Properties

Label 3762.2.a.bg.1.2
Level $3762$
Weight $2$
Character 3762.1
Self dual yes
Analytic conductor $30.040$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(1,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.14510\) of defining polynomial
Character \(\chi\) \(=\) 3762.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.60147 q^{5} +2.89167 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.60147 q^{5} +2.89167 q^{7} +1.00000 q^{8} +1.60147 q^{10} +1.00000 q^{11} +4.89167 q^{13} +2.89167 q^{14} +1.00000 q^{16} +5.74657 q^{17} -1.00000 q^{19} +1.60147 q^{20} +1.00000 q^{22} +7.74657 q^{23} -2.43531 q^{25} +4.89167 q^{26} +2.89167 q^{28} -5.34803 q^{29} -7.43531 q^{31} +1.00000 q^{32} +5.74657 q^{34} +4.63091 q^{35} -7.49314 q^{37} -1.00000 q^{38} +1.60147 q^{40} +2.05783 q^{41} -10.6887 q^{43} +1.00000 q^{44} +7.74657 q^{46} +7.08727 q^{47} +1.36176 q^{49} -2.43531 q^{50} +4.89167 q^{52} -8.32698 q^{53} +1.60147 q^{55} +2.89167 q^{56} -5.34803 q^{58} +2.54364 q^{59} +13.4931 q^{61} -7.43531 q^{62} +1.00000 q^{64} +7.83384 q^{65} -10.3848 q^{67} +5.74657 q^{68} +4.63091 q^{70} -14.9789 q^{71} -3.74657 q^{73} -7.49314 q^{74} -1.00000 q^{76} +2.89167 q^{77} -8.69607 q^{79} +1.60147 q^{80} +2.05783 q^{82} +6.10833 q^{83} +9.20293 q^{85} -10.6887 q^{86} +1.00000 q^{88} -3.20293 q^{89} +14.1451 q^{91} +7.74657 q^{92} +7.08727 q^{94} -1.60147 q^{95} -6.98627 q^{97} +1.36176 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{5} - 6 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{5} - 6 q^{7} + 3 q^{8} + 3 q^{10} + 3 q^{11} - 6 q^{14} + 3 q^{16} + 9 q^{17} - 3 q^{19} + 3 q^{20} + 3 q^{22} + 15 q^{23} + 12 q^{25} - 6 q^{28} - 6 q^{29} - 3 q^{31} + 3 q^{32} + 9 q^{34} - 6 q^{37} - 3 q^{38} + 3 q^{40} + 9 q^{41} - 21 q^{43} + 3 q^{44} + 15 q^{46} + 12 q^{47} + 27 q^{49} + 12 q^{50} + 9 q^{53} + 3 q^{55} - 6 q^{56} - 6 q^{58} + 3 q^{59} + 24 q^{61} - 3 q^{62} + 3 q^{64} + 6 q^{65} + 9 q^{68} - 21 q^{71} - 3 q^{73} - 6 q^{74} - 3 q^{76} - 6 q^{77} - 6 q^{79} + 3 q^{80} + 9 q^{82} + 33 q^{83} + 24 q^{85} - 21 q^{86} + 3 q^{88} - 6 q^{89} + 36 q^{91} + 15 q^{92} + 12 q^{94} - 3 q^{95} + 12 q^{97} + 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.60147 0.716197 0.358099 0.933684i \(-0.383425\pi\)
0.358099 + 0.933684i \(0.383425\pi\)
\(6\) 0 0
\(7\) 2.89167 1.09295 0.546474 0.837476i \(-0.315970\pi\)
0.546474 + 0.837476i \(0.315970\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.60147 0.506428
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.89167 1.35671 0.678353 0.734736i \(-0.262694\pi\)
0.678353 + 0.734736i \(0.262694\pi\)
\(14\) 2.89167 0.772832
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.74657 1.39375 0.696874 0.717194i \(-0.254574\pi\)
0.696874 + 0.717194i \(0.254574\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.60147 0.358099
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 7.74657 1.61527 0.807636 0.589682i \(-0.200747\pi\)
0.807636 + 0.589682i \(0.200747\pi\)
\(24\) 0 0
\(25\) −2.43531 −0.487062
\(26\) 4.89167 0.959336
\(27\) 0 0
\(28\) 2.89167 0.546474
\(29\) −5.34803 −0.993105 −0.496552 0.868007i \(-0.665401\pi\)
−0.496552 + 0.868007i \(0.665401\pi\)
\(30\) 0 0
\(31\) −7.43531 −1.33542 −0.667710 0.744421i \(-0.732726\pi\)
−0.667710 + 0.744421i \(0.732726\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.74657 0.985528
\(35\) 4.63091 0.782767
\(36\) 0 0
\(37\) −7.49314 −1.23186 −0.615932 0.787799i \(-0.711220\pi\)
−0.615932 + 0.787799i \(0.711220\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 1.60147 0.253214
\(41\) 2.05783 0.321379 0.160689 0.987005i \(-0.448628\pi\)
0.160689 + 0.987005i \(0.448628\pi\)
\(42\) 0 0
\(43\) −10.6887 −1.63002 −0.815009 0.579449i \(-0.803268\pi\)
−0.815009 + 0.579449i \(0.803268\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 7.74657 1.14217
\(47\) 7.08727 1.03379 0.516893 0.856050i \(-0.327089\pi\)
0.516893 + 0.856050i \(0.327089\pi\)
\(48\) 0 0
\(49\) 1.36176 0.194537
\(50\) −2.43531 −0.344405
\(51\) 0 0
\(52\) 4.89167 0.678353
\(53\) −8.32698 −1.14380 −0.571899 0.820324i \(-0.693793\pi\)
−0.571899 + 0.820324i \(0.693793\pi\)
\(54\) 0 0
\(55\) 1.60147 0.215942
\(56\) 2.89167 0.386416
\(57\) 0 0
\(58\) −5.34803 −0.702231
\(59\) 2.54364 0.331153 0.165577 0.986197i \(-0.447051\pi\)
0.165577 + 0.986197i \(0.447051\pi\)
\(60\) 0 0
\(61\) 13.4931 1.72762 0.863810 0.503818i \(-0.168072\pi\)
0.863810 + 0.503818i \(0.168072\pi\)
\(62\) −7.43531 −0.944285
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.83384 0.971669
\(66\) 0 0
\(67\) −10.3848 −1.26871 −0.634353 0.773043i \(-0.718733\pi\)
−0.634353 + 0.773043i \(0.718733\pi\)
\(68\) 5.74657 0.696874
\(69\) 0 0
\(70\) 4.63091 0.553500
\(71\) −14.9789 −1.77767 −0.888837 0.458224i \(-0.848486\pi\)
−0.888837 + 0.458224i \(0.848486\pi\)
\(72\) 0 0
\(73\) −3.74657 −0.438503 −0.219251 0.975668i \(-0.570361\pi\)
−0.219251 + 0.975668i \(0.570361\pi\)
\(74\) −7.49314 −0.871059
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 2.89167 0.329536
\(78\) 0 0
\(79\) −8.69607 −0.978384 −0.489192 0.872176i \(-0.662708\pi\)
−0.489192 + 0.872176i \(0.662708\pi\)
\(80\) 1.60147 0.179049
\(81\) 0 0
\(82\) 2.05783 0.227249
\(83\) 6.10833 0.670476 0.335238 0.942133i \(-0.391183\pi\)
0.335238 + 0.942133i \(0.391183\pi\)
\(84\) 0 0
\(85\) 9.20293 0.998198
\(86\) −10.6887 −1.15260
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −3.20293 −0.339510 −0.169755 0.985486i \(-0.554298\pi\)
−0.169755 + 0.985486i \(0.554298\pi\)
\(90\) 0 0
\(91\) 14.1451 1.48281
\(92\) 7.74657 0.807636
\(93\) 0 0
\(94\) 7.08727 0.730997
\(95\) −1.60147 −0.164307
\(96\) 0 0
\(97\) −6.98627 −0.709349 −0.354674 0.934990i \(-0.615408\pi\)
−0.354674 + 0.934990i \(0.615408\pi\)
\(98\) 1.36176 0.137559
\(99\) 0 0
\(100\) −2.43531 −0.243531
\(101\) 1.20293 0.119696 0.0598481 0.998207i \(-0.480938\pi\)
0.0598481 + 0.998207i \(0.480938\pi\)
\(102\) 0 0
\(103\) 16.8779 1.66303 0.831517 0.555500i \(-0.187473\pi\)
0.831517 + 0.555500i \(0.187473\pi\)
\(104\) 4.89167 0.479668
\(105\) 0 0
\(106\) −8.32698 −0.808788
\(107\) 8.03677 0.776944 0.388472 0.921460i \(-0.373003\pi\)
0.388472 + 0.921460i \(0.373003\pi\)
\(108\) 0 0
\(109\) 11.5299 1.10437 0.552183 0.833723i \(-0.313795\pi\)
0.552183 + 0.833723i \(0.313795\pi\)
\(110\) 1.60147 0.152694
\(111\) 0 0
\(112\) 2.89167 0.273237
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) 12.4059 1.15685
\(116\) −5.34803 −0.496552
\(117\) 0 0
\(118\) 2.54364 0.234161
\(119\) 16.6172 1.52329
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 13.4931 1.22161
\(123\) 0 0
\(124\) −7.43531 −0.667710
\(125\) −11.9074 −1.06503
\(126\) 0 0
\(127\) −21.2765 −1.88798 −0.943991 0.329971i \(-0.892961\pi\)
−0.943991 + 0.329971i \(0.892961\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 7.83384 0.687073
\(131\) 3.43531 0.300144 0.150072 0.988675i \(-0.452049\pi\)
0.150072 + 0.988675i \(0.452049\pi\)
\(132\) 0 0
\(133\) −2.89167 −0.250740
\(134\) −10.3848 −0.897111
\(135\) 0 0
\(136\) 5.74657 0.492764
\(137\) −13.5877 −1.16088 −0.580439 0.814303i \(-0.697119\pi\)
−0.580439 + 0.814303i \(0.697119\pi\)
\(138\) 0 0
\(139\) 3.19560 0.271048 0.135524 0.990774i \(-0.456728\pi\)
0.135524 + 0.990774i \(0.456728\pi\)
\(140\) 4.63091 0.391383
\(141\) 0 0
\(142\) −14.9789 −1.25701
\(143\) 4.89167 0.409062
\(144\) 0 0
\(145\) −8.56469 −0.711259
\(146\) −3.74657 −0.310068
\(147\) 0 0
\(148\) −7.49314 −0.615932
\(149\) 12.0735 0.989104 0.494552 0.869148i \(-0.335332\pi\)
0.494552 + 0.869148i \(0.335332\pi\)
\(150\) 0 0
\(151\) −4.91273 −0.399792 −0.199896 0.979817i \(-0.564060\pi\)
−0.199896 + 0.979817i \(0.564060\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) 2.89167 0.233017
\(155\) −11.9074 −0.956425
\(156\) 0 0
\(157\) 8.00733 0.639054 0.319527 0.947577i \(-0.396476\pi\)
0.319527 + 0.947577i \(0.396476\pi\)
\(158\) −8.69607 −0.691822
\(159\) 0 0
\(160\) 1.60147 0.126607
\(161\) 22.4005 1.76541
\(162\) 0 0
\(163\) 1.88434 0.147593 0.0737966 0.997273i \(-0.476488\pi\)
0.0737966 + 0.997273i \(0.476488\pi\)
\(164\) 2.05783 0.160689
\(165\) 0 0
\(166\) 6.10833 0.474098
\(167\) 4.98627 0.385849 0.192925 0.981214i \(-0.438203\pi\)
0.192925 + 0.981214i \(0.438203\pi\)
\(168\) 0 0
\(169\) 10.9284 0.840650
\(170\) 9.20293 0.705833
\(171\) 0 0
\(172\) −10.6887 −0.815009
\(173\) −6.51419 −0.495265 −0.247632 0.968854i \(-0.579653\pi\)
−0.247632 + 0.968854i \(0.579653\pi\)
\(174\) 0 0
\(175\) −7.04211 −0.532333
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −3.20293 −0.240070
\(179\) 5.55096 0.414899 0.207449 0.978246i \(-0.433484\pi\)
0.207449 + 0.978246i \(0.433484\pi\)
\(180\) 0 0
\(181\) 1.88434 0.140062 0.0700311 0.997545i \(-0.477690\pi\)
0.0700311 + 0.997545i \(0.477690\pi\)
\(182\) 14.1451 1.04850
\(183\) 0 0
\(184\) 7.74657 0.571085
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 5.74657 0.420231
\(188\) 7.08727 0.516893
\(189\) 0 0
\(190\) −1.60147 −0.116183
\(191\) −2.44264 −0.176743 −0.0883715 0.996088i \(-0.528166\pi\)
−0.0883715 + 0.996088i \(0.528166\pi\)
\(192\) 0 0
\(193\) −9.67501 −0.696423 −0.348211 0.937416i \(-0.613211\pi\)
−0.348211 + 0.937416i \(0.613211\pi\)
\(194\) −6.98627 −0.501585
\(195\) 0 0
\(196\) 1.36176 0.0972686
\(197\) 17.4931 1.24633 0.623167 0.782089i \(-0.285846\pi\)
0.623167 + 0.782089i \(0.285846\pi\)
\(198\) 0 0
\(199\) −25.2397 −1.78920 −0.894598 0.446873i \(-0.852538\pi\)
−0.894598 + 0.446873i \(0.852538\pi\)
\(200\) −2.43531 −0.172202
\(201\) 0 0
\(202\) 1.20293 0.0846379
\(203\) −15.4648 −1.08541
\(204\) 0 0
\(205\) 3.29554 0.230171
\(206\) 16.8779 1.17594
\(207\) 0 0
\(208\) 4.89167 0.339176
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −14.8338 −1.02120 −0.510602 0.859817i \(-0.670577\pi\)
−0.510602 + 0.859817i \(0.670577\pi\)
\(212\) −8.32698 −0.571899
\(213\) 0 0
\(214\) 8.03677 0.549383
\(215\) −17.1176 −1.16741
\(216\) 0 0
\(217\) −21.5005 −1.45955
\(218\) 11.5299 0.780904
\(219\) 0 0
\(220\) 1.60147 0.107971
\(221\) 28.1103 1.89090
\(222\) 0 0
\(223\) 11.4931 0.769637 0.384819 0.922992i \(-0.374264\pi\)
0.384819 + 0.922992i \(0.374264\pi\)
\(224\) 2.89167 0.193208
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) −8.73284 −0.579619 −0.289810 0.957084i \(-0.593592\pi\)
−0.289810 + 0.957084i \(0.593592\pi\)
\(228\) 0 0
\(229\) 7.84117 0.518159 0.259080 0.965856i \(-0.416581\pi\)
0.259080 + 0.965856i \(0.416581\pi\)
\(230\) 12.4059 0.818018
\(231\) 0 0
\(232\) −5.34803 −0.351116
\(233\) 12.5069 0.819352 0.409676 0.912231i \(-0.365642\pi\)
0.409676 + 0.912231i \(0.365642\pi\)
\(234\) 0 0
\(235\) 11.3500 0.740394
\(236\) 2.54364 0.165577
\(237\) 0 0
\(238\) 16.6172 1.07713
\(239\) −24.6245 −1.59283 −0.796414 0.604752i \(-0.793272\pi\)
−0.796414 + 0.604752i \(0.793272\pi\)
\(240\) 0 0
\(241\) 16.0809 1.03586 0.517930 0.855423i \(-0.326703\pi\)
0.517930 + 0.855423i \(0.326703\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 13.4931 0.863810
\(245\) 2.18081 0.139327
\(246\) 0 0
\(247\) −4.89167 −0.311250
\(248\) −7.43531 −0.472143
\(249\) 0 0
\(250\) −11.9074 −0.753089
\(251\) −13.0873 −0.826061 −0.413031 0.910717i \(-0.635530\pi\)
−0.413031 + 0.910717i \(0.635530\pi\)
\(252\) 0 0
\(253\) 7.74657 0.487023
\(254\) −21.2765 −1.33500
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.723522 −0.0451320 −0.0225660 0.999745i \(-0.507184\pi\)
−0.0225660 + 0.999745i \(0.507184\pi\)
\(258\) 0 0
\(259\) −21.6677 −1.34636
\(260\) 7.83384 0.485834
\(261\) 0 0
\(262\) 3.43531 0.212234
\(263\) −13.7760 −0.849465 −0.424733 0.905319i \(-0.639632\pi\)
−0.424733 + 0.905319i \(0.639632\pi\)
\(264\) 0 0
\(265\) −13.3354 −0.819185
\(266\) −2.89167 −0.177300
\(267\) 0 0
\(268\) −10.3848 −0.634353
\(269\) 19.9579 1.21685 0.608427 0.793610i \(-0.291801\pi\)
0.608427 + 0.793610i \(0.291801\pi\)
\(270\) 0 0
\(271\) 28.7486 1.74635 0.873175 0.487406i \(-0.162057\pi\)
0.873175 + 0.487406i \(0.162057\pi\)
\(272\) 5.74657 0.348437
\(273\) 0 0
\(274\) −13.5877 −0.820865
\(275\) −2.43531 −0.146855
\(276\) 0 0
\(277\) 3.08727 0.185496 0.0927482 0.995690i \(-0.470435\pi\)
0.0927482 + 0.995690i \(0.470435\pi\)
\(278\) 3.19560 0.191660
\(279\) 0 0
\(280\) 4.63091 0.276750
\(281\) −9.09460 −0.542538 −0.271269 0.962504i \(-0.587443\pi\)
−0.271269 + 0.962504i \(0.587443\pi\)
\(282\) 0 0
\(283\) 13.1451 0.781395 0.390698 0.920519i \(-0.372234\pi\)
0.390698 + 0.920519i \(0.372234\pi\)
\(284\) −14.9789 −0.888837
\(285\) 0 0
\(286\) 4.89167 0.289251
\(287\) 5.95056 0.351251
\(288\) 0 0
\(289\) 16.0230 0.942532
\(290\) −8.56469 −0.502936
\(291\) 0 0
\(292\) −3.74657 −0.219251
\(293\) −3.10833 −0.181591 −0.0907953 0.995870i \(-0.528941\pi\)
−0.0907953 + 0.995870i \(0.528941\pi\)
\(294\) 0 0
\(295\) 4.07355 0.237171
\(296\) −7.49314 −0.435530
\(297\) 0 0
\(298\) 12.0735 0.699402
\(299\) 37.8937 2.19145
\(300\) 0 0
\(301\) −30.9083 −1.78153
\(302\) −4.91273 −0.282696
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 21.6088 1.23732
\(306\) 0 0
\(307\) 2.18920 0.124944 0.0624722 0.998047i \(-0.480102\pi\)
0.0624722 + 0.998047i \(0.480102\pi\)
\(308\) 2.89167 0.164768
\(309\) 0 0
\(310\) −11.9074 −0.676294
\(311\) −3.92112 −0.222346 −0.111173 0.993801i \(-0.535461\pi\)
−0.111173 + 0.993801i \(0.535461\pi\)
\(312\) 0 0
\(313\) −21.7118 −1.22722 −0.613611 0.789608i \(-0.710284\pi\)
−0.613611 + 0.789608i \(0.710284\pi\)
\(314\) 8.00733 0.451880
\(315\) 0 0
\(316\) −8.69607 −0.489192
\(317\) −6.90739 −0.387958 −0.193979 0.981006i \(-0.562139\pi\)
−0.193979 + 0.981006i \(0.562139\pi\)
\(318\) 0 0
\(319\) −5.34803 −0.299432
\(320\) 1.60147 0.0895246
\(321\) 0 0
\(322\) 22.4005 1.24833
\(323\) −5.74657 −0.319748
\(324\) 0 0
\(325\) −11.9127 −0.660799
\(326\) 1.88434 0.104364
\(327\) 0 0
\(328\) 2.05783 0.113625
\(329\) 20.4941 1.12987
\(330\) 0 0
\(331\) 32.1030 1.76454 0.882270 0.470744i \(-0.156014\pi\)
0.882270 + 0.470744i \(0.156014\pi\)
\(332\) 6.10833 0.335238
\(333\) 0 0
\(334\) 4.98627 0.272837
\(335\) −16.6309 −0.908644
\(336\) 0 0
\(337\) −1.55096 −0.0844864 −0.0422432 0.999107i \(-0.513450\pi\)
−0.0422432 + 0.999107i \(0.513450\pi\)
\(338\) 10.9284 0.594429
\(339\) 0 0
\(340\) 9.20293 0.499099
\(341\) −7.43531 −0.402645
\(342\) 0 0
\(343\) −16.3039 −0.880330
\(344\) −10.6887 −0.576298
\(345\) 0 0
\(346\) −6.51419 −0.350205
\(347\) 0.506864 0.0272099 0.0136049 0.999907i \(-0.495669\pi\)
0.0136049 + 0.999907i \(0.495669\pi\)
\(348\) 0 0
\(349\) 10.8117 0.578738 0.289369 0.957218i \(-0.406554\pi\)
0.289369 + 0.957218i \(0.406554\pi\)
\(350\) −7.04211 −0.376417
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −27.0966 −1.44221 −0.721103 0.692828i \(-0.756365\pi\)
−0.721103 + 0.692828i \(0.756365\pi\)
\(354\) 0 0
\(355\) −23.9883 −1.27316
\(356\) −3.20293 −0.169755
\(357\) 0 0
\(358\) 5.55096 0.293378
\(359\) 20.7486 1.09507 0.547534 0.836784i \(-0.315567\pi\)
0.547534 + 0.836784i \(0.315567\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 1.88434 0.0990389
\(363\) 0 0
\(364\) 14.1451 0.741405
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 25.6402 1.33841 0.669205 0.743078i \(-0.266635\pi\)
0.669205 + 0.743078i \(0.266635\pi\)
\(368\) 7.74657 0.403818
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) −24.0789 −1.25011
\(372\) 0 0
\(373\) 25.2049 1.30506 0.652531 0.757762i \(-0.273707\pi\)
0.652531 + 0.757762i \(0.273707\pi\)
\(374\) 5.74657 0.297148
\(375\) 0 0
\(376\) 7.08727 0.365498
\(377\) −26.1608 −1.34735
\(378\) 0 0
\(379\) 3.47208 0.178349 0.0891744 0.996016i \(-0.471577\pi\)
0.0891744 + 0.996016i \(0.471577\pi\)
\(380\) −1.60147 −0.0821534
\(381\) 0 0
\(382\) −2.44264 −0.124976
\(383\) −23.1176 −1.18126 −0.590628 0.806944i \(-0.701120\pi\)
−0.590628 + 0.806944i \(0.701120\pi\)
\(384\) 0 0
\(385\) 4.63091 0.236013
\(386\) −9.67501 −0.492445
\(387\) 0 0
\(388\) −6.98627 −0.354674
\(389\) 26.7623 1.35690 0.678451 0.734646i \(-0.262652\pi\)
0.678451 + 0.734646i \(0.262652\pi\)
\(390\) 0 0
\(391\) 44.5162 2.25128
\(392\) 1.36176 0.0687793
\(393\) 0 0
\(394\) 17.4931 0.881291
\(395\) −13.9265 −0.700716
\(396\) 0 0
\(397\) −31.1030 −1.56101 −0.780507 0.625147i \(-0.785039\pi\)
−0.780507 + 0.625147i \(0.785039\pi\)
\(398\) −25.2397 −1.26515
\(399\) 0 0
\(400\) −2.43531 −0.121765
\(401\) −29.3500 −1.46567 −0.732835 0.680406i \(-0.761803\pi\)
−0.732835 + 0.680406i \(0.761803\pi\)
\(402\) 0 0
\(403\) −36.3711 −1.81177
\(404\) 1.20293 0.0598481
\(405\) 0 0
\(406\) −15.4648 −0.767503
\(407\) −7.49314 −0.371421
\(408\) 0 0
\(409\) 8.58774 0.424636 0.212318 0.977201i \(-0.431899\pi\)
0.212318 + 0.977201i \(0.431899\pi\)
\(410\) 3.29554 0.162755
\(411\) 0 0
\(412\) 16.8779 0.831517
\(413\) 7.35536 0.361934
\(414\) 0 0
\(415\) 9.78228 0.480193
\(416\) 4.89167 0.239834
\(417\) 0 0
\(418\) −1.00000 −0.0489116
\(419\) −7.59414 −0.370998 −0.185499 0.982644i \(-0.559390\pi\)
−0.185499 + 0.982644i \(0.559390\pi\)
\(420\) 0 0
\(421\) 8.76030 0.426951 0.213475 0.976948i \(-0.431522\pi\)
0.213475 + 0.976948i \(0.431522\pi\)
\(422\) −14.8338 −0.722100
\(423\) 0 0
\(424\) −8.32698 −0.404394
\(425\) −13.9947 −0.678841
\(426\) 0 0
\(427\) 39.0177 1.88820
\(428\) 8.03677 0.388472
\(429\) 0 0
\(430\) −17.1176 −0.825486
\(431\) 33.6677 1.62172 0.810858 0.585243i \(-0.199001\pi\)
0.810858 + 0.585243i \(0.199001\pi\)
\(432\) 0 0
\(433\) 30.5383 1.46758 0.733789 0.679378i \(-0.237750\pi\)
0.733789 + 0.679378i \(0.237750\pi\)
\(434\) −21.5005 −1.03206
\(435\) 0 0
\(436\) 11.5299 0.552183
\(437\) −7.74657 −0.370569
\(438\) 0 0
\(439\) −12.5069 −0.596920 −0.298460 0.954422i \(-0.596473\pi\)
−0.298460 + 0.954422i \(0.596473\pi\)
\(440\) 1.60147 0.0763469
\(441\) 0 0
\(442\) 28.1103 1.33707
\(443\) 17.6677 0.839417 0.419709 0.907659i \(-0.362132\pi\)
0.419709 + 0.907659i \(0.362132\pi\)
\(444\) 0 0
\(445\) −5.12938 −0.243156
\(446\) 11.4931 0.544216
\(447\) 0 0
\(448\) 2.89167 0.136619
\(449\) 17.7098 0.835777 0.417888 0.908498i \(-0.362770\pi\)
0.417888 + 0.908498i \(0.362770\pi\)
\(450\) 0 0
\(451\) 2.05783 0.0968994
\(452\) 8.00000 0.376288
\(453\) 0 0
\(454\) −8.73284 −0.409853
\(455\) 22.6529 1.06198
\(456\) 0 0
\(457\) −24.8064 −1.16039 −0.580197 0.814476i \(-0.697024\pi\)
−0.580197 + 0.814476i \(0.697024\pi\)
\(458\) 7.84117 0.366394
\(459\) 0 0
\(460\) 12.4059 0.578426
\(461\) 2.98627 0.139085 0.0695423 0.997579i \(-0.477846\pi\)
0.0695423 + 0.997579i \(0.477846\pi\)
\(462\) 0 0
\(463\) −39.5667 −1.83882 −0.919410 0.393301i \(-0.871333\pi\)
−0.919410 + 0.393301i \(0.871333\pi\)
\(464\) −5.34803 −0.248276
\(465\) 0 0
\(466\) 12.5069 0.579369
\(467\) −4.46475 −0.206604 −0.103302 0.994650i \(-0.532941\pi\)
−0.103302 + 0.994650i \(0.532941\pi\)
\(468\) 0 0
\(469\) −30.0294 −1.38663
\(470\) 11.3500 0.523538
\(471\) 0 0
\(472\) 2.54364 0.117080
\(473\) −10.6887 −0.491469
\(474\) 0 0
\(475\) 2.43531 0.111740
\(476\) 16.6172 0.761647
\(477\) 0 0
\(478\) −24.6245 −1.12630
\(479\) 20.8863 0.954321 0.477161 0.878816i \(-0.341666\pi\)
0.477161 + 0.878816i \(0.341666\pi\)
\(480\) 0 0
\(481\) −36.6540 −1.67128
\(482\) 16.0809 0.732464
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −11.1883 −0.508033
\(486\) 0 0
\(487\) 15.2838 0.692575 0.346288 0.938128i \(-0.387442\pi\)
0.346288 + 0.938128i \(0.387442\pi\)
\(488\) 13.4931 0.610806
\(489\) 0 0
\(490\) 2.18081 0.0985191
\(491\) −3.31965 −0.149814 −0.0749069 0.997191i \(-0.523866\pi\)
−0.0749069 + 0.997191i \(0.523866\pi\)
\(492\) 0 0
\(493\) −30.7328 −1.38414
\(494\) −4.89167 −0.220087
\(495\) 0 0
\(496\) −7.43531 −0.333855
\(497\) −43.3142 −1.94291
\(498\) 0 0
\(499\) −2.07355 −0.0928247 −0.0464124 0.998922i \(-0.514779\pi\)
−0.0464124 + 0.998922i \(0.514779\pi\)
\(500\) −11.9074 −0.532515
\(501\) 0 0
\(502\) −13.0873 −0.584114
\(503\) 1.11672 0.0497921 0.0248960 0.999690i \(-0.492075\pi\)
0.0248960 + 0.999690i \(0.492075\pi\)
\(504\) 0 0
\(505\) 1.92645 0.0857260
\(506\) 7.74657 0.344377
\(507\) 0 0
\(508\) −21.2765 −0.943991
\(509\) 38.2481 1.69532 0.847659 0.530542i \(-0.178012\pi\)
0.847659 + 0.530542i \(0.178012\pi\)
\(510\) 0 0
\(511\) −10.8338 −0.479261
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −0.723522 −0.0319132
\(515\) 27.0294 1.19106
\(516\) 0 0
\(517\) 7.08727 0.311698
\(518\) −21.6677 −0.952023
\(519\) 0 0
\(520\) 7.83384 0.343537
\(521\) −10.8853 −0.476892 −0.238446 0.971156i \(-0.576638\pi\)
−0.238446 + 0.971156i \(0.576638\pi\)
\(522\) 0 0
\(523\) −15.7191 −0.687349 −0.343674 0.939089i \(-0.611672\pi\)
−0.343674 + 0.939089i \(0.611672\pi\)
\(524\) 3.43531 0.150072
\(525\) 0 0
\(526\) −13.7760 −0.600663
\(527\) −42.7275 −1.86124
\(528\) 0 0
\(529\) 37.0093 1.60910
\(530\) −13.3354 −0.579251
\(531\) 0 0
\(532\) −2.89167 −0.125370
\(533\) 10.0662 0.436016
\(534\) 0 0
\(535\) 12.8706 0.556445
\(536\) −10.3848 −0.448555
\(537\) 0 0
\(538\) 19.9579 0.860446
\(539\) 1.36176 0.0586552
\(540\) 0 0
\(541\) −26.4373 −1.13663 −0.568314 0.822812i \(-0.692404\pi\)
−0.568314 + 0.822812i \(0.692404\pi\)
\(542\) 28.7486 1.23486
\(543\) 0 0
\(544\) 5.74657 0.246382
\(545\) 18.4648 0.790943
\(546\) 0 0
\(547\) −24.9588 −1.06716 −0.533581 0.845749i \(-0.679154\pi\)
−0.533581 + 0.845749i \(0.679154\pi\)
\(548\) −13.5877 −0.580439
\(549\) 0 0
\(550\) −2.43531 −0.103842
\(551\) 5.34803 0.227834
\(552\) 0 0
\(553\) −25.1462 −1.06932
\(554\) 3.08727 0.131166
\(555\) 0 0
\(556\) 3.19560 0.135524
\(557\) −8.30486 −0.351888 −0.175944 0.984400i \(-0.556298\pi\)
−0.175944 + 0.984400i \(0.556298\pi\)
\(558\) 0 0
\(559\) −52.2858 −2.21145
\(560\) 4.63091 0.195692
\(561\) 0 0
\(562\) −9.09460 −0.383633
\(563\) −41.6402 −1.75493 −0.877463 0.479644i \(-0.840766\pi\)
−0.877463 + 0.479644i \(0.840766\pi\)
\(564\) 0 0
\(565\) 12.8117 0.538993
\(566\) 13.1451 0.552530
\(567\) 0 0
\(568\) −14.9789 −0.628503
\(569\) 14.9138 0.625219 0.312609 0.949882i \(-0.398797\pi\)
0.312609 + 0.949882i \(0.398797\pi\)
\(570\) 0 0
\(571\) −23.0020 −0.962603 −0.481302 0.876555i \(-0.659836\pi\)
−0.481302 + 0.876555i \(0.659836\pi\)
\(572\) 4.89167 0.204531
\(573\) 0 0
\(574\) 5.95056 0.248372
\(575\) −18.8653 −0.786737
\(576\) 0 0
\(577\) −33.6613 −1.40134 −0.700669 0.713487i \(-0.747115\pi\)
−0.700669 + 0.713487i \(0.747115\pi\)
\(578\) 16.0230 0.666471
\(579\) 0 0
\(580\) −8.56469 −0.355629
\(581\) 17.6633 0.732796
\(582\) 0 0
\(583\) −8.32698 −0.344868
\(584\) −3.74657 −0.155034
\(585\) 0 0
\(586\) −3.10833 −0.128404
\(587\) −4.00000 −0.165098 −0.0825488 0.996587i \(-0.526306\pi\)
−0.0825488 + 0.996587i \(0.526306\pi\)
\(588\) 0 0
\(589\) 7.43531 0.306367
\(590\) 4.07355 0.167705
\(591\) 0 0
\(592\) −7.49314 −0.307966
\(593\) 30.9588 1.27133 0.635663 0.771967i \(-0.280727\pi\)
0.635663 + 0.771967i \(0.280727\pi\)
\(594\) 0 0
\(595\) 26.6118 1.09098
\(596\) 12.0735 0.494552
\(597\) 0 0
\(598\) 37.8937 1.54959
\(599\) −3.93378 −0.160730 −0.0803650 0.996766i \(-0.525609\pi\)
−0.0803650 + 0.996766i \(0.525609\pi\)
\(600\) 0 0
\(601\) 23.1451 0.944108 0.472054 0.881570i \(-0.343513\pi\)
0.472054 + 0.881570i \(0.343513\pi\)
\(602\) −30.9083 −1.25973
\(603\) 0 0
\(604\) −4.91273 −0.199896
\(605\) 1.60147 0.0651088
\(606\) 0 0
\(607\) −1.78334 −0.0723836 −0.0361918 0.999345i \(-0.511523\pi\)
−0.0361918 + 0.999345i \(0.511523\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 21.6088 0.874914
\(611\) 34.6686 1.40254
\(612\) 0 0
\(613\) −33.0598 −1.33527 −0.667637 0.744487i \(-0.732694\pi\)
−0.667637 + 0.744487i \(0.732694\pi\)
\(614\) 2.18920 0.0883491
\(615\) 0 0
\(616\) 2.89167 0.116509
\(617\) 21.8412 0.879292 0.439646 0.898171i \(-0.355104\pi\)
0.439646 + 0.898171i \(0.355104\pi\)
\(618\) 0 0
\(619\) −46.2206 −1.85776 −0.928882 0.370375i \(-0.879229\pi\)
−0.928882 + 0.370375i \(0.879229\pi\)
\(620\) −11.9074 −0.478212
\(621\) 0 0
\(622\) −3.92112 −0.157222
\(623\) −9.26182 −0.371067
\(624\) 0 0
\(625\) −6.89273 −0.275709
\(626\) −21.7118 −0.867778
\(627\) 0 0
\(628\) 8.00733 0.319527
\(629\) −43.0598 −1.71691
\(630\) 0 0
\(631\) 0.317659 0.0126458 0.00632291 0.999980i \(-0.497987\pi\)
0.00632291 + 0.999980i \(0.497987\pi\)
\(632\) −8.69607 −0.345911
\(633\) 0 0
\(634\) −6.90739 −0.274327
\(635\) −34.0735 −1.35217
\(636\) 0 0
\(637\) 6.66129 0.263930
\(638\) −5.34803 −0.211731
\(639\) 0 0
\(640\) 1.60147 0.0633035
\(641\) 41.5246 1.64012 0.820061 0.572276i \(-0.193939\pi\)
0.820061 + 0.572276i \(0.193939\pi\)
\(642\) 0 0
\(643\) 7.26182 0.286378 0.143189 0.989695i \(-0.454264\pi\)
0.143189 + 0.989695i \(0.454264\pi\)
\(644\) 22.4005 0.882704
\(645\) 0 0
\(646\) −5.74657 −0.226096
\(647\) −29.0819 −1.14333 −0.571664 0.820487i \(-0.693702\pi\)
−0.571664 + 0.820487i \(0.693702\pi\)
\(648\) 0 0
\(649\) 2.54364 0.0998465
\(650\) −11.9127 −0.467256
\(651\) 0 0
\(652\) 1.88434 0.0737966
\(653\) −12.6529 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(654\) 0 0
\(655\) 5.50153 0.214962
\(656\) 2.05783 0.0803447
\(657\) 0 0
\(658\) 20.4941 0.798942
\(659\) −49.4878 −1.92777 −0.963886 0.266317i \(-0.914193\pi\)
−0.963886 + 0.266317i \(0.914193\pi\)
\(660\) 0 0
\(661\) 4.94950 0.192513 0.0962566 0.995357i \(-0.469313\pi\)
0.0962566 + 0.995357i \(0.469313\pi\)
\(662\) 32.1030 1.24772
\(663\) 0 0
\(664\) 6.10833 0.237049
\(665\) −4.63091 −0.179579
\(666\) 0 0
\(667\) −41.4289 −1.60413
\(668\) 4.98627 0.192925
\(669\) 0 0
\(670\) −16.6309 −0.642508
\(671\) 13.4931 0.520897
\(672\) 0 0
\(673\) 21.9001 0.844185 0.422093 0.906553i \(-0.361296\pi\)
0.422093 + 0.906553i \(0.361296\pi\)
\(674\) −1.55096 −0.0597409
\(675\) 0 0
\(676\) 10.9284 0.420325
\(677\) −26.4353 −1.01599 −0.507996 0.861360i \(-0.669613\pi\)
−0.507996 + 0.861360i \(0.669613\pi\)
\(678\) 0 0
\(679\) −20.2020 −0.775282
\(680\) 9.20293 0.352916
\(681\) 0 0
\(682\) −7.43531 −0.284713
\(683\) −9.82545 −0.375960 −0.187980 0.982173i \(-0.560194\pi\)
−0.187980 + 0.982173i \(0.560194\pi\)
\(684\) 0 0
\(685\) −21.7603 −0.831418
\(686\) −16.3039 −0.622487
\(687\) 0 0
\(688\) −10.6887 −0.407504
\(689\) −40.7328 −1.55180
\(690\) 0 0
\(691\) −19.8255 −0.754196 −0.377098 0.926173i \(-0.623078\pi\)
−0.377098 + 0.926173i \(0.623078\pi\)
\(692\) −6.51419 −0.247632
\(693\) 0 0
\(694\) 0.506864 0.0192403
\(695\) 5.11765 0.194123
\(696\) 0 0
\(697\) 11.8255 0.447921
\(698\) 10.8117 0.409230
\(699\) 0 0
\(700\) −7.04211 −0.266167
\(701\) 10.7550 0.406209 0.203105 0.979157i \(-0.434897\pi\)
0.203105 + 0.979157i \(0.434897\pi\)
\(702\) 0 0
\(703\) 7.49314 0.282609
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −27.0966 −1.01979
\(707\) 3.47848 0.130822
\(708\) 0 0
\(709\) −1.82651 −0.0685962 −0.0342981 0.999412i \(-0.510920\pi\)
−0.0342981 + 0.999412i \(0.510920\pi\)
\(710\) −23.9883 −0.900264
\(711\) 0 0
\(712\) −3.20293 −0.120035
\(713\) −57.5981 −2.15707
\(714\) 0 0
\(715\) 7.83384 0.292969
\(716\) 5.55096 0.207449
\(717\) 0 0
\(718\) 20.7486 0.774329
\(719\) 4.65929 0.173762 0.0868812 0.996219i \(-0.472310\pi\)
0.0868812 + 0.996219i \(0.472310\pi\)
\(720\) 0 0
\(721\) 48.8055 1.81761
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 1.88434 0.0700311
\(725\) 13.0241 0.483703
\(726\) 0 0
\(727\) 19.9358 0.739377 0.369688 0.929156i \(-0.379464\pi\)
0.369688 + 0.929156i \(0.379464\pi\)
\(728\) 14.1451 0.524252
\(729\) 0 0
\(730\) −6.00000 −0.222070
\(731\) −61.4236 −2.27183
\(732\) 0 0
\(733\) 13.7687 0.508558 0.254279 0.967131i \(-0.418162\pi\)
0.254279 + 0.967131i \(0.418162\pi\)
\(734\) 25.6402 0.946398
\(735\) 0 0
\(736\) 7.74657 0.285542
\(737\) −10.3848 −0.382529
\(738\) 0 0
\(739\) 22.4867 0.827188 0.413594 0.910461i \(-0.364273\pi\)
0.413594 + 0.910461i \(0.364273\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) −24.0789 −0.883964
\(743\) 50.6540 1.85831 0.929157 0.369686i \(-0.120535\pi\)
0.929157 + 0.369686i \(0.120535\pi\)
\(744\) 0 0
\(745\) 19.3354 0.708393
\(746\) 25.2049 0.922818
\(747\) 0 0
\(748\) 5.74657 0.210115
\(749\) 23.2397 0.849160
\(750\) 0 0
\(751\) −38.9127 −1.41995 −0.709973 0.704229i \(-0.751293\pi\)
−0.709973 + 0.704229i \(0.751293\pi\)
\(752\) 7.08727 0.258446
\(753\) 0 0
\(754\) −26.1608 −0.952721
\(755\) −7.86756 −0.286330
\(756\) 0 0
\(757\) −20.5877 −0.748274 −0.374137 0.927373i \(-0.622061\pi\)
−0.374137 + 0.927373i \(0.622061\pi\)
\(758\) 3.47208 0.126112
\(759\) 0 0
\(760\) −1.60147 −0.0580913
\(761\) −10.6025 −0.384341 −0.192171 0.981362i \(-0.561553\pi\)
−0.192171 + 0.981362i \(0.561553\pi\)
\(762\) 0 0
\(763\) 33.3407 1.20701
\(764\) −2.44264 −0.0883715
\(765\) 0 0
\(766\) −23.1176 −0.835275
\(767\) 12.4426 0.449278
\(768\) 0 0
\(769\) −8.77495 −0.316433 −0.158216 0.987404i \(-0.550574\pi\)
−0.158216 + 0.987404i \(0.550574\pi\)
\(770\) 4.63091 0.166886
\(771\) 0 0
\(772\) −9.67501 −0.348211
\(773\) 46.8653 1.68563 0.842813 0.538206i \(-0.180898\pi\)
0.842813 + 0.538206i \(0.180898\pi\)
\(774\) 0 0
\(775\) 18.1073 0.650432
\(776\) −6.98627 −0.250793
\(777\) 0 0
\(778\) 26.7623 0.959474
\(779\) −2.05783 −0.0737294
\(780\) 0 0
\(781\) −14.9789 −0.535989
\(782\) 44.5162 1.59190
\(783\) 0 0
\(784\) 1.36176 0.0486343
\(785\) 12.8235 0.457689
\(786\) 0 0
\(787\) −27.4143 −0.977213 −0.488606 0.872504i \(-0.662495\pi\)
−0.488606 + 0.872504i \(0.662495\pi\)
\(788\) 17.4931 0.623167
\(789\) 0 0
\(790\) −13.9265 −0.495481
\(791\) 23.1334 0.822528
\(792\) 0 0
\(793\) 66.0040 2.34387
\(794\) −31.1030 −1.10380
\(795\) 0 0
\(796\) −25.2397 −0.894598
\(797\) 9.16616 0.324682 0.162341 0.986735i \(-0.448096\pi\)
0.162341 + 0.986735i \(0.448096\pi\)
\(798\) 0 0
\(799\) 40.7275 1.44084
\(800\) −2.43531 −0.0861011
\(801\) 0 0
\(802\) −29.3500 −1.03639
\(803\) −3.74657 −0.132214
\(804\) 0 0
\(805\) 35.8737 1.26438
\(806\) −36.3711 −1.28112
\(807\) 0 0
\(808\) 1.20293 0.0423190
\(809\) −48.0829 −1.69050 −0.845252 0.534368i \(-0.820550\pi\)
−0.845252 + 0.534368i \(0.820550\pi\)
\(810\) 0 0
\(811\) −2.67395 −0.0938951 −0.0469475 0.998897i \(-0.514949\pi\)
−0.0469475 + 0.998897i \(0.514949\pi\)
\(812\) −15.4648 −0.542706
\(813\) 0 0
\(814\) −7.49314 −0.262634
\(815\) 3.01771 0.105706
\(816\) 0 0
\(817\) 10.6887 0.373952
\(818\) 8.58774 0.300263
\(819\) 0 0
\(820\) 3.29554 0.115085
\(821\) −29.5078 −1.02983 −0.514915 0.857242i \(-0.672176\pi\)
−0.514915 + 0.857242i \(0.672176\pi\)
\(822\) 0 0
\(823\) −2.39654 −0.0835382 −0.0417691 0.999127i \(-0.513299\pi\)
−0.0417691 + 0.999127i \(0.513299\pi\)
\(824\) 16.8779 0.587971
\(825\) 0 0
\(826\) 7.35536 0.255926
\(827\) −7.78868 −0.270839 −0.135419 0.990788i \(-0.543238\pi\)
−0.135419 + 0.990788i \(0.543238\pi\)
\(828\) 0 0
\(829\) 13.2818 0.461296 0.230648 0.973037i \(-0.425915\pi\)
0.230648 + 0.973037i \(0.425915\pi\)
\(830\) 9.78228 0.339548
\(831\) 0 0
\(832\) 4.89167 0.169588
\(833\) 7.82545 0.271136
\(834\) 0 0
\(835\) 7.98534 0.276344
\(836\) −1.00000 −0.0345857
\(837\) 0 0
\(838\) −7.59414 −0.262335
\(839\) 33.9063 1.17058 0.585288 0.810825i \(-0.300981\pi\)
0.585288 + 0.810825i \(0.300981\pi\)
\(840\) 0 0
\(841\) −0.398534 −0.0137426
\(842\) 8.76030 0.301900
\(843\) 0 0
\(844\) −14.8338 −0.510602
\(845\) 17.5015 0.602071
\(846\) 0 0
\(847\) 2.89167 0.0993590
\(848\) −8.32698 −0.285950
\(849\) 0 0
\(850\) −13.9947 −0.480013
\(851\) −58.0461 −1.98979
\(852\) 0 0
\(853\) 40.0735 1.37209 0.686046 0.727558i \(-0.259345\pi\)
0.686046 + 0.727558i \(0.259345\pi\)
\(854\) 39.0177 1.33516
\(855\) 0 0
\(856\) 8.03677 0.274691
\(857\) −0.665693 −0.0227396 −0.0113698 0.999935i \(-0.503619\pi\)
−0.0113698 + 0.999935i \(0.503619\pi\)
\(858\) 0 0
\(859\) 13.8990 0.474228 0.237114 0.971482i \(-0.423799\pi\)
0.237114 + 0.971482i \(0.423799\pi\)
\(860\) −17.1176 −0.583707
\(861\) 0 0
\(862\) 33.6677 1.14673
\(863\) 40.3941 1.37503 0.687516 0.726169i \(-0.258701\pi\)
0.687516 + 0.726169i \(0.258701\pi\)
\(864\) 0 0
\(865\) −10.4323 −0.354707
\(866\) 30.5383 1.03773
\(867\) 0 0
\(868\) −21.5005 −0.729773
\(869\) −8.69607 −0.294994
\(870\) 0 0
\(871\) −50.7991 −1.72126
\(872\) 11.5299 0.390452
\(873\) 0 0
\(874\) −7.74657 −0.262032
\(875\) −34.4323 −1.16402
\(876\) 0 0
\(877\) 15.6108 0.527139 0.263569 0.964640i \(-0.415100\pi\)
0.263569 + 0.964640i \(0.415100\pi\)
\(878\) −12.5069 −0.422086
\(879\) 0 0
\(880\) 1.60147 0.0539854
\(881\) −19.9843 −0.673288 −0.336644 0.941632i \(-0.609292\pi\)
−0.336644 + 0.941632i \(0.609292\pi\)
\(882\) 0 0
\(883\) 20.2167 0.680345 0.340172 0.940363i \(-0.389515\pi\)
0.340172 + 0.940363i \(0.389515\pi\)
\(884\) 28.1103 0.945452
\(885\) 0 0
\(886\) 17.6677 0.593557
\(887\) −20.1471 −0.676473 −0.338237 0.941061i \(-0.609830\pi\)
−0.338237 + 0.941061i \(0.609830\pi\)
\(888\) 0 0
\(889\) −61.5246 −2.06347
\(890\) −5.12938 −0.171937
\(891\) 0 0
\(892\) 11.4931 0.384819
\(893\) −7.08727 −0.237167
\(894\) 0 0
\(895\) 8.88968 0.297149
\(896\) 2.89167 0.0966039
\(897\) 0 0
\(898\) 17.7098 0.590984
\(899\) 39.7643 1.32621
\(900\) 0 0
\(901\) −47.8516 −1.59417
\(902\) 2.05783 0.0685182
\(903\) 0 0
\(904\) 8.00000 0.266076
\(905\) 3.01771 0.100312
\(906\) 0 0
\(907\) 4.57109 0.151781 0.0758903 0.997116i \(-0.475820\pi\)
0.0758903 + 0.997116i \(0.475820\pi\)
\(908\) −8.73284 −0.289810
\(909\) 0 0
\(910\) 22.6529 0.750936
\(911\) −51.6402 −1.71092 −0.855459 0.517871i \(-0.826725\pi\)
−0.855459 + 0.517871i \(0.826725\pi\)
\(912\) 0 0
\(913\) 6.10833 0.202156
\(914\) −24.8064 −0.820522
\(915\) 0 0
\(916\) 7.84117 0.259080
\(917\) 9.93378 0.328042
\(918\) 0 0
\(919\) −48.8412 −1.61112 −0.805561 0.592513i \(-0.798136\pi\)
−0.805561 + 0.592513i \(0.798136\pi\)
\(920\) 12.4059 0.409009
\(921\) 0 0
\(922\) 2.98627 0.0983477
\(923\) −73.2721 −2.41178
\(924\) 0 0
\(925\) 18.2481 0.599994
\(926\) −39.5667 −1.30024
\(927\) 0 0
\(928\) −5.34803 −0.175558
\(929\) 57.8819 1.89904 0.949522 0.313700i \(-0.101569\pi\)
0.949522 + 0.313700i \(0.101569\pi\)
\(930\) 0 0
\(931\) −1.36176 −0.0446299
\(932\) 12.5069 0.409676
\(933\) 0 0
\(934\) −4.46475 −0.146091
\(935\) 9.20293 0.300968
\(936\) 0 0
\(937\) −57.6496 −1.88333 −0.941664 0.336553i \(-0.890739\pi\)
−0.941664 + 0.336553i \(0.890739\pi\)
\(938\) −30.0294 −0.980496
\(939\) 0 0
\(940\) 11.3500 0.370197
\(941\) 15.0966 0.492135 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(942\) 0 0
\(943\) 15.9411 0.519114
\(944\) 2.54364 0.0827883
\(945\) 0 0
\(946\) −10.6887 −0.347521
\(947\) −33.3775 −1.08462 −0.542311 0.840178i \(-0.682451\pi\)
−0.542311 + 0.840178i \(0.682451\pi\)
\(948\) 0 0
\(949\) −18.3270 −0.594919
\(950\) 2.43531 0.0790118
\(951\) 0 0
\(952\) 16.6172 0.538566
\(953\) 12.4794 0.404248 0.202124 0.979360i \(-0.435216\pi\)
0.202124 + 0.979360i \(0.435216\pi\)
\(954\) 0 0
\(955\) −3.91180 −0.126583
\(956\) −24.6245 −0.796414
\(957\) 0 0
\(958\) 20.8863 0.674807
\(959\) −39.2913 −1.26878
\(960\) 0 0
\(961\) 24.2838 0.783349
\(962\) −36.6540 −1.18177
\(963\) 0 0
\(964\) 16.0809 0.517930
\(965\) −15.4942 −0.498776
\(966\) 0 0
\(967\) −12.5804 −0.404559 −0.202279 0.979328i \(-0.564835\pi\)
−0.202279 + 0.979328i \(0.564835\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −11.1883 −0.359234
\(971\) 1.79067 0.0574653 0.0287327 0.999587i \(-0.490853\pi\)
0.0287327 + 0.999587i \(0.490853\pi\)
\(972\) 0 0
\(973\) 9.24063 0.296241
\(974\) 15.2838 0.489725
\(975\) 0 0
\(976\) 13.4931 0.431905
\(977\) −6.40586 −0.204942 −0.102471 0.994736i \(-0.532675\pi\)
−0.102471 + 0.994736i \(0.532675\pi\)
\(978\) 0 0
\(979\) −3.20293 −0.102366
\(980\) 2.18081 0.0696635
\(981\) 0 0
\(982\) −3.31965 −0.105934
\(983\) 20.5647 0.655912 0.327956 0.944693i \(-0.393640\pi\)
0.327956 + 0.944693i \(0.393640\pi\)
\(984\) 0 0
\(985\) 28.0147 0.892621
\(986\) −30.7328 −0.978733
\(987\) 0 0
\(988\) −4.89167 −0.155625
\(989\) −82.8011 −2.63292
\(990\) 0 0
\(991\) −29.0166 −0.921744 −0.460872 0.887467i \(-0.652463\pi\)
−0.460872 + 0.887467i \(0.652463\pi\)
\(992\) −7.43531 −0.236071
\(993\) 0 0
\(994\) −43.3142 −1.37384
\(995\) −40.4205 −1.28142
\(996\) 0 0
\(997\) 42.3638 1.34167 0.670837 0.741605i \(-0.265935\pi\)
0.670837 + 0.741605i \(0.265935\pi\)
\(998\) −2.07355 −0.0656370
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.a.bg.1.2 3
3.2 odd 2 418.2.a.g.1.1 3
12.11 even 2 3344.2.a.q.1.3 3
33.32 even 2 4598.2.a.bo.1.1 3
57.56 even 2 7942.2.a.bi.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.g.1.1 3 3.2 odd 2
3344.2.a.q.1.3 3 12.11 even 2
3762.2.a.bg.1.2 3 1.1 even 1 trivial
4598.2.a.bo.1.1 3 33.32 even 2
7942.2.a.bi.1.3 3 57.56 even 2