Properties

Label 378.2.e
Level $378$
Weight $2$
Character orbit 378.e
Rep. character $\chi_{378}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $4$
Sturm bound $144$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).

Total New Old
Modular forms 168 16 152
Cusp forms 120 16 104
Eisenstein series 48 0 48

Trace form

\( 16q + 16q^{4} + 4q^{5} - 2q^{7} + O(q^{10}) \) \( 16q + 16q^{4} + 4q^{5} - 2q^{7} - 4q^{11} + 2q^{13} - 2q^{14} + 16q^{16} + 14q^{17} - 4q^{19} + 4q^{20} + 2q^{23} - 8q^{25} + 16q^{26} - 2q^{28} + 10q^{29} - 4q^{31} + 14q^{35} + 2q^{37} + 12q^{38} + 6q^{41} + 2q^{43} - 4q^{44} - 6q^{46} - 12q^{47} + 4q^{49} + 4q^{50} + 2q^{52} - 24q^{53} - 12q^{55} - 2q^{56} + 6q^{58} - 44q^{59} - 16q^{61} - 44q^{62} + 16q^{64} - 12q^{65} - 28q^{67} + 14q^{68} - 18q^{70} - 52q^{71} - 28q^{73} + 6q^{74} - 4q^{76} - 50q^{77} - 40q^{79} + 4q^{80} - 16q^{83} + 12q^{85} - 12q^{86} + 36q^{89} - 16q^{91} + 2q^{92} - 24q^{94} + 68q^{95} + 2q^{97} + 24q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
378.2.e.a \(2\) \(3.018\) \(\Q(\sqrt{-3}) \) None \(-2\) \(0\) \(-3\) \(-4\) \(q-q^{2}+q^{4}+(-3+3\zeta_{6})q^{5}+(-3+\cdots)q^{7}+\cdots\)
378.2.e.b \(2\) \(3.018\) \(\Q(\sqrt{-3}) \) None \(2\) \(0\) \(3\) \(-4\) \(q+q^{2}+q^{4}+(3-3\zeta_{6})q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\)
378.2.e.c \(6\) \(3.018\) 6.0.309123.1 None \(-6\) \(0\) \(5\) \(4\) \(q-q^{2}+q^{4}+(2-2\beta _{4}+\beta _{5})q^{5}+(1+\cdots)q^{7}+\cdots\)
378.2.e.d \(6\) \(3.018\) 6.0.309123.1 None \(6\) \(0\) \(-1\) \(2\) \(q+q^{2}+q^{4}-\beta _{2}q^{5}+(\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(378, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)