(102\) 0 0
\(103\) −0.833104 + 1.44298i −0.0820882 + 0.142181i −0.904147 0.427222i \(-0.859492\pi\)
0.822059 + 0.569403i \(0.192826\pi\)
\(104\) 1.34981 + 2.33795i 0.132360 + 0.229255i
\(105\) 0 0
\(106\) −1.60507 + 2.78007i −0.155899 + 0.270024i
\(107\) 5.38255 + 9.32284i 0.520350 + 0.901273i 0.999720 + 0.0236602i \(0.00753198\pi\)
−0.479370 + 0.877613i \(0.659135\pi\)
\(108\) 0 0
\(109\) −0.0945538 + 0.163772i −0.00905662 + 0.0156865i −0.870518 0.492136i \(-0.836216\pi\)
0.861462 + 0.507823i \(0.169550\pi\)
\(110\) 5.46472 0.521041
\(111\) 0 0
\(112\) 2.64400 + 0.0963576i 0.249834 + 0.00910494i
\(113\) 6.78180 + 11.7464i 0.637978 + 1.10501i 0.985876 + 0.167478i \(0.0535624\pi\)
−0.347897 + 0.937533i \(0.613104\pi\)
\(114\) 0 0
\(115\) −11.6316 20.1466i −1.08465 1.87868i
\(116\) −1.25526 + 2.17417i −0.116548 + 0.201867i
\(117\) 0 0
\(118\) 6.90978 0.636097
\(119\) −9.24219 + 14.7407i −0.847230 + 1.35127i
\(120\) 0 0
\(121\) 4.40909 7.63676i 0.400826 0.694251i
\(122\) 5.73305 0.519046
\(123\) 0 0
\(124\) 6.81089 0.611636
\(125\) −13.6414 −1.22013
\(126\) 0 0
\(127\) −2.85669 −0.253490 −0.126745 0.991935i \(-0.540453\pi\)
−0.126745 + 0.991935i \(0.540453\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 9.98762 0.875972
\(131\) 0.0778435 0.134829i 0.00680122 0.0117801i −0.862605 0.505878i \(-0.831168\pi\)
0.869406 + 0.494098i \(0.164502\pi\)
\(132\) 0 0
\(133\) −1.10074 2.07782i −0.0954466 0.180170i
\(134\) 9.46472 0.817627
\(135\) 0 0
\(136\) 3.28799 5.69497i 0.281943 0.488340i
\(137\) −1.70582 2.95456i −0.145738 0.252425i 0.783910 0.620874i \(-0.213222\pi\)
−0.929648 + 0.368449i \(0.879889\pi\)
\(138\) 0 0
\(139\) −6.75526 11.7005i −0.572974 0.992420i −0.996259 0.0864229i \(-0.972456\pi\)
0.423285 0.905997i \(-0.360877\pi\)
\(140\) 5.19963 8.29305i 0.439449 0.700890i
\(141\) 0 0
\(142\) −5.46472 −0.458589
\(143\) −1.99381 + 3.45338i −0.166731 + 0.288786i
\(144\) 0 0
\(145\) 4.64400 + 8.04364i 0.385663 + 0.667988i
\(146\) 6.03273 10.4490i 0.499272 0.864765i
\(147\) 0 0
\(148\) −1.38874 2.40536i −0.114153 0.197719i
\(149\) 0.166896 0.289073i 0.0136727 0.0236818i −0.859108 0.511794i \(-0.828981\pi\)
0.872781 + 0.488112i \(0.162314\pi\)
\(150\) 0 0
\(151\) 9.95489 + 17.2424i 0.810117 + 1.40316i 0.912781 + 0.408448i \(0.133930\pi\)
−0.102664 + 0.994716i \(0.532737\pi\)
\(152\) 0.444368 + 0.769668i 0.0360430 + 0.0624283i
\(153\) 0 0
\(154\) 1.82946 + 3.45338i 0.147422 + 0.278281i
\(155\) 12.5989 21.8219i 1.01197 1.75278i
\(156\) 0 0
\(157\) −6.96286 −0.555697 −0.277848 0.960625i \(-0.589621\pi\)
−0.277848 + 0.960625i \(0.589621\pi\)
\(158\) −11.4523 −0.911099
\(159\) 0 0
\(160\) −1.84981 + 3.20397i −0.146241 + 0.253296i
\(161\) 8.83743 14.0951i 0.696487 1.11085i
\(162\) 0 0
\(163\) 4.03706 + 6.99240i 0.316207 + 0.547687i 0.979693 0.200502i \(-0.0642572\pi\)
−0.663486 + 0.748189i \(0.730924\pi\)
\(164\) 2.05563 + 3.56046i 0.160518 + 0.278025i
\(165\) 0 0
\(166\) 2.23855 3.87728i 0.173745 0.300935i
\(167\) −9.74288 16.8752i −0.753927 1.30584i −0.945906 0.324440i \(-0.894824\pi\)
0.191979 0.981399i \(-0.438509\pi\)
\(168\) 0 0
\(169\) 2.85600 4.94674i 0.219693 0.380519i
\(170\) −12.1643 21.0693i −0.932963 1.61594i
\(171\) 0 0
\(172\) 0.00618986 0.0107211i 0.000471972 0.000817480i
\(173\) −22.5636 −1.71548 −0.857740 0.514085i \(-0.828132\pi\)
−0.857740 + 0.514085i \(0.828132\pi\)
\(174\) 0 0
\(175\) −10.7596 20.3103i −0.813349 1.53532i
\(176\) −0.738550 1.27921i −0.0556703 0.0964238i
\(177\) 0 0
\(178\) −4.43818 7.68715i −0.332656 0.576176i
\(179\) −0.166896 + 0.289073i −0.0124744 + 0.0216063i −0.872195 0.489158i \(-0.837304\pi\)
0.859721 + 0.510764i \(0.170637\pi\)
\(180\) 0 0
\(181\) 23.2422 1.72758 0.863789 0.503853i \(-0.168085\pi\)
0.863789 + 0.503853i \(0.168085\pi\)
\(182\) 3.34362 + 6.31159i 0.247846 + 0.467846i
\(183\) 0 0
\(184\) −3.14400 + 5.44556i −0.231778 + 0.401452i
\(185\) −10.2756 −0.755478
\(186\) 0 0
\(187\) 9.71339 0.710313
\(188\) 6.98762 0.509625
\(189\) 0 0
\(190\) 3.28799 0.238536
\(191\) 16.3214 1.18098 0.590488 0.807046i \(-0.298935\pi\)
0.590488 + 0.807046i \(0.298935\pi\)
\(192\) 0 0
\(193\) −14.3214 −1.03088 −0.515439 0.856926i \(-0.672371\pi\)
−0.515439 + 0.856926i \(0.672371\pi\)
\(194\) 6.58836 11.4114i 0.473017 0.819289i
\(195\) 0 0
\(196\) 6.98143 + 0.509538i 0.498674 + 0.0363956i
\(197\) −2.42402 −0.172704 −0.0863520 0.996265i \(-0.527521\pi\)
−0.0863520 + 0.996265i \(0.527521\pi\)
\(198\) 0 0
\(199\) −3.05563 + 5.29251i −0.216608 + 0.375176i −0.953769 0.300541i \(-0.902833\pi\)
0.737161 + 0.675717i \(0.236166\pi\)
\(200\) 4.34362 + 7.52338i 0.307141 + 0.531983i
\(201\) 0 0
\(202\) −2.62729 4.55059i −0.184855 0.320179i
\(203\) −3.52840 + 5.62755i −0.247645 + 0.394977i
\(204\) 0 0
\(205\) 15.2101 1.06232
\(206\) 0.833104 1.44298i 0.0580451 0.100537i
\(207\) 0 0
\(208\) −1.34981 2.33795i −0.0935928 0.162107i
\(209\) −0.656376 + 1.13688i −0.0454025 + 0.0786394i
\(210\) 0 0
\(211\) 5.72253 + 9.91171i 0.393955 + 0.682350i 0.992967 0.118390i \(-0.0377732\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(212\) 1.60507 2.78007i 0.110237 0.190936i
\(213\) 0 0
\(214\) −5.38255 9.32284i −0.367943 0.637296i
\(215\) −0.0229002 0.0396643i −0.00156178 0.00270508i
\(216\) 0 0
\(217\) 18.0080 + 0.656281i 1.22246 + 0.0445513i
\(218\) 0.0945538 0.163772i 0.00640399 0.0110920i
\(219\) 0 0
\(220\) −5.46472 −0.368431
\(221\) 17.7527 1.19418
\(222\) 0 0
\(223\) −3.61126 + 6.25489i −0.241828 + 0.418859i −0.961235 0.275730i \(-0.911080\pi\)
0.719407 + 0.694589i \(0.244414\pi\)
\(224\) −2.64400 0.0963576i −0.176659 0.00643816i
\(225\) 0 0
\(226\) −6.78180 11.7464i −0.451119 0.781361i
\(227\) 6.82760 + 11.8258i 0.453164 + 0.784903i 0.998581 0.0532622i \(-0.0169619\pi\)
−0.545417 + 0.838165i \(0.683629\pi\)
\(228\) 0 0
\(229\) −8.68725 + 15.0468i −0.574070 + 0.994318i 0.422073 + 0.906562i \(0.361303\pi\)
−0.996142 + 0.0877555i \(0.972031\pi\)
\(230\) 11.6316 + 20.1466i 0.766966 + 1.32842i
\(231\) 0 0
\(232\) 1.25526 2.17417i 0.0824119 0.142742i
\(233\) −7.62110 13.2001i −0.499275 0.864769i 0.500725 0.865606i \(-0.333067\pi\)
−1.00000 0.000837426i \(0.999733\pi\)
\(234\) 0 0
\(235\) 12.9258 22.3881i 0.843186 1.46044i
\(236\) −6.90978 −0.449788
\(237\) 0 0
\(238\) 9.24219 14.7407i 0.599082 0.955495i
\(239\) −9.47524 16.4116i −0.612902 1.06158i −0.990749 0.135710i \(-0.956669\pi\)
0.377846 0.925868i \(-0.376665\pi\)
\(240\) 0 0
\(241\) 12.2527 + 21.2223i 0.789267 + 1.36705i 0.926417 + 0.376500i \(0.122872\pi\)
−0.137150 + 0.990550i \(0.543794\pi\)
\(242\) −4.40909 + 7.63676i −0.283427 + 0.490910i
\(243\) 0 0
\(244\) −5.73305 −0.367021
\(245\) 14.5469 21.4258i 0.929367 1.36884i
\(246\) 0 0
\(247\) −1.19963 + 2.07782i −0.0763305 + 0.132208i
\(248\) −6.81089 −0.432492
\(249\) 0 0
\(250\) 13.6414 0.862761
\(251\) 12.1236 0.765238 0.382619 0.923906i \(-0.375022\pi\)
0.382619 + 0.923906i \(0.375022\pi\)
\(252\) 0 0
\(253\) −9.28799 −0.583931
\(254\) 2.85669 0.179245
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.10439 + 7.10900i −0.256025 + 0.443448i −0.965173 0.261611i \(-0.915746\pi\)
0.709149 + 0.705059i \(0.249079\pi\)
\(258\) 0 0
\(259\) −3.44004 6.49358i −0.213754 0.403491i
\(260\) −9.98762 −0.619406
\(261\) 0 0
\(262\) −0.0778435 + 0.134829i −0.00480919 + 0.00832976i
\(263\) −2.67309 4.62992i −0.164830 0.285493i 0.771765 0.635908i \(-0.219374\pi\)
−0.936595 + 0.350414i \(0.886041\pi\)
\(264\) 0 0
\(265\) −5.93818 10.2852i −0.364779 0.631816i
\(266\) 1.10074 + 2.07782i 0.0674909 + 0.127399i
\(267\) 0 0
\(268\) −9.46472 −0.578150
\(269\) −9.24219 + 16.0079i −0.563506 + 0.976022i 0.433681 + 0.901067i \(0.357215\pi\)
−0.997187 + 0.0749550i \(0.976119\pi\)
\(270\) 0 0
\(271\) −3.67742 6.36947i −0.223387 0.386918i 0.732447 0.680824i \(-0.238378\pi\)
−0.955834 + 0.293906i \(0.905045\pi\)
\(272\) −3.28799 + 5.69497i −0.199364 + 0.345308i
\(273\) 0 0
\(274\) 1.70582 + 2.95456i 0.103052 + 0.178492i
\(275\) −6.41597 + 11.1128i −0.386897 + 0.670126i
\(276\) 0 0
\(277\) 4.54944 + 7.87987i 0.273349 + 0.473455i 0.969717 0.244230i \(-0.0785351\pi\)
−0.696368 + 0.717685i \(0.745202\pi\)
\(278\) 6.75526 + 11.7005i 0.405154 + 0.701747i
\(279\) 0 0
\(280\) −5.19963 + 8.29305i −0.310737 + 0.495604i
\(281\) −6.00433 + 10.3998i −0.358188 + 0.620400i −0.987658 0.156624i \(-0.949939\pi\)
0.629470 + 0.777025i \(0.283272\pi\)
\(282\) 0 0
\(283\) 9.84294 0.585102 0.292551 0.956250i \(-0.405496\pi\)
0.292551 + 0.956250i \(0.405496\pi\)
\(284\) 5.46472 0.324271
\(285\) 0 0
\(286\) 1.99381 3.45338i 0.117896 0.204203i
\(287\) 5.09201 + 9.61192i 0.300572 + 0.567373i
\(288\) 0 0
\(289\) −13.1218 22.7276i −0.771870 1.33692i
\(290\) −4.64400 8.04364i −0.272705 0.472339i
\(291\) 0 0
\(292\) −6.03273 + 10.4490i −0.353039 + 0.611481i
\(293\) −10.7101 18.5505i −0.625694 1.08373i −0.988406 0.151832i \(-0.951483\pi\)
0.362713 0.931901i \(-0.381851\pi\)
\(294\) 0 0
\(295\) −12.7818 + 22.1387i −0.744185 + 1.28897i
\(296\) 1.38874 + 2.40536i 0.0807186 + 0.139809i
\(297\) 0 0
\(298\) −0.166896 + 0.289073i −0.00966804 + 0.0167455i
\(299\) −16.9752 −0.981704
\(300\) 0 0
\(301\) 0.0173990 0.0277502i 0.00100286 0.00159950i
\(302\) −9.95489 17.2424i −0.572839 0.992187i
\(303\) 0 0
\(304\) −0.444368 0.769668i −0.0254862 0.0441435i
\(305\) −10.6051 + 18.3685i −0.607245 + 1.05178i
\(306\) 0 0
\(307\) −5.68725 −0.324588 −0.162294 0.986742i \(-0.551889\pi\)
−0.162294 + 0.986742i \(0.551889\pi\)
\(308\) −1.82946 3.45338i −0.104243 0.196775i
\(309\) 0 0
\(310\) −12.5989 + 21.8219i −0.715569 + 1.23940i
\(311\) 11.7207 0.664618 0.332309 0.943171i \(-0.392172\pi\)
0.332309 + 0.943171i \(0.392172\pi\)
\(312\) 0 0
\(313\) −26.7738 −1.51334 −0.756671 0.653796i \(-0.773176\pi\)
−0.756671 + 0.653796i \(0.773176\pi\)
\(314\) 6.96286 0.392937
\(315\) 0 0
\(316\) 11.4523 0.644244
\(317\) −1.90249 −0.106855 −0.0534273 0.998572i \(-0.517015\pi\)
−0.0534273 + 0.998572i \(0.517015\pi\)
\(318\) 0 0
\(319\) 3.70829 0.207624
\(320\) 1.84981 3.20397i 0.103408 0.179107i
\(321\) 0 0
\(322\) −8.83743 + 14.0951i −0.492491 + 0.785489i
\(323\) 5.84431 0.325186
\(324\) 0 0
\(325\) −11.7262 + 20.3103i −0.650451 + 1.12661i
\(326\) −4.03706 6.99240i −0.223592 0.387273i
\(327\) 0 0
\(328\) −2.05563 3.56046i −0.113503 0.196593i
\(329\) 18.4752 + 0.673310i 1.01857 + 0.0371208i
\(330\) 0 0
\(331\) 5.56732 0.306008 0.153004 0.988226i \(-0.451105\pi\)
0.153004 + 0.988226i \(0.451105\pi\)
\(332\) −2.23855 + 3.87728i −0.122856 + 0.212794i
\(333\) 0 0
\(334\) 9.74288 + 16.8752i 0.533107 + 0.923368i
\(335\) −17.5080 + 30.3247i −0.956563 + 1.65682i
\(336\) 0 0
\(337\) −16.8869 29.2489i −0.919887 1.59329i −0.799585 0.600553i \(-0.794947\pi\)
−0.120302 0.992737i \(-0.538386\pi\)
\(338\) −2.85600 + 4.94674i −0.155346 + 0.269067i
\(339\) 0 0
\(340\) 12.1643 + 21.0693i 0.659704 + 1.14264i
\(341\) −5.03018 8.71253i −0.272400 0.471810i
\(342\) 0 0
\(343\) 18.4098 + 2.01993i 0.994035 + 0.109066i
\(344\) −0.00618986 + 0.0107211i −0.000333735 + 0.000578045i
\(345\) 0 0
\(346\) 22.5636 1.21303
\(347\) 30.4065 1.63231 0.816154 0.577834i \(-0.196102\pi\)
0.816154 + 0.577834i \(0.196102\pi\)
\(348\) 0 0
\(349\) −6.29782 + 10.9082i −0.337115 + 0.583900i −0.983889 0.178782i \(-0.942784\pi\)
0.646774 + 0.762682i \(0.276118\pi\)
\(350\) 10.7596 + 20.3103i 0.575124 + 1.08563i
\(351\) 0 0
\(352\) 0.738550 + 1.27921i 0.0393648 + 0.0681819i
\(353\) −3.76578 6.52252i −0.200432 0.347159i 0.748235 0.663433i \(-0.230901\pi\)
−0.948668 + 0.316274i \(0.897568\pi\)
\(354\) 0 0
\(355\) 10.1087 17.5088i 0.536515 0.929271i
\(356\) 4.43818 + 7.68715i 0.235223 + 0.407418i
\(357\) 0 0
\(358\) 0.166896 0.289073i 0.00882074 0.0152780i
\(359\) 3.44801 + 5.97213i 0.181979 + 0.315197i 0.942554 0.334053i \(-0.108416\pi\)
−0.760575 + 0.649250i \(0.775083\pi\)
\(360\) 0 0
\(361\) 9.10507 15.7705i 0.479214 0.830024i
\(362\) −23.2422 −1.22158
\(363\) 0 0
\(364\) −3.34362 6.31159i −0.175254 0.330817i
\(365\) 22.3189 + 38.6574i 1.16822 + 2.02342i
\(366\) 0 0
\(367\) −11.5618 20.0257i −0.603522 1.04533i −0.992283 0.123992i \(-0.960430\pi\)
0.388761 0.921339i \(-0.372903\pi\)
\(368\) 3.14400 5.44556i 0.163892 0.283869i
\(369\) 0 0
\(370\) 10.2756 0.534204
\(371\) 4.51169 7.19583i 0.234235 0.373589i
\(372\) 0 0
\(373\) −14.5822 + 25.2571i −0.755036 + 1.30776i 0.190320 + 0.981722i \(0.439047\pi\)
−0.945356 + 0.326039i \(0.894286\pi\)
\(374\) −9.71339 −0.502267
\(375\) 0 0
\(376\) −6.98762 −0.360359
\(377\) 6.77747 0.349058
\(378\) 0 0
\(379\) −13.5622 −0.696645 −0.348322 0.937375i \(-0.613249\pi\)
−0.348322 + 0.937375i \(0.613249\pi\)
\(380\) −3.28799 −0.168670
\(381\) 0 0
\(382\) −16.3214 −0.835076
\(383\) −1.41783 + 2.45575i −0.0724475 + 0.125483i −0.899973 0.435945i \(-0.856414\pi\)
0.827526 + 0.561428i \(0.189748\pi\)
\(384\) 0 0
\(385\) −14.4487 0.526567i −0.736374 0.0268364i
\(386\) 14.3214 0.728941
\(387\) 0 0
\(388\) −6.58836 + 11.4114i −0.334474 + 0.579325i
\(389\) −9.30401 16.1150i −0.471732 0.817064i 0.527745 0.849403i \(-0.323038\pi\)
−0.999477 + 0.0323388i \(0.989704\pi\)
\(390\) 0 0
\(391\) 20.6749 + 35.8099i 1.04557 + 1.81099i
\(392\) −6.98143 0.509538i −0.352615 0.0257356i
\(393\) 0 0
\(394\) 2.42402 0.122120
\(395\) 21.1847 36.6930i 1.06592 1.84622i
\(396\) 0 0
\(397\) −10.2880 17.8193i −0.516340 0.894326i −0.999820 0.0189712i \(-0.993961\pi\)
0.483481 0.875355i \(-0.339372\pi\)
\(398\) 3.05563 5.29251i 0.153165 0.265290i
\(399\) 0 0
\(400\) −4.34362 7.52338i −0.217181 0.376169i
\(401\) −3.37704 + 5.84921i −0.168642 + 0.292096i −0.937942 0.346791i \(-0.887271\pi\)
0.769301 + 0.638887i \(0.220605\pi\)
\(402\) 0 0
\(403\) −9.19344 15.9235i −0.457958 0.793206i
\(404\) 2.62729 + 4.55059i 0.130712 + 0.226400i
\(405\) 0 0
\(406\) 3.52840 5.62755i 0.175112 0.279291i
\(407\) −2.05130 + 3.55296i −0.101679 + 0.176114i
\(408\) 0 0
\(409\) 15.3214 0.757595 0.378798 0.925480i \(-0.376338\pi\)
0.378798 + 0.925480i \(0.376338\pi\)
\(410\) −15.2101 −0.751176
\(411\) 0 0
\(412\) −0.833104 + 1.44298i −0.0410441 + 0.0710904i
\(413\) −18.2694 0.665809i −0.898980 0.0327623i
\(414\) 0 0
\(415\) 8.28180 + 14.3445i 0.406538 + 0.704144i
\(416\) 1.34981 + 2.33795i 0.0661801 + 0.114627i
\(417\) 0 0
\(418\) 0.656376 1.13688i 0.0321044 0.0556064i
\(419\) 4.32141 + 7.48491i 0.211115 + 0.365662i 0.952064 0.305900i \(-0.0989573\pi\)
−0.740949 + 0.671561i \(0.765624\pi\)
\(420\) 0 0
\(421\) 18.5636 32.1531i 0.904735 1.56705i 0.0834618 0.996511i \(-0.473402\pi\)
0.821273 0.570536i \(-0.193264\pi\)
\(422\) −5.72253 9.91171i −0.278568 0.482494i
\(423\) 0 0
\(424\) −1.60507 + 2.78007i −0.0779493 + 0.135012i
\(425\) 57.1272 2.77108
\(426\) 0 0
\(427\) −15.1582 0.552423i −0.733555 0.0267336i
\(428\) 5.38255 + 9.32284i 0.260175 + 0.450637i
\(429\) 0 0
\(430\) 0.0229002 + 0.0396643i 0.00110434 + 0.00191278i
\(431\) 4.71015 8.15822i 0.226880 0.392967i −0.730002 0.683445i \(-0.760481\pi\)
0.956882 + 0.290478i \(0.0938142\pi\)
\(432\) 0 0
\(433\) −0.208771 −0.0100329 −0.00501645 0.999987i \(-0.501597\pi\)
−0.00501645 + 0.999987i \(0.501597\pi\)
\(434\) −18.0080 0.656281i −0.864410 0.0315025i
\(435\) 0 0
\(436\) −0.0945538 + 0.163772i −0.00452831 + 0.00784326i
\(437\) −5.58836 −0.267328
\(438\) 0 0
\(439\) −9.96796 −0.475745 −0.237872 0.971296i \(-0.576450\pi\)
−0.237872 + 0.971296i \(0.576450\pi\)
\(440\) 5.46472 0.260520
\(441\) 0 0
\(442\) −17.7527 −0.844410
\(443\) 15.6996 0.745912 0.372956 0.927849i \(-0.378344\pi\)
0.372956 + 0.927849i \(0.378344\pi\)
\(444\) 0 0
\(445\) 32.8392 1.55673
\(446\) 3.61126 6.25489i 0.170998 0.296178i
\(447\) 0 0
\(448\) 2.64400 + 0.0963576i 0.124917 + 0.00455247i
\(449\) −33.6253 −1.58688 −0.793439 0.608650i \(-0.791712\pi\)
−0.793439 + 0.608650i \(0.791712\pi\)
\(450\) 0 0
\(451\) 3.03637 5.25915i 0.142977 0.247644i
\(452\) 6.78180 + 11.7464i 0.318989 + 0.552505i
\(453\) 0 0
\(454\) −6.82760 11.8258i −0.320435 0.555010i
\(455\) −26.4072 0.962383i −1.23799 0.0451172i
\(456\) 0 0
\(457\) 32.7083 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(458\) 8.68725 15.0468i 0.405928 0.703089i
\(459\) 0 0
\(460\) −11.6316 20.1466i −0.542327 0.939338i
\(461\) 2.07165 3.58821i 0.0964865 0.167120i −0.813742 0.581227i \(-0.802573\pi\)
0.910228 + 0.414107i \(0.135906\pi\)
\(462\) 0 0
\(463\) −8.34176 14.4484i −0.387675 0.671472i 0.604462 0.796634i \(-0.293388\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(464\) −1.25526 + 2.17417i −0.0582740 + 0.100934i
\(465\) 0 0
\(466\) 7.62110 + 13.2001i 0.353040 + 0.611484i
\(467\) −14.9585 25.9089i −0.692198 1.19892i −0.971116 0.238608i \(-0.923309\pi\)
0.278918 0.960315i \(-0.410024\pi\)
\(468\) 0 0
\(469\) −25.0247 0.911998i −1.15553 0.0421121i
\(470\) −12.9258 + 22.3881i −0.596223 + 1.03269i
\(471\) 0 0
\(472\) 6.90978 0.318048
\(473\) −0.0182861 −0.000840794
\(474\) 0 0
\(475\) −3.86033 + 6.68630i −0.177124 + 0.306788i
\(476\) −9.24219 + 14.7407i −0.423615 + 0.675637i
\(477\) 0 0
\(478\) 9.47524 + 16.4116i 0.433387 + 0.750649i
\(479\) −1.47965 2.56283i −0.0676068 0.117098i 0.830241 0.557405i \(-0.188203\pi\)
−0.897847 + 0.440307i \(0.854870\pi\)
\(480\) 0 0
\(481\) −3.74907 + 6.49358i −0.170943 + 0.296082i
\(482\) −12.2527 21.2223i −0.558096 0.966650i
\(483\) 0 0
\(484\) 4.40909 7.63676i 0.200413 0.347126i
\(485\) 24.3745 + 42.2179i 1.10679 + 1.91701i
\(486\) 0 0
\(487\) −14.0309 + 24.3022i −0.635800 + 1.10124i 0.350546 + 0.936546i \(0.385996\pi\)
−0.986345 + 0.164691i \(0.947337\pi\)
\(488\) 5.73305 0.259523
\(489\) 0 0
\(490\) −14.5469 + 21.4258i −0.657162 + 0.967917i
\(491\) −17.0734 29.5721i −0.770513 1.33457i −0.937282 0.348572i \(-0.886667\pi\)
0.166769 0.985996i \(-0.446667\pi\)
\(492\) 0 0
\(493\) −8.25457 14.2973i −0.371767 0.643920i
\(494\) 1.19963 2.07782i 0.0539738 0.0934854i
\(495\) 0 0
\(496\) 6.81089 0.305818
\(497\) 14.4487 + 0.526567i 0.648113 + 0.0236198i
\(498\) 0 0
\(499\) 1.14035 1.97515i 0.0510493 0.0884199i −0.839372 0.543558i \(-0.817077\pi\)
0.890421 + 0.455138i \(0.150410\pi\)
\(500\) −13.6414 −0.610064
\(501\) 0 0
\(502\) −12.1236 −0.541105
\(503\) −13.9890 −0.623739 −0.311869 0.950125i \(-0.600955\pi\)
−0.311869 + 0.950125i \(0.600955\pi\)
\(504\) 0 0
\(505\) 19.4400 0.865067
\(506\) 9.28799 0.412902
\(507\) 0 0
\(508\) −2.85669 −0.126745
\(509\) 12.8090 22.1859i 0.567750 0.983373i −0.429038 0.903287i \(-0.641147\pi\)
0.996788 0.0800859i \(-0.0255195\pi\)
\(510\) 0 0
\(511\) −16.9574 + 27.0458i −0.750149 + 1.19644i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.10439 7.10900i 0.181037 0.313565i
\(515\) 3.08217 + 5.33848i 0.135817 + 0.235242i
\(516\) 0 0
\(517\) −5.16071 8.93861i −0.226968 0.393119i
\(518\) 3.44004 + 6.49358i 0.151147 + 0.285312i
\(519\) 0 0
\(520\) 9.98762 0.437986
\(521\) 20.9127 36.2219i 0.916203 1.58691i 0.111073 0.993812i \(-0.464571\pi\)
0.805130 0.593099i \(-0.202096\pi\)
\(522\) 0 0
\(523\) 7.88323 + 13.6542i 0.344710 + 0.597055i 0.985301 0.170827i \(-0.0546440\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(524\) 0.0778435 0.134829i 0.00340061 0.00589003i
\(525\) 0 0
\(526\) 2.67309 + 4.62992i 0.116552 + 0.201874i
\(527\) −22.3942 + 38.7878i −0.975505 + 1.68962i
\(528\) 0 0
\(529\) −8.26942 14.3231i −0.359540 0.622742i
\(530\) 5.93818 + 10.2852i 0.257938 + 0.446762i
\(531\) 0 0
\(532\) −1.10074 2.07782i −0.0477233 0.0900848i
\(533\) 5.54944 9.61192i 0.240373 0.416338i
\(534\) 0 0
\(535\) 39.8268 1.72186
\(536\) 9.46472 0.408814
\(537\) 0 0
\(538\) 9.24219 16.0079i 0.398459 0.690152i
\(539\) −4.50433 9.30701i −0.194015 0.400881i
\(540\) 0 0
\(541\) −21.0963 36.5399i −0.907002 1.57097i −0.818207 0.574924i \(-0.805031\pi\)
−0.0887957 0.996050i \(-0.528302\pi\)
\(542\) 3.67742 + 6.36947i 0.157959 + 0.273592i
\(543\) 0 0
\(544\) 3.28799 5.69497i 0.140971 0.244170i
\(545\) 0.349814 + 0.605896i 0.0149844 + 0.0259537i
\(546\) 0 0
\(547\) 20.3356 35.2222i 0.869486 1.50599i 0.00696400 0.999976i \(-0.497783\pi\)
0.862522 0.506019i \(-0.168883\pi\)
\(548\) −1.70582 2.95456i −0.0728689 0.126213i
\(549\) 0 0
\(550\) 6.41597 11.1128i 0.273578 0.473851i
\(551\) 2.23119 0.0950519
\(552\) 0 0
\(553\) 30.2799 + 1.10352i 1.28763 + 0.0469264i
\(554\) −4.54944 7.87987i −0.193287 0.334783i
\(555\) 0 0
\(556\) −6.75526 11.7005i −0.286487 0.496210i
\(557\) −6.68794 + 11.5838i −0.283377 + 0.490823i −0.972214 0.234093i \(-0.924788\pi\)
0.688837 + 0.724916i \(0.258121\pi\)
\(558\) 0 0
\(559\) −0.0334206 −0.00141354
\(560\) 5.19963 8.29305i 0.219724 0.350445i
\(561\) 0 0
\(562\) 6.00433 10.3998i 0.253277 0.438689i
\(563\) 32.7614 1.38073 0.690364 0.723463i \(-0.257451\pi\)
0.690364 + 0.723463i \(0.257451\pi\)
\(564\) 0 0
\(565\) 50.1803 2.11110
\(566\) −9.84294 −0.413729
\(567\) 0 0
\(568\) −5.46472 −0.229295
\(569\) 16.7280 0.701272 0.350636 0.936512i \(-0.385965\pi\)
0.350636 + 0.936512i \(0.385965\pi\)
\(570\) 0 0
\(571\) −27.4734 −1.14973 −0.574863 0.818250i \(-0.694945\pi\)
−0.574863 + 0.818250i \(0.694945\pi\)
\(572\) −1.99381 + 3.45338i −0.0833654 + 0.144393i
\(573\) 0 0
\(574\) −5.09201 9.61192i −0.212536 0.401194i
\(575\) −54.6253 −2.27803
\(576\) 0 0
\(577\) 1.41714 2.45455i 0.0589962 0.102184i −0.835019 0.550221i \(-0.814543\pi\)
0.894015 + 0.448037i \(0.147877\pi\)
\(578\) 13.1218 + 22.7276i 0.545794 + 0.945343i
\(579\) 0 0
\(580\) 4.64400 + 8.04364i 0.192831 + 0.333994i
\(581\) −6.29232 + 10.0358i −0.261050 + 0.416356i
\(582\) 0 0
\(583\) −4.74171 −0.196382
\(584\) 6.03273 10.4490i 0.249636 0.432383i
\(585\) 0 0
\(586\) 10.7101 + 18.5505i 0.442432 + 0.766315i
\(587\) 2.34795 4.06678i 0.0969105 0.167854i −0.813494 0.581573i \(-0.802437\pi\)
0.910404 + 0.413720i \(0.135771\pi\)
\(588\) 0 0
\(589\) −3.02654 5.24212i −0.124706 0.215998i
\(590\) 12.7818 22.1387i 0.526218 0.911437i
\(591\) 0 0
\(592\) −1.38874 2.40536i −0.0570767 0.0988597i
\(593\) −0.636024 1.10163i −0.0261184 0.0452383i 0.852671 0.522449i \(-0.174981\pi\)
−0.878789 + 0.477210i \(0.841648\pi\)
\(594\) 0 0
\(595\) 30.1323 + 56.8792i 1.23530 + 2.33182i
\(596\) 0.166896 0.289073i 0.00683634 0.0118409i
\(597\) 0 0
\(598\) 16.9752 0.694169
\(599\) −43.8516 −1.79173 −0.895864 0.444329i \(-0.853442\pi\)
−0.895864 + 0.444329i \(0.853442\pi\)
\(600\) 0 0
\(601\) −6.71634 + 11.6330i −0.273965 + 0.474522i −0.969874 0.243609i \(-0.921669\pi\)
0.695908 + 0.718131i \(0.255002\pi\)
\(602\) −0.0173990 + 0.0277502i −0.000709131 + 0.00113101i
\(603\) 0 0
\(604\) 9.95489 + 17.2424i 0.405059 + 0.701582i
\(605\) −16.3120 28.2532i −0.663177 1.14866i
\(606\) 0 0
\(607\) 2.29232 3.97042i 0.0930425 0.161154i −0.815747 0.578408i \(-0.803674\pi\)
0.908790 + 0.417254i \(0.137007\pi\)
\(608\) 0.444368 + 0.769668i 0.0180215 + 0.0312142i
\(609\) 0 0
\(610\) 10.6051 18.3685i 0.429387 0.743720i
\(611\) −9.43199 16.3367i −0.381577 0.660911i
\(612\) 0 0
\(613\) −11.0538 + 19.1457i −0.446458 + 0.773287i −0.998152 0.0607587i \(-0.980648\pi\)
0.551695 + 0.834046i \(0.313981\pi\)
\(614\) 5.68725 0.229519
\(615\) 0 0
\(616\) 1.82946 + 3.45338i 0.0737111 + 0.139141i
\(617\) −6.00433 10.3998i −0.241725 0.418680i 0.719481 0.694513i \(-0.244380\pi\)
−0.961206 + 0.275832i \(0.911047\pi\)
\(618\) 0 0
\(619\) 8.78180 + 15.2105i 0.352970 + 0.611363i 0.986768 0.162136i \(-0.0518383\pi\)
−0.633798 + 0.773499i \(0.718505\pi\)
\(620\) 12.5989 21.8219i 0.505983 0.876389i
\(621\) 0 0
\(622\) −11.7207 −0.469956
\(623\) 10.9938 + 20.7524i 0.440458 + 0.831429i
\(624\) 0 0
\(625\) −3.51602 + 6.08993i −0.140641 + 0.243597i
\(626\) 26.7738 1.07009
\(627\) 0 0
\(628\) −6.96286 −0.277848
\(629\) 18.2646 0.728258
\(630\) 0 0
\(631\) −44.9381 −1.78896 −0.894479 0.447110i \(-0.852453\pi\)
−0.894479 + 0.447110i \(0.852453\pi\)
\(632\) −11.4523 −0.455550
\(633\) 0 0
\(634\) 1.90249 0.0755576
\(635\) −5.28435 + 9.15276i −0.209703 + 0.363216i
\(636\) 0 0
\(637\) −8.23236 17.0100i −0.326178 0.673960i
\(638\) −3.70829 −0.146813
\(639\) 0 0
\(640\) −1.84981 + 3.20397i −0.0731203 + 0.126648i
\(641\) −14.4920 25.1008i −0.572398 0.991422i −0.996319 0.0857228i \(-0.972680\pi\)
0.423921 0.905699i \(-0.360653\pi\)
\(642\) 0 0
\(643\) 6.03087 + 10.4458i 0.237834 + 0.411941i 0.960093 0.279682i \(-0.0902291\pi\)
−0.722258 + 0.691623i \(0.756896\pi\)
\(644\) 8.83743 14.0951i 0.348244 0.555425i
\(645\) 0 0
\(646\) −5.84431 −0.229941
\(647\) −18.8825 + 32.7055i −0.742349 + 1.28579i 0.209073 + 0.977900i \(0.432955\pi\)
−0.951423 + 0.307887i \(0.900378\pi\)
\(648\) 0 0
\(649\) 5.10322 + 8.83903i 0.200319 + 0.346962i
\(650\) 11.7262 20.3103i 0.459938 0.796636i
\(651\) 0 0
\(652\) 4.03706 + 6.99240i 0.158104 + 0.273843i
\(653\) 18.7040 32.3962i 0.731942 1.26776i −0.224109 0.974564i \(-0.571947\pi\)
0.956052 0.293198i \(-0.0947194\pi\)
\(654\) 0 0
\(655\) −0.287992 0.498817i −0.0112528 0.0194904i
\(656\) 2.05563 + 3.56046i 0.0802589 + 0.139013i
\(657\) 0 0
\(658\) −18.4752 0.673310i −0.720240 0.0262484i
\(659\) −14.9356 + 25.8693i −0.581810 + 1.00772i 0.413455 + 0.910524i \(0.364322\pi\)
−0.995265 + 0.0971993i \(0.969012\pi\)
\(660\) 0 0
\(661\) 5.60803 0.218127 0.109063 0.994035i \(-0.465215\pi\)
0.109063 + 0.994035i \(0.465215\pi\)
\(662\) −5.56732 −0.216380
\(663\) 0 0
\(664\) 2.23855 3.87728i 0.0868726 0.150468i
\(665\) −8.69344 0.316823i −0.337117 0.0122859i
\(666\) 0 0
\(667\) 7.89307 + 13.6712i 0.305621 + 0.529351i
\(668\) −9.74288 16.8752i −0.376963 0.652920i
\(669\) 0 0
\(670\) 17.5080 30.3247i 0.676392 1.17155i
\(671\) 4.23414 + 7.33375i 0.163457 + 0.283116i
\(672\) 0 0
\(673\) −4.72253 + 8.17966i −0.182040 + 0.315303i −0.942575 0.333994i \(-0.891603\pi\)
0.760535 + 0.649297i \(0.224937\pi\)
\(674\) 16.8869 + 29.2489i 0.650458 + 1.12663i
\(675\) 0 0
\(676\) 2.85600 4.94674i 0.109846 0.190259i
\(677\) −11.0617 −0.425137 −0.212569 0.977146i \(-0.568183\pi\)
−0.212569 + 0.977146i \(0.568183\pi\)
\(678\) 0 0
\(679\) −18.5192 + 29.5368i −0.710701 + 1.13352i
\(680\) −12.1643 21.0693i −0.466481 0.807970i
\(681\) 0 0
\(682\) 5.03018 + 8.71253i 0.192616 + 0.333620i
\(683\) 4.41961 7.65499i 0.169112 0.292910i −0.768996 0.639253i \(-0.779243\pi\)
0.938108 + 0.346343i \(0.112577\pi\)
\(684\) 0 0
\(685\) −12.6218 −0.482254
\(686\) −18.4098 2.01993i −0.702889 0.0771213i
\(687\) 0 0
\(688\) 0.00618986 0.0107211i 0.000235986 0.000408740i
\(689\) −8.66621 −0.330156
\(690\) 0 0
\(691\) 25.0617 0.953394 0.476697 0.879068i \(-0.341834\pi\)
0.476697 + 0.879068i \(0.341834\pi\)
\(692\) −22.5636 −0.857740
\(693\) 0 0
\(694\) −30.4065 −1.15422
\(695\) −49.9839 −1.89600
\(696\) 0 0
\(697\) −27.0356 −1.02405
\(698\) 6.29782 10.9082i 0.238376 0.412880i
\(699\) 0 0
\(700\) −10.7596 20.3103i −0.406674 0.767658i
\(701\) 43.4858 1.64243 0.821217 0.570616i \(-0.193295\pi\)
0.821217 + 0.570616i \(0.193295\pi\)
\(702\) 0 0
\(703\) −1.23422 + 2.13773i −0.0465495 + 0.0806260i
\(704\) −0.738550 1.27921i −0.0278351 0.0482119i
\(705\) 0 0
\(706\) 3.76578 + 6.52252i 0.141727 + 0.245478i
\(707\) 6.50805 + 12.2849i 0.244760 + 0.462021i
\(708\) 0 0
\(709\) −22.7403 −0.854031 −0.427016 0.904244i \(-0.640435\pi\)
−0.427016 + 0.904244i \(0.640435\pi\)
\(710\) −10.1087 + 17.5088i −0.379373 + 0.657094i
\(711\) 0 0
\(712\) −4.43818 7.68715i −0.166328 0.288088i
\(713\) 21.4134 37.0891i 0.801939 1.38900i
\(714\) 0 0
\(715\) 7.37636 + 12.7762i 0.275860 + 0.477804i
\(716\) −0.166896 + 0.289073i −0.00623721 + 0.0108032i
\(717\) 0 0
\(718\) −3.44801 5.97213i −0.128679 0.222878i
\(719\) −6.06182 10.4994i −0.226068 0.391561i 0.730571 0.682836i \(-0.239254\pi\)
−0.956639 + 0.291275i \(0.905920\pi\)
\(720\) 0 0
\(721\) −2.34176 + 3.73495i −0.0872119 + 0.139097i
\(722\) −9.10507 + 15.7705i −0.338856 + 0.586915i
\(723\) 0 0
\(724\) 23.2422 0.863789
\(725\) 21.8095 0.809985
\(726\) 0 0
\(727\) 23.0908 39.9945i 0.856392 1.48331i −0.0189562 0.999820i \(-0.506034\pi\)
0.875348 0.483494i \(-0.160632\pi\)
\(728\) 3.34362 + 6.31159i 0.123923 + 0.233923i
\(729\) 0 0
\(730\) −22.3189 38.6574i −0.826058 1.43077i
\(731\) 0.0407044 + 0.0705021i 0.00150551 + 0.00260761i
\(732\) 0 0
\(733\) 18.0149 31.2026i 0.665394 1.15250i −0.313785 0.949494i \(-0.601597\pi\)
0.979178 0.203002i \(-0.0650696\pi\)
\(734\) 11.5618 + 20.0257i 0.426755 + 0.739161i
\(735\) 0 0
\(736\) −3.14400 + 5.44556i −0.115889 + 0.200726i
\(737\) 6.99017 + 12.1073i 0.257486 + 0.445979i
\(738\) 0 0
\(739\) 23.2119 40.2042i 0.853865 1.47894i −0.0238296 0.999716i \(-0.507586\pi\)
0.877694 0.479221i \(-0.159081\pi\)
\(740\) −10.2756 −0.377739
\(741\) 0 0
\(742\) −4.51169 + 7.19583i −0.165629 + 0.264167i
\(743\) −0.598884 1.03730i −0.0219709 0.0380548i 0.854831 0.518907i \(-0.173661\pi\)
−0.876802 + 0.480852i \(0.840327\pi\)
\(744\) 0 0
\(745\) −0.617454 1.06946i −0.0226218 0.0391820i
\(746\) 14.5822 25.2571i 0.533891 0.924727i
\(747\) 0 0
\(748\) 9.71339 0.355157
\(749\) 13.3331 + 25.1682i 0.487181 + 0.919626i
\(750\) 0 0
\(751\) −24.0600 + 41.6731i −0.877961 + 1.52067i −0.0243853 + 0.999703i \(0.507763\pi\)
−0.853575 + 0.520970i \(0.825570\pi\)
\(752\) 6.98762 0.254812
\(753\) 0 0
\(754\) −6.77747 −0.246821
\(755\) 73.6588 2.68072
\(756\) 0 0
\(757\) 49.6006 1.80276 0.901382 0.433025i \(-0.142554\pi\)
0.901382 + 0.433025i \(0.142554\pi\)
\(758\) 13.5622 0.492602
\(759\) 0 0
\(760\) 3.28799 0.119268
\(761\) −18.7701 + 32.5108i −0.680416 + 1.17852i 0.294438 + 0.955671i \(0.404868\pi\)
−0.974854 + 0.222845i \(0.928466\pi\)
\(762\) 0 0
\(763\) −0.265781 + 0.423902i −0.00962191 + 0.0153463i
\(764\) 16.3214 0.590488
\(765\) 0 0
\(766\) 1.41783 2.45575i 0.0512281 0.0887297i
\(767\) 9.32691 + 16.1547i 0.336775 + 0.583312i
\(768\) 0 0
\(769\) −13.4592 23.3121i −0.485352 0.840654i 0.514506 0.857486i \(-0.327975\pi\)
−0.999858 + 0.0168324i \(0.994642\pi\)
\(770\) 14.4487 + 0.526567i 0.520695 + 0.0189762i
\(771\) 0 0
\(772\) −14.3214 −0.515439
\(773\) −25.1130 + 43.4971i −0.903254 + 1.56448i −0.0800089 + 0.996794i \(0.525495\pi\)
−0.823245 + 0.567687i \(0.807838\pi\)
\(774\) 0 0
\(775\) −29.5840 51.2409i −1.06269 1.84063i
\(776\) 6.58836 11.4114i 0.236508 0.409645i
\(777\) 0 0
\(778\) 9.30401 + 16.1150i 0.333565 + 0.577752i
\(779\) 1.82691 3.16431i 0.0654560 0.113373i
\(780\) 0 0
\(781\) −4.03597 6.99050i −0.144418 0.250140i
\(782\) −20.6749 35.8099i −0.739332 1.28056i