Newspace parameters
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 378.1 |
$q$-expansion
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 1.00000 | 0.707107 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 1.00000 | 0.500000 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000 | 0.377964 | ||||||||
\(8\) | 1.00000 | 0.353553 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 5.00000 | 1.38675 | 0.693375 | − | 0.720577i | \(-0.256123\pi\) | ||||
0.693375 | + | 0.720577i | \(0.256123\pi\) | |||||||
\(14\) | 1.00000 | 0.267261 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 1.00000 | 0.250000 | ||||||||
\(17\) | 3.00000 | 0.727607 | 0.363803 | − | 0.931476i | \(-0.381478\pi\) | ||||
0.363803 | + | 0.931476i | \(0.381478\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −9.00000 | −1.87663 | −0.938315 | − | 0.345782i | \(-0.887614\pi\) | ||||
−0.938315 | + | 0.345782i | \(0.887614\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 5.00000 | 0.980581 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 1.00000 | 0.188982 | ||||||||
\(29\) | −3.00000 | −0.557086 | −0.278543 | − | 0.960424i | \(-0.589851\pi\) | ||||
−0.278543 | + | 0.960424i | \(0.589851\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.00000 | 0.898027 | 0.449013 | − | 0.893525i | \(-0.351776\pi\) | ||||
0.449013 | + | 0.893525i | \(0.351776\pi\) | |||||||
\(32\) | 1.00000 | 0.176777 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 3.00000 | 0.514496 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000 | 0.328798 | 0.164399 | − | 0.986394i | \(-0.447432\pi\) | ||||
0.164399 | + | 0.986394i | \(0.447432\pi\) | |||||||
\(38\) | 2.00000 | 0.324443 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −1.00000 | −0.152499 | −0.0762493 | − | 0.997089i | \(-0.524294\pi\) | ||||
−0.0762493 | + | 0.997089i | \(0.524294\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | −9.00000 | −1.32698 | ||||||||
\(47\) | −6.00000 | −0.875190 | −0.437595 | − | 0.899172i | \(-0.644170\pi\) | ||||
−0.437595 | + | 0.899172i | \(0.644170\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | −5.00000 | −0.707107 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 5.00000 | 0.693375 | ||||||||
\(53\) | 3.00000 | 0.412082 | 0.206041 | − | 0.978543i | \(-0.433942\pi\) | ||||
0.206041 | + | 0.978543i | \(0.433942\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 1.00000 | 0.133631 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | −3.00000 | −0.393919 | ||||||||
\(59\) | −3.00000 | −0.390567 | −0.195283 | − | 0.980747i | \(-0.562563\pi\) | ||||
−0.195283 | + | 0.980747i | \(0.562563\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 5.00000 | 0.635001 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 1.00000 | 0.125000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 |