Properties

Label 378.2.a
Level $378$
Weight $2$
Character orbit 378.a
Rep. character $\chi_{378}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $8$
Sturm bound $144$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(378))\).

Total New Old
Modular forms 84 8 76
Cusp forms 61 8 53
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(7\)\(1\)\(6\)\(5\)\(1\)\(4\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(11\)\(1\)\(10\)\(8\)\(1\)\(7\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(13\)\(1\)\(12\)\(10\)\(1\)\(9\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(11\)\(1\)\(10\)\(8\)\(1\)\(7\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(11\)\(2\)\(9\)\(8\)\(2\)\(6\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(10\)\(0\)\(10\)\(7\)\(0\)\(7\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(11\)\(0\)\(11\)\(8\)\(0\)\(8\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(10\)\(2\)\(8\)\(7\)\(2\)\(5\)\(3\)\(0\)\(3\)
Plus space\(+\)\(39\)\(2\)\(37\)\(28\)\(2\)\(26\)\(11\)\(0\)\(11\)
Minus space\(-\)\(45\)\(6\)\(39\)\(33\)\(6\)\(27\)\(12\)\(0\)\(12\)

Trace form

\( 8 q + 8 q^{4} + 16 q^{10} + 8 q^{13} + 8 q^{16} - 8 q^{19} - 4 q^{22} + 12 q^{25} - 16 q^{31} + 8 q^{34} + 4 q^{37} + 16 q^{40} - 20 q^{43} - 16 q^{46} + 8 q^{49} + 8 q^{52} - 40 q^{55} + 4 q^{58} - 16 q^{61}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(378))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
378.2.a.a 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.a \(-1\) \(0\) \(-4\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}-q^{7}-q^{8}+4q^{10}+\cdots\)
378.2.a.b 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.b \(-1\) \(0\) \(-3\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-3q^{5}+q^{7}-q^{8}+3q^{10}+\cdots\)
378.2.a.c 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.c \(-1\) \(0\) \(-1\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\)
378.2.a.d 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.d \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+5q^{13}-q^{14}+\cdots\)
378.2.a.e 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.d \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+5q^{13}+q^{14}+\cdots\)
378.2.a.f 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.c \(1\) \(0\) \(1\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\)
378.2.a.g 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.b \(1\) \(0\) \(3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}+q^{7}+q^{8}+3q^{10}+\cdots\)
378.2.a.h 378.a 1.a $1$ $3.018$ \(\Q\) None 378.2.a.a \(1\) \(0\) \(4\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{5}-q^{7}+q^{8}+4q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(378))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(378)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 2}\)