Properties

Label 378.2.e.c.235.1
Level $378$
Weight $2$
Character 378.235
Analytic conductor $3.018$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(37,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 378.235
Dual form 378.2.e.c.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-0.230252 + 0.398809i) q^{5} +(0.0665372 - 2.64491i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-0.230252 + 0.398809i) q^{5} +(0.0665372 - 2.64491i) q^{7} -1.00000 q^{8} +(0.230252 - 0.398809i) q^{10} +(-1.82383 - 3.15897i) q^{11} +(0.730252 + 1.26483i) q^{13} +(-0.0665372 + 2.64491i) q^{14} +1.00000 q^{16} +(1.86693 - 3.23361i) q^{17} +(-2.02704 - 3.51094i) q^{19} +(-0.230252 + 0.398809i) q^{20} +(1.82383 + 3.15897i) q^{22} +(0.566537 - 0.981271i) q^{23} +(2.39397 + 4.14647i) q^{25} +(-0.730252 - 1.26483i) q^{26} +(0.0665372 - 2.64491i) q^{28} +(4.48755 - 7.77266i) q^{29} -0.514589 q^{31} -1.00000 q^{32} +(-1.86693 + 3.23361i) q^{34} +(1.03950 + 0.635534i) q^{35} +(-4.55408 - 7.88791i) q^{37} +(2.02704 + 3.51094i) q^{38} +(0.230252 - 0.398809i) q^{40} +(0.472958 + 0.819187i) q^{41} +(4.66372 - 8.07779i) q^{43} +(-1.82383 - 3.15897i) q^{44} +(-0.566537 + 0.981271i) q^{46} -2.32743 q^{47} +(-6.99115 - 0.351971i) q^{49} +(-2.39397 - 4.14647i) q^{50} +(0.730252 + 1.26483i) q^{52} +(-6.21780 + 10.7695i) q^{53} +1.67977 q^{55} +(-0.0665372 + 2.64491i) q^{56} +(-4.48755 + 7.77266i) q^{58} +12.8961 q^{59} +12.0833 q^{61} +0.514589 q^{62} +1.00000 q^{64} -0.672570 q^{65} -2.32023 q^{67} +(1.86693 - 3.23361i) q^{68} +(-1.03950 - 0.635534i) q^{70} -1.67977 q^{71} +(-6.62062 + 11.4673i) q^{73} +(4.55408 + 7.88791i) q^{74} +(-2.02704 - 3.51094i) q^{76} +(-8.47656 + 4.61369i) q^{77} -5.00720 q^{79} +(-0.230252 + 0.398809i) q^{80} +(-0.472958 - 0.819187i) q^{82} +(-3.32383 + 5.75705i) q^{83} +(0.859728 + 1.48909i) q^{85} +(-4.66372 + 8.07779i) q^{86} +(1.82383 + 3.15897i) q^{88} +(1.36333 + 2.36135i) q^{89} +(3.39397 - 1.84730i) q^{91} +(0.566537 - 0.981271i) q^{92} +2.32743 q^{94} +1.86693 q^{95} +(-5.59358 + 9.68836i) q^{97} +(6.99115 + 0.351971i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} + 5 q^{5} + 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 6 q^{4} + 5 q^{5} + 4 q^{7} - 6 q^{8} - 5 q^{10} + q^{11} - 2 q^{13} - 4 q^{14} + 6 q^{16} + 4 q^{17} - 3 q^{19} + 5 q^{20} - q^{22} + 7 q^{23} - 2 q^{25} + 2 q^{26} + 4 q^{28} + 5 q^{29} + 28 q^{31} - 6 q^{32} - 4 q^{34} + 19 q^{35} - 9 q^{37} + 3 q^{38} - 5 q^{40} + 12 q^{41} + 18 q^{43} + q^{44} - 7 q^{46} + 6 q^{47} - 12 q^{49} + 2 q^{50} - 2 q^{52} - 9 q^{53} + 14 q^{55} - 4 q^{56} - 5 q^{58} + 8 q^{59} - 8 q^{61} - 28 q^{62} + 6 q^{64} - 24 q^{65} - 10 q^{67} + 4 q^{68} - 19 q^{70} - 14 q^{71} - 25 q^{73} + 9 q^{74} - 3 q^{76} - 52 q^{77} - 14 q^{79} + 5 q^{80} - 12 q^{82} - 8 q^{83} + 14 q^{85} - 18 q^{86} - q^{88} + 9 q^{89} + 4 q^{91} + 7 q^{92} - 6 q^{94} + 4 q^{95} - 28 q^{97} + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.230252 + 0.398809i −0.102972 + 0.178353i −0.912908 0.408166i \(-0.866169\pi\)
0.809936 + 0.586519i \(0.199502\pi\)
\(6\) 0 0
\(7\) 0.0665372 2.64491i 0.0251487 0.999684i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.230252 0.398809i 0.0728122 0.126114i
\(11\) −1.82383 3.15897i −0.549906 0.952465i −0.998280 0.0586193i \(-0.981330\pi\)
0.448374 0.893846i \(-0.352003\pi\)
\(12\) 0 0
\(13\) 0.730252 + 1.26483i 0.202536 + 0.350802i 0.949345 0.314236i \(-0.101748\pi\)
−0.746809 + 0.665038i \(0.768415\pi\)
\(14\) −0.0665372 + 2.64491i −0.0177828 + 0.706883i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.86693 3.23361i 0.452796 0.784266i −0.545763 0.837940i \(-0.683760\pi\)
0.998558 + 0.0536743i \(0.0170933\pi\)
\(18\) 0 0
\(19\) −2.02704 3.51094i −0.465035 0.805465i 0.534168 0.845378i \(-0.320625\pi\)
−0.999203 + 0.0399136i \(0.987292\pi\)
\(20\) −0.230252 + 0.398809i −0.0514860 + 0.0891764i
\(21\) 0 0
\(22\) 1.82383 + 3.15897i 0.388842 + 0.673495i
\(23\) 0.566537 0.981271i 0.118131 0.204609i −0.800896 0.598804i \(-0.795643\pi\)
0.919027 + 0.394194i \(0.128976\pi\)
\(24\) 0 0
\(25\) 2.39397 + 4.14647i 0.478794 + 0.829295i
\(26\) −0.730252 1.26483i −0.143214 0.248054i
\(27\) 0 0
\(28\) 0.0665372 2.64491i 0.0125744 0.499842i
\(29\) 4.48755 7.77266i 0.833317 1.44335i −0.0620772 0.998071i \(-0.519772\pi\)
0.895394 0.445275i \(-0.146894\pi\)
\(30\) 0 0
\(31\) −0.514589 −0.0924229 −0.0462115 0.998932i \(-0.514715\pi\)
−0.0462115 + 0.998932i \(0.514715\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.86693 + 3.23361i −0.320175 + 0.554560i
\(35\) 1.03950 + 0.635534i 0.175707 + 0.107425i
\(36\) 0 0
\(37\) −4.55408 7.88791i −0.748687 1.29676i −0.948452 0.316920i \(-0.897351\pi\)
0.199765 0.979844i \(-0.435982\pi\)
\(38\) 2.02704 + 3.51094i 0.328830 + 0.569550i
\(39\) 0 0
\(40\) 0.230252 0.398809i 0.0364061 0.0630572i
\(41\) 0.472958 + 0.819187i 0.0738636 + 0.127936i 0.900592 0.434666i \(-0.143134\pi\)
−0.826728 + 0.562602i \(0.809800\pi\)
\(42\) 0 0
\(43\) 4.66372 8.07779i 0.711210 1.23185i −0.253193 0.967416i \(-0.581481\pi\)
0.964403 0.264436i \(-0.0851858\pi\)
\(44\) −1.82383 3.15897i −0.274953 0.476233i
\(45\) 0 0
\(46\) −0.566537 + 0.981271i −0.0835314 + 0.144681i
\(47\) −2.32743 −0.339491 −0.169745 0.985488i \(-0.554295\pi\)
−0.169745 + 0.985488i \(0.554295\pi\)
\(48\) 0 0
\(49\) −6.99115 0.351971i −0.998735 0.0502815i
\(50\) −2.39397 4.14647i −0.338558 0.586400i
\(51\) 0 0
\(52\) 0.730252 + 1.26483i 0.101268 + 0.175401i
\(53\) −6.21780 + 10.7695i −0.854080 + 1.47931i 0.0234151 + 0.999726i \(0.492546\pi\)
−0.877495 + 0.479585i \(0.840787\pi\)
\(54\) 0 0
\(55\) 1.67977 0.226500
\(56\) −0.0665372 + 2.64491i −0.00889141 + 0.353442i
\(57\) 0 0
\(58\) −4.48755 + 7.77266i −0.589244 + 1.02060i
\(59\) 12.8961 1.67893 0.839465 0.543414i \(-0.182869\pi\)
0.839465 + 0.543414i \(0.182869\pi\)
\(60\) 0 0
\(61\) 12.0833 1.54710 0.773552 0.633733i \(-0.218478\pi\)
0.773552 + 0.633733i \(0.218478\pi\)
\(62\) 0.514589 0.0653529
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.672570 −0.0834220
\(66\) 0 0
\(67\) −2.32023 −0.283462 −0.141731 0.989905i \(-0.545267\pi\)
−0.141731 + 0.989905i \(0.545267\pi\)
\(68\) 1.86693 3.23361i 0.226398 0.392133i
\(69\) 0 0
\(70\) −1.03950 0.635534i −0.124243 0.0759608i
\(71\) −1.67977 −0.199352 −0.0996758 0.995020i \(-0.531781\pi\)
−0.0996758 + 0.995020i \(0.531781\pi\)
\(72\) 0 0
\(73\) −6.62062 + 11.4673i −0.774885 + 1.34214i 0.159974 + 0.987121i \(0.448859\pi\)
−0.934859 + 0.355019i \(0.884474\pi\)
\(74\) 4.55408 + 7.88791i 0.529402 + 0.916950i
\(75\) 0 0
\(76\) −2.02704 3.51094i −0.232518 0.402732i
\(77\) −8.47656 + 4.61369i −0.965993 + 0.525779i
\(78\) 0 0
\(79\) −5.00720 −0.563354 −0.281677 0.959509i \(-0.590891\pi\)
−0.281677 + 0.959509i \(0.590891\pi\)
\(80\) −0.230252 + 0.398809i −0.0257430 + 0.0445882i
\(81\) 0 0
\(82\) −0.472958 0.819187i −0.0522295 0.0904641i
\(83\) −3.32383 + 5.75705i −0.364838 + 0.631918i −0.988750 0.149577i \(-0.952209\pi\)
0.623912 + 0.781494i \(0.285542\pi\)
\(84\) 0 0
\(85\) 0.859728 + 1.48909i 0.0932506 + 0.161515i
\(86\) −4.66372 + 8.07779i −0.502901 + 0.871051i
\(87\) 0 0
\(88\) 1.82383 + 3.15897i 0.194421 + 0.336747i
\(89\) 1.36333 + 2.36135i 0.144512 + 0.250303i 0.929191 0.369600i \(-0.120505\pi\)
−0.784679 + 0.619903i \(0.787172\pi\)
\(90\) 0 0
\(91\) 3.39397 1.84730i 0.355784 0.193649i
\(92\) 0.566537 0.981271i 0.0590656 0.102305i
\(93\) 0 0
\(94\) 2.32743 0.240056
\(95\) 1.86693 0.191543
\(96\) 0 0
\(97\) −5.59358 + 9.68836i −0.567942 + 0.983704i 0.428827 + 0.903386i \(0.358927\pi\)
−0.996769 + 0.0803178i \(0.974406\pi\)
\(98\) 6.99115 + 0.351971i 0.706212 + 0.0355544i
\(99\) 0 0
\(100\) 2.39397 + 4.14647i 0.239397 + 0.414647i
\(101\) 6.87792 + 11.9129i 0.684378 + 1.18538i 0.973632 + 0.228125i \(0.0732596\pi\)
−0.289254 + 0.957253i \(0.593407\pi\)
\(102\) 0 0
\(103\) −5.58113 + 9.66679i −0.549925 + 0.952498i 0.448354 + 0.893856i \(0.352010\pi\)
−0.998279 + 0.0586417i \(0.981323\pi\)
\(104\) −0.730252 1.26483i −0.0716071 0.124027i
\(105\) 0 0
\(106\) 6.21780 10.7695i 0.603926 1.04603i
\(107\) 3.89037 + 6.73832i 0.376096 + 0.651418i 0.990490 0.137581i \(-0.0439329\pi\)
−0.614394 + 0.788999i \(0.710600\pi\)
\(108\) 0 0
\(109\) −3.75729 + 6.50783i −0.359884 + 0.623337i −0.987941 0.154830i \(-0.950517\pi\)
0.628058 + 0.778167i \(0.283850\pi\)
\(110\) −1.67977 −0.160159
\(111\) 0 0
\(112\) 0.0665372 2.64491i 0.00628718 0.249921i
\(113\) −3.03064 5.24922i −0.285099 0.493805i 0.687534 0.726152i \(-0.258693\pi\)
−0.972633 + 0.232346i \(0.925360\pi\)
\(114\) 0 0
\(115\) 0.260893 + 0.451880i 0.0243284 + 0.0421380i
\(116\) 4.48755 7.77266i 0.416658 0.721673i
\(117\) 0 0
\(118\) −12.8961 −1.18718
\(119\) −8.42840 5.15301i −0.772630 0.472376i
\(120\) 0 0
\(121\) −1.15272 + 1.99658i −0.104793 + 0.181507i
\(122\) −12.0833 −1.09397
\(123\) 0 0
\(124\) −0.514589 −0.0462115
\(125\) −4.50739 −0.403153
\(126\) 0 0
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0.672570 0.0589883
\(131\) 10.5687 18.3055i 0.923389 1.59936i 0.129258 0.991611i \(-0.458740\pi\)
0.794131 0.607746i \(-0.207926\pi\)
\(132\) 0 0
\(133\) −9.42101 + 5.12774i −0.816905 + 0.444632i
\(134\) 2.32023 0.200438
\(135\) 0 0
\(136\) −1.86693 + 3.23361i −0.160088 + 0.277280i
\(137\) −2.20321 3.81607i −0.188233 0.326029i 0.756428 0.654077i \(-0.226943\pi\)
−0.944661 + 0.328048i \(0.893609\pi\)
\(138\) 0 0
\(139\) −1.01245 1.75362i −0.0858751 0.148740i 0.819889 0.572523i \(-0.194035\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(140\) 1.03950 + 0.635534i 0.0878534 + 0.0537124i
\(141\) 0 0
\(142\) 1.67977 0.140963
\(143\) 2.66372 4.61369i 0.222751 0.385816i
\(144\) 0 0
\(145\) 2.06654 + 3.57935i 0.171617 + 0.297249i
\(146\) 6.62062 11.4673i 0.547927 0.949037i
\(147\) 0 0
\(148\) −4.55408 7.88791i −0.374343 0.648382i
\(149\) −4.58113 + 7.93474i −0.375300 + 0.650040i −0.990372 0.138432i \(-0.955794\pi\)
0.615071 + 0.788471i \(0.289127\pi\)
\(150\) 0 0
\(151\) 0.0519482 + 0.0899768i 0.00422748 + 0.00732221i 0.868131 0.496334i \(-0.165321\pi\)
−0.863904 + 0.503657i \(0.831988\pi\)
\(152\) 2.02704 + 3.51094i 0.164415 + 0.284775i
\(153\) 0 0
\(154\) 8.47656 4.61369i 0.683060 0.371782i
\(155\) 0.118485 0.205223i 0.00951698 0.0164839i
\(156\) 0 0
\(157\) 20.9823 1.67457 0.837285 0.546767i \(-0.184142\pi\)
0.837285 + 0.546767i \(0.184142\pi\)
\(158\) 5.00720 0.398351
\(159\) 0 0
\(160\) 0.230252 0.398809i 0.0182031 0.0315286i
\(161\) −2.55768 1.56373i −0.201574 0.123239i
\(162\) 0 0
\(163\) −11.5182 19.9501i −0.902174 1.56261i −0.824666 0.565620i \(-0.808637\pi\)
−0.0775078 0.996992i \(-0.524696\pi\)
\(164\) 0.472958 + 0.819187i 0.0369318 + 0.0639678i
\(165\) 0 0
\(166\) 3.32383 5.75705i 0.257979 0.446833i
\(167\) 5.31498 + 9.20581i 0.411285 + 0.712367i 0.995031 0.0995698i \(-0.0317467\pi\)
−0.583745 + 0.811937i \(0.698413\pi\)
\(168\) 0 0
\(169\) 5.43346 9.41103i 0.417959 0.723926i
\(170\) −0.859728 1.48909i −0.0659382 0.114208i
\(171\) 0 0
\(172\) 4.66372 8.07779i 0.355605 0.615926i
\(173\) −2.93872 −0.223427 −0.111713 0.993740i \(-0.535634\pi\)
−0.111713 + 0.993740i \(0.535634\pi\)
\(174\) 0 0
\(175\) 11.1264 6.05594i 0.841073 0.457786i
\(176\) −1.82383 3.15897i −0.137476 0.238116i
\(177\) 0 0
\(178\) −1.36333 2.36135i −0.102186 0.176991i
\(179\) 4.58113 7.93474i 0.342409 0.593071i −0.642470 0.766311i \(-0.722090\pi\)
0.984880 + 0.173240i \(0.0554237\pi\)
\(180\) 0 0
\(181\) 22.4284 1.66709 0.833545 0.552452i \(-0.186308\pi\)
0.833545 + 0.552452i \(0.186308\pi\)
\(182\) −3.39397 + 1.84730i −0.251578 + 0.136931i
\(183\) 0 0
\(184\) −0.566537 + 0.981271i −0.0417657 + 0.0723403i
\(185\) 4.19436 0.308375
\(186\) 0 0
\(187\) −13.6198 −0.995981
\(188\) −2.32743 −0.169745
\(189\) 0 0
\(190\) −1.86693 −0.135441
\(191\) −2.48968 −0.180147 −0.0900736 0.995935i \(-0.528710\pi\)
−0.0900736 + 0.995935i \(0.528710\pi\)
\(192\) 0 0
\(193\) 4.48968 0.323174 0.161587 0.986858i \(-0.448339\pi\)
0.161587 + 0.986858i \(0.448339\pi\)
\(194\) 5.59358 9.68836i 0.401596 0.695584i
\(195\) 0 0
\(196\) −6.99115 0.351971i −0.499368 0.0251408i
\(197\) −12.7339 −0.907249 −0.453625 0.891193i \(-0.649869\pi\)
−0.453625 + 0.891193i \(0.649869\pi\)
\(198\) 0 0
\(199\) −1.47296 + 2.55124i −0.104415 + 0.180852i −0.913499 0.406841i \(-0.866630\pi\)
0.809084 + 0.587693i \(0.199964\pi\)
\(200\) −2.39397 4.14647i −0.169279 0.293200i
\(201\) 0 0
\(202\) −6.87792 11.9129i −0.483928 0.838189i
\(203\) −20.2594 12.3863i −1.42193 0.869351i
\(204\) 0 0
\(205\) −0.435599 −0.0304235
\(206\) 5.58113 9.66679i 0.388855 0.673517i
\(207\) 0 0
\(208\) 0.730252 + 1.26483i 0.0506339 + 0.0877005i
\(209\) −7.39397 + 12.8067i −0.511451 + 0.885860i
\(210\) 0 0
\(211\) −0.608168 1.05338i −0.0418680 0.0725176i 0.844332 0.535820i \(-0.179998\pi\)
−0.886200 + 0.463303i \(0.846664\pi\)
\(212\) −6.21780 + 10.7695i −0.427040 + 0.739655i
\(213\) 0 0
\(214\) −3.89037 6.73832i −0.265940 0.460622i
\(215\) 2.14766 + 3.71986i 0.146469 + 0.253693i
\(216\) 0 0
\(217\) −0.0342393 + 1.36104i −0.00232432 + 0.0923937i
\(218\) 3.75729 6.50783i 0.254476 0.440766i
\(219\) 0 0
\(220\) 1.67977 0.113250
\(221\) 5.45331 0.366829
\(222\) 0 0
\(223\) −0.445916 + 0.772349i −0.0298607 + 0.0517203i −0.880570 0.473917i \(-0.842840\pi\)
0.850709 + 0.525637i \(0.176173\pi\)
\(224\) −0.0665372 + 2.64491i −0.00444571 + 0.176721i
\(225\) 0 0
\(226\) 3.03064 + 5.24922i 0.201595 + 0.349173i
\(227\) −7.32597 12.6889i −0.486242 0.842195i 0.513633 0.858010i \(-0.328299\pi\)
−0.999875 + 0.0158147i \(0.994966\pi\)
\(228\) 0 0
\(229\) 4.78794 8.29295i 0.316396 0.548013i −0.663338 0.748320i \(-0.730861\pi\)
0.979733 + 0.200307i \(0.0641939\pi\)
\(230\) −0.260893 0.451880i −0.0172028 0.0297961i
\(231\) 0 0
\(232\) −4.48755 + 7.77266i −0.294622 + 0.510300i
\(233\) −7.21420 12.4954i −0.472618 0.818598i 0.526891 0.849933i \(-0.323358\pi\)
−0.999509 + 0.0313345i \(0.990024\pi\)
\(234\) 0 0
\(235\) 0.535897 0.928200i 0.0349580 0.0605491i
\(236\) 12.8961 0.839465
\(237\) 0 0
\(238\) 8.42840 + 5.15301i 0.546332 + 0.334020i
\(239\) 9.15486 + 15.8567i 0.592179 + 1.02568i 0.993938 + 0.109938i \(0.0350654\pi\)
−0.401760 + 0.915745i \(0.631601\pi\)
\(240\) 0 0
\(241\) −0.0466924 0.0808735i −0.00300772 0.00520952i 0.864518 0.502602i \(-0.167624\pi\)
−0.867525 + 0.497393i \(0.834291\pi\)
\(242\) 1.15272 1.99658i 0.0741000 0.128345i
\(243\) 0 0
\(244\) 12.0833 0.773552
\(245\) 1.75010 2.70709i 0.111810 0.172950i
\(246\) 0 0
\(247\) 2.96050 5.12774i 0.188372 0.326271i
\(248\) 0.514589 0.0326764
\(249\) 0 0
\(250\) 4.50739 0.285072
\(251\) 18.2733 1.15340 0.576702 0.816955i \(-0.304339\pi\)
0.576702 + 0.816955i \(0.304339\pi\)
\(252\) 0 0
\(253\) −4.13307 −0.259844
\(254\) −8.80992 −0.552783
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.5256 + 18.2308i −0.656568 + 1.13721i 0.324931 + 0.945738i \(0.394659\pi\)
−0.981498 + 0.191471i \(0.938674\pi\)
\(258\) 0 0
\(259\) −21.1659 + 11.5203i −1.31518 + 0.715838i
\(260\) −0.672570 −0.0417110
\(261\) 0 0
\(262\) −10.5687 + 18.3055i −0.652935 + 1.13092i
\(263\) −2.58259 4.47318i −0.159249 0.275828i 0.775349 0.631533i \(-0.217574\pi\)
−0.934598 + 0.355705i \(0.884241\pi\)
\(264\) 0 0
\(265\) −2.86333 4.95943i −0.175893 0.304655i
\(266\) 9.42101 5.12774i 0.577639 0.314402i
\(267\) 0 0
\(268\) −2.32023 −0.141731
\(269\) −8.42840 + 14.5984i −0.513889 + 0.890081i 0.485981 + 0.873969i \(0.338462\pi\)
−0.999870 + 0.0161123i \(0.994871\pi\)
\(270\) 0 0
\(271\) 12.5562 + 21.7480i 0.762736 + 1.32110i 0.941435 + 0.337194i \(0.109478\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(272\) 1.86693 3.23361i 0.113199 0.196066i
\(273\) 0 0
\(274\) 2.20321 + 3.81607i 0.133101 + 0.230537i
\(275\) 8.73239 15.1249i 0.526583 0.912068i
\(276\) 0 0
\(277\) −1.69076 2.92848i −0.101588 0.175955i 0.810751 0.585391i \(-0.199059\pi\)
−0.912339 + 0.409436i \(0.865726\pi\)
\(278\) 1.01245 + 1.75362i 0.0607229 + 0.105175i
\(279\) 0 0
\(280\) −1.03950 0.635534i −0.0621217 0.0379804i
\(281\) 10.1388 17.5609i 0.604831 1.04760i −0.387248 0.921976i \(-0.626574\pi\)
0.992078 0.125622i \(-0.0400925\pi\)
\(282\) 0 0
\(283\) 17.3494 1.03132 0.515658 0.856795i \(-0.327548\pi\)
0.515658 + 0.856795i \(0.327548\pi\)
\(284\) −1.67977 −0.0996758
\(285\) 0 0
\(286\) −2.66372 + 4.61369i −0.157509 + 0.272813i
\(287\) 2.19815 1.19643i 0.129753 0.0706228i
\(288\) 0 0
\(289\) 1.52918 + 2.64861i 0.0899517 + 0.155801i
\(290\) −2.06654 3.57935i −0.121351 0.210187i
\(291\) 0 0
\(292\) −6.62062 + 11.4673i −0.387443 + 0.671070i
\(293\) 4.93560 + 8.54871i 0.288341 + 0.499421i 0.973414 0.229054i \(-0.0735631\pi\)
−0.685073 + 0.728474i \(0.740230\pi\)
\(294\) 0 0
\(295\) −2.96936 + 5.14308i −0.172883 + 0.299442i
\(296\) 4.55408 + 7.88791i 0.264701 + 0.458475i
\(297\) 0 0
\(298\) 4.58113 7.93474i 0.265378 0.459647i
\(299\) 1.65486 0.0957031
\(300\) 0 0
\(301\) −21.0548 12.8726i −1.21358 0.741964i
\(302\) −0.0519482 0.0899768i −0.00298928 0.00517759i
\(303\) 0 0
\(304\) −2.02704 3.51094i −0.116259 0.201366i
\(305\) −2.78220 + 4.81891i −0.159308 + 0.275930i
\(306\) 0 0
\(307\) 7.78794 0.444481 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(308\) −8.47656 + 4.61369i −0.482997 + 0.262889i
\(309\) 0 0
\(310\) −0.118485 + 0.205223i −0.00672952 + 0.0116559i
\(311\) −15.4107 −0.873860 −0.436930 0.899495i \(-0.643934\pi\)
−0.436930 + 0.899495i \(0.643934\pi\)
\(312\) 0 0
\(313\) 8.49688 0.480272 0.240136 0.970739i \(-0.422808\pi\)
0.240136 + 0.970739i \(0.422808\pi\)
\(314\) −20.9823 −1.18410
\(315\) 0 0
\(316\) −5.00720 −0.281677
\(317\) 14.1052 0.792229 0.396115 0.918201i \(-0.370358\pi\)
0.396115 + 0.918201i \(0.370358\pi\)
\(318\) 0 0
\(319\) −32.7381 −1.83298
\(320\) −0.230252 + 0.398809i −0.0128715 + 0.0222941i
\(321\) 0 0
\(322\) 2.55768 + 1.56373i 0.142534 + 0.0871435i
\(323\) −15.1373 −0.842264
\(324\) 0 0
\(325\) −3.49640 + 6.05594i −0.193945 + 0.335923i
\(326\) 11.5182 + 19.9501i 0.637933 + 1.10493i
\(327\) 0 0
\(328\) −0.472958 0.819187i −0.0261147 0.0452320i
\(329\) −0.154861 + 6.15585i −0.00853775 + 0.339383i
\(330\) 0 0
\(331\) 27.5438 1.51394 0.756971 0.653448i \(-0.226678\pi\)
0.756971 + 0.653448i \(0.226678\pi\)
\(332\) −3.32383 + 5.75705i −0.182419 + 0.315959i
\(333\) 0 0
\(334\) −5.31498 9.20581i −0.290823 0.503720i
\(335\) 0.534239 0.925330i 0.0291886 0.0505562i
\(336\) 0 0
\(337\) 0.748440 + 1.29634i 0.0407701 + 0.0706159i 0.885690 0.464276i \(-0.153686\pi\)
−0.844920 + 0.534892i \(0.820352\pi\)
\(338\) −5.43346 + 9.41103i −0.295541 + 0.511893i
\(339\) 0 0
\(340\) 0.859728 + 1.48909i 0.0466253 + 0.0807574i
\(341\) 0.938524 + 1.62557i 0.0508239 + 0.0880296i
\(342\) 0 0
\(343\) −1.39610 + 18.4676i −0.0753825 + 0.997155i
\(344\) −4.66372 + 8.07779i −0.251451 + 0.435525i
\(345\) 0 0
\(346\) 2.93872 0.157986
\(347\) 18.2881 0.981758 0.490879 0.871228i \(-0.336676\pi\)
0.490879 + 0.871228i \(0.336676\pi\)
\(348\) 0 0
\(349\) −3.90136 + 6.75735i −0.208835 + 0.361713i −0.951348 0.308119i \(-0.900300\pi\)
0.742513 + 0.669832i \(0.233634\pi\)
\(350\) −11.1264 + 6.05594i −0.594729 + 0.323704i
\(351\) 0 0
\(352\) 1.82383 + 3.15897i 0.0972106 + 0.168374i
\(353\) 13.4626 + 23.3180i 0.716544 + 1.24109i 0.962361 + 0.271774i \(0.0876105\pi\)
−0.245817 + 0.969316i \(0.579056\pi\)
\(354\) 0 0
\(355\) 0.386770 0.669906i 0.0205276 0.0355549i
\(356\) 1.36333 + 2.36135i 0.0722562 + 0.125151i
\(357\) 0 0
\(358\) −4.58113 + 7.93474i −0.242120 + 0.419364i
\(359\) 3.13161 + 5.42411i 0.165280 + 0.286274i 0.936755 0.349987i \(-0.113814\pi\)
−0.771475 + 0.636260i \(0.780481\pi\)
\(360\) 0 0
\(361\) 1.28220 2.22084i 0.0674842 0.116886i
\(362\) −22.4284 −1.17881
\(363\) 0 0
\(364\) 3.39397 1.84730i 0.177892 0.0968247i
\(365\) −3.04883 5.28073i −0.159583 0.276406i
\(366\) 0 0
\(367\) −14.6367 25.3515i −0.764028 1.32334i −0.940759 0.339076i \(-0.889886\pi\)
0.176731 0.984259i \(-0.443448\pi\)
\(368\) 0.566537 0.981271i 0.0295328 0.0511523i
\(369\) 0 0
\(370\) −4.19436 −0.218054
\(371\) 28.0708 + 17.1621i 1.45736 + 0.891013i
\(372\) 0 0
\(373\) −8.92986 + 15.4670i −0.462371 + 0.800850i −0.999079 0.0429184i \(-0.986334\pi\)
0.536708 + 0.843768i \(0.319668\pi\)
\(374\) 13.6198 0.704265
\(375\) 0 0
\(376\) 2.32743 0.120028
\(377\) 13.1082 0.675105
\(378\) 0 0
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) 1.86693 0.0957713
\(381\) 0 0
\(382\) 2.48968 0.127383
\(383\) −7.07014 + 12.2458i −0.361267 + 0.625733i −0.988170 0.153365i \(-0.950989\pi\)
0.626903 + 0.779098i \(0.284322\pi\)
\(384\) 0 0
\(385\) 0.111767 4.44284i 0.00569618 0.226428i
\(386\) −4.48968 −0.228519
\(387\) 0 0
\(388\) −5.59358 + 9.68836i −0.283971 + 0.491852i
\(389\) −11.5651 20.0313i −0.586373 1.01563i −0.994703 0.102793i \(-0.967222\pi\)
0.408330 0.912834i \(-0.366111\pi\)
\(390\) 0 0
\(391\) −2.11537 3.66392i −0.106979 0.185292i
\(392\) 6.99115 + 0.351971i 0.353106 + 0.0177772i
\(393\) 0 0
\(394\) 12.7339 0.641522
\(395\) 1.15292 1.99691i 0.0580097 0.100476i
\(396\) 0 0
\(397\) −5.13307 8.89075i −0.257622 0.446214i 0.707983 0.706230i \(-0.249605\pi\)
−0.965604 + 0.260016i \(0.916272\pi\)
\(398\) 1.47296 2.55124i 0.0738327 0.127882i
\(399\) 0 0
\(400\) 2.39397 + 4.14647i 0.119698 + 0.207324i
\(401\) 17.0167 29.4738i 0.849775 1.47185i −0.0316345 0.999500i \(-0.510071\pi\)
0.881409 0.472353i \(-0.156595\pi\)
\(402\) 0 0
\(403\) −0.375780 0.650870i −0.0187189 0.0324221i
\(404\) 6.87792 + 11.9129i 0.342189 + 0.592689i
\(405\) 0 0
\(406\) 20.2594 + 12.3863i 1.00546 + 0.614724i
\(407\) −16.6118 + 28.7724i −0.823415 + 1.42620i
\(408\) 0 0
\(409\) −3.48968 −0.172554 −0.0862769 0.996271i \(-0.527497\pi\)
−0.0862769 + 0.996271i \(0.527497\pi\)
\(410\) 0.435599 0.0215127
\(411\) 0 0
\(412\) −5.58113 + 9.66679i −0.274962 + 0.476249i
\(413\) 0.858071 34.1091i 0.0422229 1.67840i
\(414\) 0 0
\(415\) −1.53064 2.65115i −0.0751362 0.130140i
\(416\) −0.730252 1.26483i −0.0358036 0.0620136i
\(417\) 0 0
\(418\) 7.39397 12.8067i 0.361651 0.626398i
\(419\) −14.4897 25.0969i −0.707867 1.22606i −0.965647 0.259858i \(-0.916324\pi\)
0.257779 0.966204i \(-0.417009\pi\)
\(420\) 0 0
\(421\) −1.06128 + 1.83819i −0.0517237 + 0.0895881i −0.890728 0.454537i \(-0.849805\pi\)
0.839004 + 0.544125i \(0.183138\pi\)
\(422\) 0.608168 + 1.05338i 0.0296052 + 0.0512777i
\(423\) 0 0
\(424\) 6.21780 10.7695i 0.301963 0.523015i
\(425\) 17.8774 0.867183
\(426\) 0 0
\(427\) 0.803987 31.9592i 0.0389077 1.54661i
\(428\) 3.89037 + 6.73832i 0.188048 + 0.325709i
\(429\) 0 0
\(430\) −2.14766 3.71986i −0.103570 0.179388i
\(431\) −10.9356 + 18.9410i −0.526749 + 0.912356i 0.472765 + 0.881189i \(0.343256\pi\)
−0.999514 + 0.0311679i \(0.990077\pi\)
\(432\) 0 0
\(433\) −13.0512 −0.627199 −0.313599 0.949555i \(-0.601535\pi\)
−0.313599 + 0.949555i \(0.601535\pi\)
\(434\) 0.0342393 1.36104i 0.00164354 0.0653322i
\(435\) 0 0
\(436\) −3.75729 + 6.50783i −0.179942 + 0.311668i
\(437\) −4.59358 −0.219741
\(438\) 0 0
\(439\) 4.86400 0.232146 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(440\) −1.67977 −0.0800797
\(441\) 0 0
\(442\) −5.45331 −0.259387
\(443\) 11.5395 0.548258 0.274129 0.961693i \(-0.411610\pi\)
0.274129 + 0.961693i \(0.411610\pi\)
\(444\) 0 0
\(445\) −1.25564 −0.0595229
\(446\) 0.445916 0.772349i 0.0211147 0.0365718i
\(447\) 0 0
\(448\) 0.0665372 2.64491i 0.00314359 0.124960i
\(449\) 26.4251 1.24708 0.623538 0.781793i \(-0.285694\pi\)
0.623538 + 0.781793i \(0.285694\pi\)
\(450\) 0 0
\(451\) 1.72519 2.98812i 0.0812361 0.140705i
\(452\) −3.03064 5.24922i −0.142549 0.246903i
\(453\) 0 0
\(454\) 7.32597 + 12.6889i 0.343825 + 0.595522i
\(455\) −0.0447509 + 1.77889i −0.00209796 + 0.0833956i
\(456\) 0 0
\(457\) −3.73812 −0.174862 −0.0874310 0.996171i \(-0.527866\pi\)
−0.0874310 + 0.996171i \(0.527866\pi\)
\(458\) −4.78794 + 8.29295i −0.223726 + 0.387504i
\(459\) 0 0
\(460\) 0.260893 + 0.451880i 0.0121642 + 0.0210690i
\(461\) 7.90496 13.6918i 0.368171 0.637690i −0.621109 0.783724i \(-0.713318\pi\)
0.989280 + 0.146034i \(0.0466509\pi\)
\(462\) 0 0
\(463\) 19.1965 + 33.2493i 0.892137 + 1.54523i 0.837309 + 0.546730i \(0.184128\pi\)
0.0548278 + 0.998496i \(0.482539\pi\)
\(464\) 4.48755 7.77266i 0.208329 0.360837i
\(465\) 0 0
\(466\) 7.21420 + 12.4954i 0.334191 + 0.578836i
\(467\) −3.15652 5.46725i −0.146066 0.252994i 0.783704 0.621134i \(-0.213328\pi\)
−0.929770 + 0.368140i \(0.879995\pi\)
\(468\) 0 0
\(469\) −0.154382 + 6.13682i −0.00712869 + 0.283372i
\(470\) −0.535897 + 0.928200i −0.0247191 + 0.0428147i
\(471\) 0 0
\(472\) −12.8961 −0.593591
\(473\) −34.0233 −1.56439
\(474\) 0 0
\(475\) 9.70535 16.8102i 0.445312 0.771303i
\(476\) −8.42840 5.15301i −0.386315 0.236188i
\(477\) 0 0
\(478\) −9.15486 15.8567i −0.418734 0.725268i
\(479\) −10.2068 17.6787i −0.466361 0.807761i 0.532901 0.846178i \(-0.321102\pi\)
−0.999262 + 0.0384168i \(0.987769\pi\)
\(480\) 0 0
\(481\) 6.65126 11.5203i 0.303271 0.525282i
\(482\) 0.0466924 + 0.0808735i 0.00212678 + 0.00368369i
\(483\) 0 0
\(484\) −1.15272 + 1.99658i −0.0523966 + 0.0907535i
\(485\) −2.57587 4.46154i −0.116964 0.202588i
\(486\) 0 0
\(487\) 6.18190 10.7074i 0.280129 0.485197i −0.691287 0.722580i \(-0.742956\pi\)
0.971416 + 0.237383i \(0.0762895\pi\)
\(488\) −12.0833 −0.546984
\(489\) 0 0
\(490\) −1.75010 + 2.70709i −0.0790613 + 0.122294i
\(491\) −0.207004 0.358541i −0.00934194 0.0161807i 0.861317 0.508069i \(-0.169640\pi\)
−0.870659 + 0.491888i \(0.836307\pi\)
\(492\) 0 0
\(493\) −16.7558 29.0220i −0.754645 1.30708i
\(494\) −2.96050 + 5.12774i −0.133199 + 0.230708i
\(495\) 0 0
\(496\) −0.514589 −0.0231057
\(497\) −0.111767 + 4.44284i −0.00501344 + 0.199289i
\(498\) 0 0
\(499\) 0.461967 0.800151i 0.0206805 0.0358197i −0.855500 0.517803i \(-0.826750\pi\)
0.876180 + 0.481983i \(0.160083\pi\)
\(500\) −4.50739 −0.201577
\(501\) 0 0
\(502\) −18.2733 −0.815579
\(503\) 23.8142 1.06182 0.530911 0.847428i \(-0.321850\pi\)
0.530911 + 0.847428i \(0.321850\pi\)
\(504\) 0 0
\(505\) −6.33463 −0.281887
\(506\) 4.13307 0.183738
\(507\) 0 0
\(508\) 8.80992 0.390877
\(509\) −15.3171 + 26.5300i −0.678919 + 1.17592i 0.296388 + 0.955068i \(0.404218\pi\)
−0.975307 + 0.220855i \(0.929115\pi\)
\(510\) 0 0
\(511\) 29.8894 + 18.2740i 1.32223 + 0.808393i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 10.5256 18.2308i 0.464263 0.804128i
\(515\) −2.57014 4.45161i −0.113254 0.196161i
\(516\) 0 0
\(517\) 4.24484 + 7.35228i 0.186688 + 0.323353i
\(518\) 21.1659 11.5203i 0.929974 0.506174i
\(519\) 0 0
\(520\) 0.672570 0.0294941
\(521\) 13.4518 23.2993i 0.589336 1.02076i −0.404984 0.914324i \(-0.632723\pi\)
0.994320 0.106436i \(-0.0339439\pi\)
\(522\) 0 0
\(523\) −7.85301 13.6018i −0.343388 0.594766i 0.641671 0.766980i \(-0.278241\pi\)
−0.985060 + 0.172214i \(0.944908\pi\)
\(524\) 10.5687 18.3055i 0.461695 0.799679i
\(525\) 0 0
\(526\) 2.58259 + 4.47318i 0.112606 + 0.195040i
\(527\) −0.960699 + 1.66398i −0.0418487 + 0.0724841i
\(528\) 0 0
\(529\) 10.8581 + 18.8067i 0.472090 + 0.817684i
\(530\) 2.86333 + 4.95943i 0.124375 + 0.215424i
\(531\) 0 0
\(532\) −9.42101 + 5.12774i −0.408453 + 0.222316i
\(533\) −0.690757 + 1.19643i −0.0299200 + 0.0518230i
\(534\) 0 0
\(535\) −3.58307 −0.154910
\(536\) 2.32023 0.100219
\(537\) 0 0
\(538\) 8.42840 14.5984i 0.363374 0.629383i
\(539\) 11.6388 + 22.7267i 0.501319 + 0.978910i
\(540\) 0 0
\(541\) −2.05934 3.56688i −0.0885379 0.153352i 0.818355 0.574713i \(-0.194886\pi\)
−0.906893 + 0.421360i \(0.861553\pi\)
\(542\) −12.5562 21.7480i −0.539336 0.934157i
\(543\) 0 0
\(544\) −1.86693 + 3.23361i −0.0800438 + 0.138640i
\(545\) −1.73025 2.99689i −0.0741159 0.128372i
\(546\) 0 0
\(547\) −11.8602 + 20.5425i −0.507106 + 0.878333i 0.492860 + 0.870108i \(0.335951\pi\)
−0.999966 + 0.00822465i \(0.997382\pi\)
\(548\) −2.20321 3.81607i −0.0941165 0.163015i
\(549\) 0 0
\(550\) −8.73239 + 15.1249i −0.372350 + 0.644930i
\(551\) −36.3858 −1.55009
\(552\) 0 0
\(553\) −0.333165 + 13.2436i −0.0141676 + 0.563176i
\(554\) 1.69076 + 2.92848i 0.0718334 + 0.124419i
\(555\) 0 0
\(556\) −1.01245 1.75362i −0.0429376 0.0743701i
\(557\) 21.0313 36.4273i 0.891125 1.54347i 0.0525975 0.998616i \(-0.483250\pi\)
0.838528 0.544859i \(-0.183417\pi\)
\(558\) 0 0
\(559\) 13.6228 0.576181
\(560\) 1.03950 + 0.635534i 0.0439267 + 0.0268562i
\(561\) 0 0
\(562\) −10.1388 + 17.5609i −0.427680 + 0.740763i
\(563\) −11.8243 −0.498335 −0.249168 0.968460i \(-0.580157\pi\)
−0.249168 + 0.968460i \(0.580157\pi\)
\(564\) 0 0
\(565\) 2.79125 0.117429
\(566\) −17.3494 −0.729250
\(567\) 0 0
\(568\) 1.67977 0.0704815
\(569\) −14.2016 −0.595360 −0.297680 0.954666i \(-0.596213\pi\)
−0.297680 + 0.954666i \(0.596213\pi\)
\(570\) 0 0
\(571\) 11.9574 0.500401 0.250200 0.968194i \(-0.419503\pi\)
0.250200 + 0.968194i \(0.419503\pi\)
\(572\) 2.66372 4.61369i 0.111376 0.192908i
\(573\) 0 0
\(574\) −2.19815 + 1.19643i −0.0917490 + 0.0499379i
\(575\) 5.42509 0.226242
\(576\) 0 0
\(577\) 21.3135 36.9161i 0.887293 1.53684i 0.0442307 0.999021i \(-0.485916\pi\)
0.843062 0.537816i \(-0.180750\pi\)
\(578\) −1.52918 2.64861i −0.0636054 0.110168i
\(579\) 0 0
\(580\) 2.06654 + 3.57935i 0.0858083 + 0.148624i
\(581\) 15.0057 + 9.17431i 0.622543 + 0.380614i
\(582\) 0 0
\(583\) 45.3609 1.87866
\(584\) 6.62062 11.4673i 0.273963 0.474518i
\(585\) 0 0
\(586\) −4.93560 8.54871i −0.203888 0.353144i
\(587\) −20.5328 + 35.5638i −0.847478 + 1.46788i 0.0359730 + 0.999353i \(0.488547\pi\)
−0.883451 + 0.468523i \(0.844786\pi\)
\(588\) 0 0
\(589\) 1.04309 + 1.80669i 0.0429799 + 0.0744434i
\(590\) 2.96936 5.14308i 0.122247 0.211737i
\(591\) 0 0
\(592\) −4.55408 7.88791i −0.187172 0.324191i
\(593\) −16.1008 27.8874i −0.661180 1.14520i −0.980306 0.197485i \(-0.936723\pi\)
0.319126 0.947712i \(-0.396611\pi\)
\(594\) 0 0
\(595\) 3.99573 2.17483i 0.163809 0.0891592i
\(596\) −4.58113 + 7.93474i −0.187650 + 0.325020i
\(597\) 0 0
\(598\) −1.65486 −0.0676723
\(599\) −19.0718 −0.779252 −0.389626 0.920973i \(-0.627396\pi\)
−0.389626 + 0.920973i \(0.627396\pi\)
\(600\) 0 0
\(601\) 4.27188 7.39912i 0.174254 0.301816i −0.765649 0.643259i \(-0.777582\pi\)
0.939903 + 0.341442i \(0.110915\pi\)
\(602\) 21.0548 + 12.8726i 0.858128 + 0.524648i
\(603\) 0 0
\(604\) 0.0519482 + 0.0899768i 0.00211374 + 0.00366111i
\(605\) −0.530835 0.919434i −0.0215815 0.0373803i
\(606\) 0 0
\(607\) −19.0057 + 32.9189i −0.771419 + 1.33614i 0.165366 + 0.986232i \(0.447119\pi\)
−0.936785 + 0.349905i \(0.886214\pi\)
\(608\) 2.02704 + 3.51094i 0.0822074 + 0.142387i
\(609\) 0 0
\(610\) 2.78220 4.81891i 0.112648 0.195112i
\(611\) −1.69961 2.94381i −0.0687589 0.119094i
\(612\) 0 0
\(613\) 11.3296 19.6234i 0.457597 0.792581i −0.541237 0.840870i \(-0.682044\pi\)
0.998833 + 0.0482894i \(0.0153770\pi\)
\(614\) −7.78794 −0.314295
\(615\) 0 0
\(616\) 8.47656 4.61369i 0.341530 0.185891i
\(617\) 10.1388 + 17.5609i 0.408173 + 0.706977i 0.994685 0.102964i \(-0.0328327\pi\)
−0.586512 + 0.809941i \(0.699499\pi\)
\(618\) 0 0
\(619\) −1.03064 1.78512i −0.0414249 0.0717501i 0.844570 0.535446i \(-0.179856\pi\)
−0.885994 + 0.463696i \(0.846523\pi\)
\(620\) 0.118485 0.205223i 0.00475849 0.00824194i
\(621\) 0 0
\(622\) 15.4107 0.617912
\(623\) 6.33628 3.44877i 0.253858 0.138172i
\(624\) 0 0
\(625\) −10.9320 + 18.9348i −0.437280 + 0.757391i
\(626\) −8.49688 −0.339604
\(627\) 0 0
\(628\) 20.9823 0.837285
\(629\) −34.0085 −1.35601
\(630\) 0 0
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) 5.00720 0.199176
\(633\) 0 0
\(634\) −14.1052 −0.560191
\(635\) −2.02850 + 3.51347i −0.0804988 + 0.139428i
\(636\) 0 0
\(637\) −4.66012 9.09967i −0.184641 0.360542i
\(638\) 32.7381 1.29611
\(639\) 0 0
\(640\) 0.230252 0.398809i 0.00910153 0.0157643i
\(641\) 10.9662 + 18.9941i 0.433140 + 0.750221i 0.997142 0.0755526i \(-0.0240721\pi\)
−0.564001 + 0.825774i \(0.690739\pi\)
\(642\) 0 0
\(643\) −14.1819 24.5638i −0.559280 0.968701i −0.997557 0.0698609i \(-0.977744\pi\)
0.438277 0.898840i \(-0.355589\pi\)
\(644\) −2.55768 1.56373i −0.100787 0.0616197i
\(645\) 0 0
\(646\) 15.1373 0.595571
\(647\) −17.3904 + 30.1210i −0.683686 + 1.18418i 0.290162 + 0.956978i \(0.406291\pi\)
−0.973848 + 0.227201i \(0.927042\pi\)
\(648\) 0 0
\(649\) −23.5203 40.7384i −0.923253 1.59912i
\(650\) 3.49640 6.05594i 0.137140 0.237534i
\(651\) 0 0
\(652\) −11.5182 19.9501i −0.451087 0.781306i
\(653\) −1.59931 + 2.77009i −0.0625860 + 0.108402i −0.895621 0.444819i \(-0.853268\pi\)
0.833035 + 0.553221i \(0.186601\pi\)
\(654\) 0 0
\(655\) 4.86693 + 8.42976i 0.190167 + 0.329378i
\(656\) 0.472958 + 0.819187i 0.0184659 + 0.0319839i
\(657\) 0 0
\(658\) 0.154861 6.15585i 0.00603710 0.239980i
\(659\) −5.30418 + 9.18711i −0.206622 + 0.357879i −0.950648 0.310271i \(-0.899580\pi\)
0.744027 + 0.668150i \(0.232914\pi\)
\(660\) 0 0
\(661\) 10.1301 0.394017 0.197009 0.980402i \(-0.436877\pi\)
0.197009 + 0.980402i \(0.436877\pi\)
\(662\) −27.5438 −1.07052
\(663\) 0 0
\(664\) 3.32383 5.75705i 0.128990 0.223417i
\(665\) 0.124220 4.93786i 0.00481705 0.191482i
\(666\) 0 0
\(667\) −5.08472 8.80700i −0.196881 0.341008i
\(668\) 5.31498 + 9.20581i 0.205643 + 0.356184i
\(669\) 0 0
\(670\) −0.534239 + 0.925330i −0.0206395 + 0.0357486i
\(671\) −22.0378 38.1707i −0.850761 1.47356i
\(672\) 0 0
\(673\) 1.60817 2.78543i 0.0619903 0.107370i −0.833365 0.552724i \(-0.813589\pi\)
0.895355 + 0.445353i \(0.146922\pi\)
\(674\) −0.748440 1.29634i −0.0288288 0.0499330i
\(675\) 0 0
\(676\) 5.43346 9.41103i 0.208979 0.361963i
\(677\) 29.3638 1.12854 0.564271 0.825589i \(-0.309157\pi\)
0.564271 + 0.825589i \(0.309157\pi\)
\(678\) 0 0
\(679\) 25.2527 + 15.4392i 0.969110 + 0.592501i
\(680\) −0.859728 1.48909i −0.0329691 0.0571041i
\(681\) 0 0
\(682\) −0.938524 1.62557i −0.0359379 0.0622463i
\(683\) −12.6278 + 21.8720i −0.483190 + 0.836910i −0.999814 0.0193029i \(-0.993855\pi\)
0.516624 + 0.856213i \(0.327189\pi\)
\(684\) 0 0
\(685\) 2.02918 0.0775309
\(686\) 1.39610 18.4676i 0.0533035 0.705095i
\(687\) 0 0
\(688\) 4.66372 8.07779i 0.177802 0.307963i
\(689\) −18.1623 −0.691927
\(690\) 0 0
\(691\) −15.3638 −0.584467 −0.292233 0.956347i \(-0.594398\pi\)
−0.292233 + 0.956347i \(0.594398\pi\)
\(692\) −2.93872 −0.111713
\(693\) 0 0
\(694\) −18.2881 −0.694208
\(695\) 0.932479 0.0353709
\(696\) 0 0
\(697\) 3.53191 0.133781
\(698\) 3.90136 6.75735i 0.147669 0.255770i
\(699\) 0 0
\(700\) 11.1264 6.05594i 0.420537 0.228893i
\(701\) 13.3700 0.504980 0.252490 0.967600i \(-0.418751\pi\)
0.252490 + 0.967600i \(0.418751\pi\)
\(702\) 0 0
\(703\) −18.4626 + 31.9782i −0.696332 + 1.20608i
\(704\) −1.82383 3.15897i −0.0687382 0.119058i
\(705\) 0 0
\(706\) −13.4626 23.3180i −0.506673 0.877584i
\(707\) 31.9662 17.3988i 1.20221 0.654351i
\(708\) 0 0
\(709\) −1.12588 −0.0422832 −0.0211416 0.999776i \(-0.506730\pi\)
−0.0211416 + 0.999776i \(0.506730\pi\)
\(710\) −0.386770 + 0.669906i −0.0145152 + 0.0251411i
\(711\) 0 0
\(712\) −1.36333 2.36135i −0.0510928 0.0884954i
\(713\) −0.291534 + 0.504951i −0.0109180 + 0.0189106i
\(714\) 0 0
\(715\) 1.22665 + 2.12463i 0.0458743 + 0.0794565i
\(716\) 4.58113 7.93474i 0.171205 0.296535i
\(717\) 0 0
\(718\) −3.13161 5.42411i −0.116871 0.202426i
\(719\) −9.13667 15.8252i −0.340740 0.590180i 0.643830 0.765169i \(-0.277344\pi\)
−0.984570 + 0.174989i \(0.944011\pi\)
\(720\) 0 0
\(721\) 25.1965 + 15.4048i 0.938366 + 0.573705i
\(722\) −1.28220 + 2.22084i −0.0477186 + 0.0826510i
\(723\) 0 0
\(724\) 22.4284 0.833545
\(725\) 42.9722 1.59595
\(726\) 0 0
\(727\) −14.8478 + 25.7171i −0.550673 + 0.953793i 0.447553 + 0.894257i \(0.352295\pi\)
−0.998226 + 0.0595359i \(0.981038\pi\)
\(728\) −3.39397 + 1.84730i −0.125789 + 0.0684654i
\(729\) 0 0
\(730\) 3.04883 + 5.28073i 0.112842 + 0.195448i
\(731\) −17.4136 30.1613i −0.644066 1.11555i
\(732\) 0 0
\(733\) −9.61390 + 16.6518i −0.355098 + 0.615047i −0.987135 0.159891i \(-0.948886\pi\)
0.632037 + 0.774938i \(0.282219\pi\)
\(734\) 14.6367 + 25.3515i 0.540249 + 0.935740i
\(735\) 0 0
\(736\) −0.566537 + 0.981271i −0.0208828 + 0.0361701i
\(737\) 4.23171 + 7.32955i 0.155877 + 0.269987i
\(738\) 0 0
\(739\) −15.1336 + 26.2121i −0.556697 + 0.964227i 0.441073 + 0.897471i \(0.354598\pi\)
−0.997769 + 0.0667556i \(0.978735\pi\)
\(740\) 4.19436 0.154188
\(741\) 0 0
\(742\) −28.0708 17.1621i −1.03051 0.630041i
\(743\) 11.8815 + 20.5794i 0.435890 + 0.754984i 0.997368 0.0725076i \(-0.0231002\pi\)
−0.561477 + 0.827492i \(0.689767\pi\)
\(744\) 0 0
\(745\) −2.10963 3.65399i −0.0772909 0.133872i
\(746\) 8.92986 15.4670i 0.326946 0.566286i
\(747\) 0 0
\(748\) −13.6198 −0.497990
\(749\) 18.0811 9.84134i 0.660670 0.359595i
\(750\) 0 0
\(751\) −6.33415 + 10.9711i −0.231136 + 0.400340i −0.958143 0.286291i \(-0.907578\pi\)
0.727006 + 0.686631i \(0.240911\pi\)
\(752\) −2.32743 −0.0848727
\(753\) 0 0
\(754\) −13.1082 −0.477371
\(755\) −0.0478448 −0.00174125
\(756\) 0 0
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) 22.4255 0.814530
\(759\) 0 0
\(760\) −1.86693 −0.0677205
\(761\) 14.6015 25.2905i 0.529302 0.916778i −0.470114 0.882606i \(-0.655787\pi\)
0.999416 0.0341724i \(-0.0108795\pi\)
\(762\) 0 0
\(763\) 16.9626 + 10.3707i 0.614089 + 0.375446i
\(764\) −2.48968 −0.0900736
\(765\) 0 0
\(766\) 7.07014 12.2458i 0.255454 0.442460i
\(767\) 9.41741 + 16.3114i 0.340043 + 0.588972i
\(768\) 0 0
\(769\) 12.5869 + 21.8011i 0.453894 + 0.786167i 0.998624 0.0524443i \(-0.0167012\pi\)
−0.544730 + 0.838611i \(0.683368\pi\)
\(770\) −0.111767 + 4.44284i −0.00402780 + 0.160109i
\(771\) 0 0
\(772\) 4.48968 0.161587
\(773\) 0.752039 1.30257i 0.0270490 0.0468502i −0.852184 0.523242i \(-0.824722\pi\)
0.879233 + 0.476392i \(0.158056\pi\)
\(774\) 0 0
\(775\) −1.23191 2.13373i −0.0442515 0.0766458i
\(776\) 5.59358 9.68836i 0.200798 0.347792i
\(777\) 0 0
\(778\) 11.5651 + 20.0313i 0.414628 + 0.718157i
\(779\) 1.91741 3.32105i 0.0686984 0.118989i
\(780\) 0 0
\(781\) 3.06361 + 5.30633i 0.109625 + 0.189875i
\(782\) 2.11537 + 3.66392i 0.0756453 + 0.131022i