Properties

Label 3762.2.a.be
Level $3762$
Weight $2$
Character orbit 3762.a
Self dual yes
Analytic conductor $30.040$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3762,2,Mod(1,3762)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3762.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3762, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-1,0,0,-3,0,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.0397212404\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1254)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta_1 q^{5} + (\beta_{2} - \beta_1) q^{7} - q^{8} - \beta_1 q^{10} - q^{11} + ( - \beta_{2} + \beta_1) q^{14} + q^{16} + ( - \beta_1 - 2) q^{17} + q^{19} + \beta_1 q^{20} + q^{22}+ \cdots + ( - 2 \beta_{2} - 2 \beta_1 - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - q^{5} - 3 q^{8} + q^{10} - 3 q^{11} + 3 q^{16} - 5 q^{17} + 3 q^{19} - q^{20} + 3 q^{22} - 8 q^{23} + 10 q^{25} + 9 q^{29} + 8 q^{31} - 3 q^{32} + 5 q^{34} - 22 q^{35} - 9 q^{37}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.254102
−1.86081
2.11491
−1.00000 0 1.00000 −3.18953 0 0.508203 −1.00000 0 3.18953
1.2 −1.00000 0 1.00000 −1.39821 0 3.72161 −1.00000 0 1.39821
1.3 −1.00000 0 1.00000 3.58774 0 −4.22982 −1.00000 0 −3.58774
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3762.2.a.be 3
3.b odd 2 1 1254.2.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1254.2.a.q 3 3.b odd 2 1
3762.2.a.be 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3762))\):

\( T_{5}^{3} + T_{5}^{2} - 12T_{5} - 16 \) Copy content Toggle raw display
\( T_{7}^{3} - 16T_{7} + 8 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{3} + 5T_{17}^{2} - 4T_{17} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} + \cdots - 16 \) Copy content Toggle raw display
$7$ \( T^{3} - 16T + 8 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 5 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$29$ \( T^{3} - 9 T^{2} + \cdots + 676 \) Copy content Toggle raw display
$31$ \( T^{3} - 8 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + \cdots - 92 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots - 296 \) Copy content Toggle raw display
$43$ \( T^{3} - 7 T^{2} + \cdots + 592 \) Copy content Toggle raw display
$47$ \( T^{3} + 20 T^{2} + \cdots + 112 \) Copy content Toggle raw display
$53$ \( T^{3} - 16 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$59$ \( T^{3} + 8 T^{2} + \cdots - 448 \) Copy content Toggle raw display
$61$ \( T^{3} - 3 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$67$ \( T^{3} - 3 T^{2} + \cdots + 432 \) Copy content Toggle raw display
$71$ \( T^{3} + 14 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$73$ \( T^{3} - 244T - 256 \) Copy content Toggle raw display
$79$ \( T^{3} + 12 T^{2} + \cdots - 1472 \) Copy content Toggle raw display
$83$ \( T^{3} + 26 T^{2} + \cdots + 416 \) Copy content Toggle raw display
$89$ \( T^{3} + 29 T^{2} + \cdots + 796 \) Copy content Toggle raw display
$97$ \( T^{3} + 32 T^{2} + \cdots + 592 \) Copy content Toggle raw display
show more
show less