Properties

Label 3751.1.t.a
Level $3751$
Weight $1$
Character orbit 3751.t
Analytic conductor $1.872$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -31
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3751,1,Mod(2138,3751)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3751, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3751.2138");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3751.t (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.87199286239\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.31.1
Artin image: $S_3\times C_{10}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{30} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{10}^{3} q^{2} - \zeta_{10}^{2} q^{5} - \zeta_{10} q^{7} - \zeta_{10}^{4} q^{8} - \zeta_{10}^{3} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{10}^{3} q^{2} - \zeta_{10}^{2} q^{5} - \zeta_{10} q^{7} - \zeta_{10}^{4} q^{8} - \zeta_{10}^{3} q^{9} - q^{10} + \zeta_{10}^{4} q^{14} - \zeta_{10}^{2} q^{16} - \zeta_{10} q^{18} + \zeta_{10}^{4} q^{19} - \zeta_{10}^{3} q^{31} + \zeta_{10}^{3} q^{35} + \zeta_{10}^{2} q^{38} - \zeta_{10} q^{40} + \zeta_{10}^{4} q^{41} - q^{45} + 2 \zeta_{10}^{4} q^{47} - q^{56} + \zeta_{10} q^{59} - \zeta_{10} q^{62} + \zeta_{10}^{4} q^{63} - \zeta_{10}^{3} q^{64} + 2 q^{67} + \zeta_{10} q^{70} - \zeta_{10}^{2} q^{71} - \zeta_{10}^{2} q^{72} + \zeta_{10}^{4} q^{80} - \zeta_{10} q^{81} + \zeta_{10}^{2} q^{82} + \zeta_{10}^{3} q^{90} + 2 \zeta_{10}^{2} q^{94} + \zeta_{10} q^{95} + \zeta_{10}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{5} - q^{7} + q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + q^{5} - q^{7} + q^{8} - q^{9} - 4 q^{10} - q^{14} + q^{16} - q^{18} - q^{19} - q^{31} + q^{35} - q^{38} - q^{40} - q^{41} - 4 q^{45} - 2 q^{47} - 4 q^{56} + q^{59} - q^{62} - q^{63} - q^{64} + 8 q^{67} + q^{70} + q^{71} + q^{72} - q^{80} - q^{81} - q^{82} + q^{90} - 2 q^{94} + q^{95} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3751\mathbb{Z}\right)^\times\).

\(n\) \(2421\) \(2543\)
\(\chi(n)\) \(-1\) \(-\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2138.1
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.809017 0.587785i 0 0 0.809017 0.587785i 0 0.309017 + 0.951057i −0.309017 + 0.951057i −0.809017 0.587785i −1.00000
2665.1 −0.809017 + 0.587785i 0 0 0.809017 + 0.587785i 0 0.309017 0.951057i −0.309017 0.951057i −0.809017 + 0.587785i −1.00000
2913.1 0.309017 0.951057i 0 0 −0.309017 0.951057i 0 −0.809017 0.587785i 0.809017 0.587785i 0.309017 0.951057i −1.00000
3657.1 0.309017 + 0.951057i 0 0 −0.309017 + 0.951057i 0 −0.809017 + 0.587785i 0.809017 + 0.587785i 0.309017 + 0.951057i −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 CM by \(\Q(\sqrt{-31}) \)
11.c even 5 3 inner
341.t odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3751.1.t.a 4
11.b odd 2 1 3751.1.t.c 4
11.c even 5 1 3751.1.d.b 1
11.c even 5 3 inner 3751.1.t.a 4
11.d odd 10 1 31.1.b.a 1
11.d odd 10 3 3751.1.t.c 4
31.b odd 2 1 CM 3751.1.t.a 4
33.f even 10 1 279.1.d.b 1
44.g even 10 1 496.1.e.a 1
55.h odd 10 1 775.1.d.b 1
55.l even 20 2 775.1.c.a 2
77.l even 10 1 1519.1.c.a 1
77.n even 30 2 1519.1.n.a 2
77.o odd 30 2 1519.1.n.b 2
88.k even 10 1 1984.1.e.b 1
88.p odd 10 1 1984.1.e.a 1
99.o odd 30 2 2511.1.m.e 2
99.p even 30 2 2511.1.m.a 2
341.b even 2 1 3751.1.t.c 4
341.o odd 10 1 961.1.f.a 4
341.p even 10 1 961.1.f.a 4
341.t odd 10 1 3751.1.d.b 1
341.t odd 10 3 inner 3751.1.t.a 4
341.v even 10 1 961.1.f.a 4
341.x odd 10 1 961.1.f.a 4
341.y odd 10 1 961.1.f.a 4
341.ba even 10 1 31.1.b.a 1
341.ba even 10 3 3751.1.t.c 4
341.bb even 10 1 961.1.f.a 4
341.bc even 10 1 961.1.f.a 4
341.be odd 10 1 961.1.f.a 4
341.bm even 30 2 961.1.h.a 8
341.bn odd 30 2 961.1.h.a 8
341.bt odd 30 2 961.1.h.a 8
341.bv even 30 2 961.1.h.a 8
341.bw even 30 2 961.1.h.a 8
341.bx even 30 2 961.1.e.a 2
341.bz odd 30 2 961.1.h.a 8
341.ca odd 30 2 961.1.h.a 8
341.cb odd 30 2 961.1.e.a 2
341.cc even 30 2 961.1.h.a 8
1023.bg odd 10 1 279.1.d.b 1
1364.bc odd 10 1 496.1.e.a 1
1705.bi even 10 1 775.1.d.b 1
1705.dk odd 20 2 775.1.c.a 2
2387.cv odd 10 1 1519.1.c.a 1
2387.gi even 30 2 1519.1.n.b 2
2387.gt odd 30 2 1519.1.n.a 2
2728.cw even 10 1 1984.1.e.a 1
2728.eb odd 10 1 1984.1.e.b 1
3069.gp even 30 2 2511.1.m.e 2
3069.ib odd 30 2 2511.1.m.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.1.b.a 1 11.d odd 10 1
31.1.b.a 1 341.ba even 10 1
279.1.d.b 1 33.f even 10 1
279.1.d.b 1 1023.bg odd 10 1
496.1.e.a 1 44.g even 10 1
496.1.e.a 1 1364.bc odd 10 1
775.1.c.a 2 55.l even 20 2
775.1.c.a 2 1705.dk odd 20 2
775.1.d.b 1 55.h odd 10 1
775.1.d.b 1 1705.bi even 10 1
961.1.e.a 2 341.bx even 30 2
961.1.e.a 2 341.cb odd 30 2
961.1.f.a 4 341.o odd 10 1
961.1.f.a 4 341.p even 10 1
961.1.f.a 4 341.v even 10 1
961.1.f.a 4 341.x odd 10 1
961.1.f.a 4 341.y odd 10 1
961.1.f.a 4 341.bb even 10 1
961.1.f.a 4 341.bc even 10 1
961.1.f.a 4 341.be odd 10 1
961.1.h.a 8 341.bm even 30 2
961.1.h.a 8 341.bn odd 30 2
961.1.h.a 8 341.bt odd 30 2
961.1.h.a 8 341.bv even 30 2
961.1.h.a 8 341.bw even 30 2
961.1.h.a 8 341.bz odd 30 2
961.1.h.a 8 341.ca odd 30 2
961.1.h.a 8 341.cc even 30 2
1519.1.c.a 1 77.l even 10 1
1519.1.c.a 1 2387.cv odd 10 1
1519.1.n.a 2 77.n even 30 2
1519.1.n.a 2 2387.gt odd 30 2
1519.1.n.b 2 77.o odd 30 2
1519.1.n.b 2 2387.gi even 30 2
1984.1.e.a 1 88.p odd 10 1
1984.1.e.a 1 2728.cw even 10 1
1984.1.e.b 1 88.k even 10 1
1984.1.e.b 1 2728.eb odd 10 1
2511.1.m.a 2 99.p even 30 2
2511.1.m.a 2 3069.ib odd 30 2
2511.1.m.e 2 99.o odd 30 2
2511.1.m.e 2 3069.gp even 30 2
3751.1.d.b 1 11.c even 5 1
3751.1.d.b 1 341.t odd 10 1
3751.1.t.a 4 1.a even 1 1 trivial
3751.1.t.a 4 11.c even 5 3 inner
3751.1.t.a 4 31.b odd 2 1 CM
3751.1.t.a 4 341.t odd 10 3 inner
3751.1.t.c 4 11.b odd 2 1
3751.1.t.c 4 11.d odd 10 3
3751.1.t.c 4 341.b even 2 1
3751.1.t.c 4 341.ba even 10 3

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + T_{2}^{3} + T_{2}^{2} + T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3751, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T - 2)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
show more
show less