Properties

Label 3750.2.a.o.1.4
Level $3750$
Weight $2$
Character 3750.1
Self dual yes
Analytic conductor $29.944$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3750,2,Mod(1,3750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3750.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3750, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,0,-4,-4,4,4,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 3750.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +2.07768 q^{7} +1.00000 q^{8} +1.00000 q^{9} +0.520147 q^{11} -1.00000 q^{12} -2.18619 q^{13} +2.07768 q^{14} +1.00000 q^{16} -2.69572 q^{17} +1.00000 q^{18} -6.87129 q^{19} -2.07768 q^{21} +0.520147 q^{22} -3.86067 q^{23} -1.00000 q^{24} -2.18619 q^{26} -1.00000 q^{27} +2.07768 q^{28} -9.03373 q^{29} -7.40507 q^{31} +1.00000 q^{32} -0.520147 q^{33} -2.69572 q^{34} +1.00000 q^{36} +5.30719 q^{37} -6.87129 q^{38} +2.18619 q^{39} -3.22358 q^{41} -2.07768 q^{42} -9.53920 q^{43} +0.520147 q^{44} -3.86067 q^{46} +9.26574 q^{47} -1.00000 q^{48} -2.68323 q^{49} +2.69572 q^{51} -2.18619 q^{52} +2.43841 q^{53} -1.00000 q^{54} +2.07768 q^{56} +6.87129 q^{57} -9.03373 q^{58} +8.64875 q^{59} +12.5882 q^{61} -7.40507 q^{62} +2.07768 q^{63} +1.00000 q^{64} -0.520147 q^{66} -6.69385 q^{67} -2.69572 q^{68} +3.86067 q^{69} -8.16901 q^{71} +1.00000 q^{72} -3.84348 q^{73} +5.30719 q^{74} -6.87129 q^{76} +1.08070 q^{77} +2.18619 q^{78} +3.51243 q^{79} +1.00000 q^{81} -3.22358 q^{82} +13.1311 q^{83} -2.07768 q^{84} -9.53920 q^{86} +9.03373 q^{87} +0.520147 q^{88} -9.85880 q^{89} -4.54222 q^{91} -3.86067 q^{92} +7.40507 q^{93} +9.26574 q^{94} -1.00000 q^{96} +10.7598 q^{97} -2.68323 q^{98} +0.520147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} - 4 q^{7} + 4 q^{8} + 4 q^{9} - 10 q^{11} - 4 q^{12} + 2 q^{13} - 4 q^{14} + 4 q^{16} + 6 q^{17} + 4 q^{18} - 6 q^{19} + 4 q^{21} - 10 q^{22} - 4 q^{24} + 2 q^{26}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.07768 0.785291 0.392645 0.919690i \(-0.371560\pi\)
0.392645 + 0.919690i \(0.371560\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.520147 0.156830 0.0784151 0.996921i \(-0.475014\pi\)
0.0784151 + 0.996921i \(0.475014\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.18619 −0.606341 −0.303170 0.952936i \(-0.598045\pi\)
−0.303170 + 0.952936i \(0.598045\pi\)
\(14\) 2.07768 0.555284
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.69572 −0.653808 −0.326904 0.945058i \(-0.606005\pi\)
−0.326904 + 0.945058i \(0.606005\pi\)
\(18\) 1.00000 0.235702
\(19\) −6.87129 −1.57638 −0.788191 0.615431i \(-0.788982\pi\)
−0.788191 + 0.615431i \(0.788982\pi\)
\(20\) 0 0
\(21\) −2.07768 −0.453388
\(22\) 0.520147 0.110896
\(23\) −3.86067 −0.805005 −0.402502 0.915419i \(-0.631859\pi\)
−0.402502 + 0.915419i \(0.631859\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.18619 −0.428748
\(27\) −1.00000 −0.192450
\(28\) 2.07768 0.392645
\(29\) −9.03373 −1.67752 −0.838761 0.544500i \(-0.816719\pi\)
−0.838761 + 0.544500i \(0.816719\pi\)
\(30\) 0 0
\(31\) −7.40507 −1.32999 −0.664995 0.746848i \(-0.731566\pi\)
−0.664995 + 0.746848i \(0.731566\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.520147 −0.0905460
\(34\) −2.69572 −0.462312
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 5.30719 0.872496 0.436248 0.899826i \(-0.356307\pi\)
0.436248 + 0.899826i \(0.356307\pi\)
\(38\) −6.87129 −1.11467
\(39\) 2.18619 0.350071
\(40\) 0 0
\(41\) −3.22358 −0.503439 −0.251719 0.967800i \(-0.580996\pi\)
−0.251719 + 0.967800i \(0.580996\pi\)
\(42\) −2.07768 −0.320594
\(43\) −9.53920 −1.45471 −0.727357 0.686259i \(-0.759252\pi\)
−0.727357 + 0.686259i \(0.759252\pi\)
\(44\) 0.520147 0.0784151
\(45\) 0 0
\(46\) −3.86067 −0.569224
\(47\) 9.26574 1.35155 0.675774 0.737109i \(-0.263810\pi\)
0.675774 + 0.737109i \(0.263810\pi\)
\(48\) −1.00000 −0.144338
\(49\) −2.68323 −0.383319
\(50\) 0 0
\(51\) 2.69572 0.377476
\(52\) −2.18619 −0.303170
\(53\) 2.43841 0.334941 0.167470 0.985877i \(-0.446440\pi\)
0.167470 + 0.985877i \(0.446440\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.07768 0.277642
\(57\) 6.87129 0.910124
\(58\) −9.03373 −1.18619
\(59\) 8.64875 1.12597 0.562985 0.826467i \(-0.309653\pi\)
0.562985 + 0.826467i \(0.309653\pi\)
\(60\) 0 0
\(61\) 12.5882 1.61176 0.805880 0.592079i \(-0.201693\pi\)
0.805880 + 0.592079i \(0.201693\pi\)
\(62\) −7.40507 −0.940445
\(63\) 2.07768 0.261764
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.520147 −0.0640257
\(67\) −6.69385 −0.817784 −0.408892 0.912583i \(-0.634085\pi\)
−0.408892 + 0.912583i \(0.634085\pi\)
\(68\) −2.69572 −0.326904
\(69\) 3.86067 0.464770
\(70\) 0 0
\(71\) −8.16901 −0.969483 −0.484741 0.874658i \(-0.661086\pi\)
−0.484741 + 0.874658i \(0.661086\pi\)
\(72\) 1.00000 0.117851
\(73\) −3.84348 −0.449845 −0.224923 0.974377i \(-0.572213\pi\)
−0.224923 + 0.974377i \(0.572213\pi\)
\(74\) 5.30719 0.616948
\(75\) 0 0
\(76\) −6.87129 −0.788191
\(77\) 1.08070 0.123157
\(78\) 2.18619 0.247538
\(79\) 3.51243 0.395179 0.197590 0.980285i \(-0.436689\pi\)
0.197590 + 0.980285i \(0.436689\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −3.22358 −0.355985
\(83\) 13.1311 1.44133 0.720663 0.693285i \(-0.243837\pi\)
0.720663 + 0.693285i \(0.243837\pi\)
\(84\) −2.07768 −0.226694
\(85\) 0 0
\(86\) −9.53920 −1.02864
\(87\) 9.03373 0.968517
\(88\) 0.520147 0.0554479
\(89\) −9.85880 −1.04503 −0.522515 0.852630i \(-0.675006\pi\)
−0.522515 + 0.852630i \(0.675006\pi\)
\(90\) 0 0
\(91\) −4.54222 −0.476154
\(92\) −3.86067 −0.402502
\(93\) 7.40507 0.767870
\(94\) 9.26574 0.955688
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 10.7598 1.09249 0.546244 0.837626i \(-0.316057\pi\)
0.546244 + 0.837626i \(0.316057\pi\)
\(98\) −2.68323 −0.271047
\(99\) 0.520147 0.0522767
\(100\) 0 0
\(101\) −17.6400 −1.75524 −0.877622 0.479353i \(-0.840871\pi\)
−0.877622 + 0.479353i \(0.840871\pi\)
\(102\) 2.69572 0.266916
\(103\) −8.69758 −0.856998 −0.428499 0.903542i \(-0.640957\pi\)
−0.428499 + 0.903542i \(0.640957\pi\)
\(104\) −2.18619 −0.214374
\(105\) 0 0
\(106\) 2.43841 0.236839
\(107\) −5.40977 −0.522983 −0.261491 0.965206i \(-0.584214\pi\)
−0.261491 + 0.965206i \(0.584214\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 2.88377 0.276215 0.138108 0.990417i \(-0.455898\pi\)
0.138108 + 0.990417i \(0.455898\pi\)
\(110\) 0 0
\(111\) −5.30719 −0.503736
\(112\) 2.07768 0.196323
\(113\) −6.36955 −0.599197 −0.299598 0.954065i \(-0.596853\pi\)
−0.299598 + 0.954065i \(0.596853\pi\)
\(114\) 6.87129 0.643555
\(115\) 0 0
\(116\) −9.03373 −0.838761
\(117\) −2.18619 −0.202114
\(118\) 8.64875 0.796182
\(119\) −5.60085 −0.513429
\(120\) 0 0
\(121\) −10.7294 −0.975404
\(122\) 12.5882 1.13969
\(123\) 3.22358 0.290661
\(124\) −7.40507 −0.664995
\(125\) 0 0
\(126\) 2.07768 0.185095
\(127\) −14.9673 −1.32813 −0.664067 0.747673i \(-0.731171\pi\)
−0.664067 + 0.747673i \(0.731171\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.53920 0.839880
\(130\) 0 0
\(131\) 13.8551 1.21053 0.605265 0.796024i \(-0.293067\pi\)
0.605265 + 0.796024i \(0.293067\pi\)
\(132\) −0.520147 −0.0452730
\(133\) −14.2764 −1.23792
\(134\) −6.69385 −0.578261
\(135\) 0 0
\(136\) −2.69572 −0.231156
\(137\) 19.8939 1.69965 0.849825 0.527065i \(-0.176708\pi\)
0.849825 + 0.527065i \(0.176708\pi\)
\(138\) 3.86067 0.328642
\(139\) 5.64365 0.478688 0.239344 0.970935i \(-0.423068\pi\)
0.239344 + 0.970935i \(0.423068\pi\)
\(140\) 0 0
\(141\) −9.26574 −0.780316
\(142\) −8.16901 −0.685528
\(143\) −1.13714 −0.0950925
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −3.84348 −0.318089
\(147\) 2.68323 0.221309
\(148\) 5.30719 0.436248
\(149\) −15.0956 −1.23668 −0.618339 0.785911i \(-0.712194\pi\)
−0.618339 + 0.785911i \(0.712194\pi\)
\(150\) 0 0
\(151\) −20.9353 −1.70369 −0.851847 0.523791i \(-0.824517\pi\)
−0.851847 + 0.523791i \(0.824517\pi\)
\(152\) −6.87129 −0.557335
\(153\) −2.69572 −0.217936
\(154\) 1.08070 0.0870854
\(155\) 0 0
\(156\) 2.18619 0.175035
\(157\) 5.71998 0.456504 0.228252 0.973602i \(-0.426699\pi\)
0.228252 + 0.973602i \(0.426699\pi\)
\(158\) 3.51243 0.279434
\(159\) −2.43841 −0.193378
\(160\) 0 0
\(161\) −8.02124 −0.632163
\(162\) 1.00000 0.0785674
\(163\) 11.8950 0.931691 0.465846 0.884866i \(-0.345750\pi\)
0.465846 + 0.884866i \(0.345750\pi\)
\(164\) −3.22358 −0.251719
\(165\) 0 0
\(166\) 13.1311 1.01917
\(167\) 8.94427 0.692129 0.346064 0.938211i \(-0.387518\pi\)
0.346064 + 0.938211i \(0.387518\pi\)
\(168\) −2.07768 −0.160297
\(169\) −8.22056 −0.632351
\(170\) 0 0
\(171\) −6.87129 −0.525461
\(172\) −9.53920 −0.727357
\(173\) 16.3391 1.24224 0.621118 0.783717i \(-0.286679\pi\)
0.621118 + 0.783717i \(0.286679\pi\)
\(174\) 9.03373 0.684845
\(175\) 0 0
\(176\) 0.520147 0.0392076
\(177\) −8.64875 −0.650080
\(178\) −9.85880 −0.738948
\(179\) 3.67853 0.274946 0.137473 0.990505i \(-0.456102\pi\)
0.137473 + 0.990505i \(0.456102\pi\)
\(180\) 0 0
\(181\) −23.0493 −1.71324 −0.856619 0.515950i \(-0.827439\pi\)
−0.856619 + 0.515950i \(0.827439\pi\)
\(182\) −4.54222 −0.336691
\(183\) −12.5882 −0.930550
\(184\) −3.86067 −0.284612
\(185\) 0 0
\(186\) 7.40507 0.542966
\(187\) −1.40217 −0.102537
\(188\) 9.26574 0.675774
\(189\) −2.07768 −0.151129
\(190\) 0 0
\(191\) −1.78768 −0.129352 −0.0646761 0.997906i \(-0.520601\pi\)
−0.0646761 + 0.997906i \(0.520601\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −6.60138 −0.475178 −0.237589 0.971366i \(-0.576357\pi\)
−0.237589 + 0.971366i \(0.576357\pi\)
\(194\) 10.7598 0.772506
\(195\) 0 0
\(196\) −2.68323 −0.191659
\(197\) 12.6575 0.901810 0.450905 0.892572i \(-0.351101\pi\)
0.450905 + 0.892572i \(0.351101\pi\)
\(198\) 0.520147 0.0369652
\(199\) 6.24148 0.442447 0.221223 0.975223i \(-0.428995\pi\)
0.221223 + 0.975223i \(0.428995\pi\)
\(200\) 0 0
\(201\) 6.69385 0.472148
\(202\) −17.6400 −1.24115
\(203\) −18.7692 −1.31734
\(204\) 2.69572 0.188738
\(205\) 0 0
\(206\) −8.69758 −0.605989
\(207\) −3.86067 −0.268335
\(208\) −2.18619 −0.151585
\(209\) −3.57408 −0.247224
\(210\) 0 0
\(211\) −22.4779 −1.54745 −0.773723 0.633524i \(-0.781608\pi\)
−0.773723 + 0.633524i \(0.781608\pi\)
\(212\) 2.43841 0.167470
\(213\) 8.16901 0.559731
\(214\) −5.40977 −0.369805
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) −15.3854 −1.04443
\(218\) 2.88377 0.195314
\(219\) 3.84348 0.259718
\(220\) 0 0
\(221\) 5.89336 0.396430
\(222\) −5.30719 −0.356195
\(223\) −17.9299 −1.20068 −0.600338 0.799746i \(-0.704967\pi\)
−0.600338 + 0.799746i \(0.704967\pi\)
\(224\) 2.07768 0.138821
\(225\) 0 0
\(226\) −6.36955 −0.423696
\(227\) −8.85765 −0.587903 −0.293951 0.955820i \(-0.594970\pi\)
−0.293951 + 0.955820i \(0.594970\pi\)
\(228\) 6.87129 0.455062
\(229\) 22.0626 1.45794 0.728968 0.684548i \(-0.240000\pi\)
0.728968 + 0.684548i \(0.240000\pi\)
\(230\) 0 0
\(231\) −1.08070 −0.0711049
\(232\) −9.03373 −0.593093
\(233\) 11.5427 0.756190 0.378095 0.925767i \(-0.376579\pi\)
0.378095 + 0.925767i \(0.376579\pi\)
\(234\) −2.18619 −0.142916
\(235\) 0 0
\(236\) 8.64875 0.562985
\(237\) −3.51243 −0.228157
\(238\) −5.60085 −0.363049
\(239\) −0.884927 −0.0572412 −0.0286206 0.999590i \(-0.509111\pi\)
−0.0286206 + 0.999590i \(0.509111\pi\)
\(240\) 0 0
\(241\) 12.6736 0.816382 0.408191 0.912897i \(-0.366160\pi\)
0.408191 + 0.912897i \(0.366160\pi\)
\(242\) −10.7294 −0.689715
\(243\) −1.00000 −0.0641500
\(244\) 12.5882 0.805880
\(245\) 0 0
\(246\) 3.22358 0.205528
\(247\) 15.0220 0.955824
\(248\) −7.40507 −0.470223
\(249\) −13.1311 −0.832150
\(250\) 0 0
\(251\) 18.0966 1.14225 0.571124 0.820864i \(-0.306507\pi\)
0.571124 + 0.820864i \(0.306507\pi\)
\(252\) 2.07768 0.130882
\(253\) −2.00811 −0.126249
\(254\) −14.9673 −0.939133
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.28053 0.0798774 0.0399387 0.999202i \(-0.487284\pi\)
0.0399387 + 0.999202i \(0.487284\pi\)
\(258\) 9.53920 0.593885
\(259\) 11.0267 0.685163
\(260\) 0 0
\(261\) −9.03373 −0.559174
\(262\) 13.8551 0.855974
\(263\) −7.11425 −0.438683 −0.219342 0.975648i \(-0.570391\pi\)
−0.219342 + 0.975648i \(0.570391\pi\)
\(264\) −0.520147 −0.0320128
\(265\) 0 0
\(266\) −14.2764 −0.875340
\(267\) 9.85880 0.603349
\(268\) −6.69385 −0.408892
\(269\) −9.42986 −0.574949 −0.287474 0.957788i \(-0.592816\pi\)
−0.287474 + 0.957788i \(0.592816\pi\)
\(270\) 0 0
\(271\) 1.37489 0.0835187 0.0417594 0.999128i \(-0.486704\pi\)
0.0417594 + 0.999128i \(0.486704\pi\)
\(272\) −2.69572 −0.163452
\(273\) 4.54222 0.274907
\(274\) 19.8939 1.20183
\(275\) 0 0
\(276\) 3.86067 0.232385
\(277\) 19.5967 1.17745 0.588725 0.808333i \(-0.299630\pi\)
0.588725 + 0.808333i \(0.299630\pi\)
\(278\) 5.64365 0.338484
\(279\) −7.40507 −0.443330
\(280\) 0 0
\(281\) −2.83807 −0.169305 −0.0846525 0.996411i \(-0.526978\pi\)
−0.0846525 + 0.996411i \(0.526978\pi\)
\(282\) −9.26574 −0.551767
\(283\) −2.23356 −0.132771 −0.0663857 0.997794i \(-0.521147\pi\)
−0.0663857 + 0.997794i \(0.521147\pi\)
\(284\) −8.16901 −0.484741
\(285\) 0 0
\(286\) −1.13714 −0.0672406
\(287\) −6.69758 −0.395346
\(288\) 1.00000 0.0589256
\(289\) −9.73311 −0.572536
\(290\) 0 0
\(291\) −10.7598 −0.630748
\(292\) −3.84348 −0.224923
\(293\) 24.0260 1.40361 0.701807 0.712367i \(-0.252377\pi\)
0.701807 + 0.712367i \(0.252377\pi\)
\(294\) 2.68323 0.156489
\(295\) 0 0
\(296\) 5.30719 0.308474
\(297\) −0.520147 −0.0301820
\(298\) −15.0956 −0.874464
\(299\) 8.44016 0.488107
\(300\) 0 0
\(301\) −19.8194 −1.14237
\(302\) −20.9353 −1.20469
\(303\) 17.6400 1.01339
\(304\) −6.87129 −0.394095
\(305\) 0 0
\(306\) −2.69572 −0.154104
\(307\) 17.1204 0.977111 0.488556 0.872533i \(-0.337524\pi\)
0.488556 + 0.872533i \(0.337524\pi\)
\(308\) 1.08070 0.0615786
\(309\) 8.69758 0.494788
\(310\) 0 0
\(311\) −20.1527 −1.14276 −0.571379 0.820687i \(-0.693591\pi\)
−0.571379 + 0.820687i \(0.693591\pi\)
\(312\) 2.18619 0.123769
\(313\) −25.5043 −1.44159 −0.720795 0.693149i \(-0.756223\pi\)
−0.720795 + 0.693149i \(0.756223\pi\)
\(314\) 5.71998 0.322797
\(315\) 0 0
\(316\) 3.51243 0.197590
\(317\) −31.5182 −1.77024 −0.885120 0.465362i \(-0.845924\pi\)
−0.885120 + 0.465362i \(0.845924\pi\)
\(318\) −2.43841 −0.136739
\(319\) −4.69887 −0.263086
\(320\) 0 0
\(321\) 5.40977 0.301944
\(322\) −8.02124 −0.447006
\(323\) 18.5231 1.03065
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 11.8950 0.658805
\(327\) −2.88377 −0.159473
\(328\) −3.22358 −0.177993
\(329\) 19.2513 1.06136
\(330\) 0 0
\(331\) −7.30062 −0.401279 −0.200639 0.979665i \(-0.564302\pi\)
−0.200639 + 0.979665i \(0.564302\pi\)
\(332\) 13.1311 0.720663
\(333\) 5.30719 0.290832
\(334\) 8.94427 0.489409
\(335\) 0 0
\(336\) −2.07768 −0.113347
\(337\) −26.7448 −1.45688 −0.728440 0.685109i \(-0.759754\pi\)
−0.728440 + 0.685109i \(0.759754\pi\)
\(338\) −8.22056 −0.447140
\(339\) 6.36955 0.345946
\(340\) 0 0
\(341\) −3.85173 −0.208583
\(342\) −6.87129 −0.371557
\(343\) −20.1187 −1.08631
\(344\) −9.53920 −0.514319
\(345\) 0 0
\(346\) 16.3391 0.878393
\(347\) −4.87129 −0.261504 −0.130752 0.991415i \(-0.541739\pi\)
−0.130752 + 0.991415i \(0.541739\pi\)
\(348\) 9.03373 0.484259
\(349\) 16.7173 0.894855 0.447428 0.894320i \(-0.352340\pi\)
0.447428 + 0.894320i \(0.352340\pi\)
\(350\) 0 0
\(351\) 2.18619 0.116690
\(352\) 0.520147 0.0277239
\(353\) 27.0805 1.44135 0.720674 0.693274i \(-0.243832\pi\)
0.720674 + 0.693274i \(0.243832\pi\)
\(354\) −8.64875 −0.459676
\(355\) 0 0
\(356\) −9.85880 −0.522515
\(357\) 5.60085 0.296428
\(358\) 3.67853 0.194416
\(359\) −8.48817 −0.447988 −0.223994 0.974590i \(-0.571910\pi\)
−0.223994 + 0.974590i \(0.571910\pi\)
\(360\) 0 0
\(361\) 28.2146 1.48498
\(362\) −23.0493 −1.21144
\(363\) 10.7294 0.563150
\(364\) −4.54222 −0.238077
\(365\) 0 0
\(366\) −12.5882 −0.657998
\(367\) 12.7477 0.665423 0.332712 0.943029i \(-0.392036\pi\)
0.332712 + 0.943029i \(0.392036\pi\)
\(368\) −3.86067 −0.201251
\(369\) −3.22358 −0.167813
\(370\) 0 0
\(371\) 5.06624 0.263026
\(372\) 7.40507 0.383935
\(373\) 10.9405 0.566480 0.283240 0.959049i \(-0.408591\pi\)
0.283240 + 0.959049i \(0.408591\pi\)
\(374\) −1.40217 −0.0725045
\(375\) 0 0
\(376\) 9.26574 0.477844
\(377\) 19.7495 1.01715
\(378\) −2.07768 −0.106865
\(379\) −14.2301 −0.730954 −0.365477 0.930820i \(-0.619094\pi\)
−0.365477 + 0.930820i \(0.619094\pi\)
\(380\) 0 0
\(381\) 14.9673 0.766799
\(382\) −1.78768 −0.0914658
\(383\) −7.16419 −0.366073 −0.183037 0.983106i \(-0.558593\pi\)
−0.183037 + 0.983106i \(0.558593\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −6.60138 −0.336001
\(387\) −9.53920 −0.484905
\(388\) 10.7598 0.546244
\(389\) −0.918972 −0.0465937 −0.0232969 0.999729i \(-0.507416\pi\)
−0.0232969 + 0.999729i \(0.507416\pi\)
\(390\) 0 0
\(391\) 10.4073 0.526318
\(392\) −2.68323 −0.135524
\(393\) −13.8551 −0.698899
\(394\) 12.6575 0.637676
\(395\) 0 0
\(396\) 0.520147 0.0261384
\(397\) 21.8019 1.09421 0.547104 0.837065i \(-0.315730\pi\)
0.547104 + 0.837065i \(0.315730\pi\)
\(398\) 6.24148 0.312857
\(399\) 14.2764 0.714712
\(400\) 0 0
\(401\) 22.8035 1.13875 0.569375 0.822078i \(-0.307185\pi\)
0.569375 + 0.822078i \(0.307185\pi\)
\(402\) 6.69385 0.333859
\(403\) 16.1889 0.806427
\(404\) −17.6400 −0.877622
\(405\) 0 0
\(406\) −18.7692 −0.931501
\(407\) 2.76052 0.136834
\(408\) 2.69572 0.133458
\(409\) 5.00147 0.247307 0.123653 0.992325i \(-0.460539\pi\)
0.123653 + 0.992325i \(0.460539\pi\)
\(410\) 0 0
\(411\) −19.8939 −0.981293
\(412\) −8.69758 −0.428499
\(413\) 17.9694 0.884214
\(414\) −3.86067 −0.189741
\(415\) 0 0
\(416\) −2.18619 −0.107187
\(417\) −5.64365 −0.276371
\(418\) −3.57408 −0.174814
\(419\) −22.8254 −1.11509 −0.557546 0.830146i \(-0.688257\pi\)
−0.557546 + 0.830146i \(0.688257\pi\)
\(420\) 0 0
\(421\) 15.7134 0.765826 0.382913 0.923784i \(-0.374921\pi\)
0.382913 + 0.923784i \(0.374921\pi\)
\(422\) −22.4779 −1.09421
\(423\) 9.26574 0.450516
\(424\) 2.43841 0.118419
\(425\) 0 0
\(426\) 8.16901 0.395790
\(427\) 26.1544 1.26570
\(428\) −5.40977 −0.261491
\(429\) 1.13714 0.0549017
\(430\) 0 0
\(431\) −9.55671 −0.460331 −0.230165 0.973152i \(-0.573927\pi\)
−0.230165 + 0.973152i \(0.573927\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 8.12215 0.390325 0.195163 0.980771i \(-0.437476\pi\)
0.195163 + 0.980771i \(0.437476\pi\)
\(434\) −15.3854 −0.738523
\(435\) 0 0
\(436\) 2.88377 0.138108
\(437\) 26.5278 1.26899
\(438\) 3.84348 0.183649
\(439\) 9.21952 0.440024 0.220012 0.975497i \(-0.429390\pi\)
0.220012 + 0.975497i \(0.429390\pi\)
\(440\) 0 0
\(441\) −2.68323 −0.127773
\(442\) 5.89336 0.280318
\(443\) 9.63232 0.457645 0.228823 0.973468i \(-0.426512\pi\)
0.228823 + 0.973468i \(0.426512\pi\)
\(444\) −5.30719 −0.251868
\(445\) 0 0
\(446\) −17.9299 −0.849006
\(447\) 15.0956 0.713997
\(448\) 2.07768 0.0981613
\(449\) −21.3096 −1.00566 −0.502831 0.864385i \(-0.667708\pi\)
−0.502831 + 0.864385i \(0.667708\pi\)
\(450\) 0 0
\(451\) −1.67674 −0.0789544
\(452\) −6.36955 −0.299598
\(453\) 20.9353 0.983628
\(454\) −8.85765 −0.415710
\(455\) 0 0
\(456\) 6.87129 0.321778
\(457\) −13.4662 −0.629923 −0.314961 0.949104i \(-0.601992\pi\)
−0.314961 + 0.949104i \(0.601992\pi\)
\(458\) 22.0626 1.03092
\(459\) 2.69572 0.125825
\(460\) 0 0
\(461\) 32.8357 1.52931 0.764654 0.644441i \(-0.222910\pi\)
0.764654 + 0.644441i \(0.222910\pi\)
\(462\) −1.08070 −0.0502788
\(463\) −22.9306 −1.06568 −0.532838 0.846217i \(-0.678875\pi\)
−0.532838 + 0.846217i \(0.678875\pi\)
\(464\) −9.03373 −0.419380
\(465\) 0 0
\(466\) 11.5427 0.534707
\(467\) 20.8340 0.964083 0.482042 0.876148i \(-0.339895\pi\)
0.482042 + 0.876148i \(0.339895\pi\)
\(468\) −2.18619 −0.101057
\(469\) −13.9077 −0.642198
\(470\) 0 0
\(471\) −5.71998 −0.263563
\(472\) 8.64875 0.398091
\(473\) −4.96179 −0.228143
\(474\) −3.51243 −0.161331
\(475\) 0 0
\(476\) −5.60085 −0.256714
\(477\) 2.43841 0.111647
\(478\) −0.884927 −0.0404756
\(479\) 13.5227 0.617866 0.308933 0.951084i \(-0.400028\pi\)
0.308933 + 0.951084i \(0.400028\pi\)
\(480\) 0 0
\(481\) −11.6025 −0.529030
\(482\) 12.6736 0.577269
\(483\) 8.02124 0.364979
\(484\) −10.7294 −0.487702
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 26.6228 1.20639 0.603197 0.797592i \(-0.293893\pi\)
0.603197 + 0.797592i \(0.293893\pi\)
\(488\) 12.5882 0.569843
\(489\) −11.8950 −0.537912
\(490\) 0 0
\(491\) −12.0227 −0.542575 −0.271288 0.962498i \(-0.587449\pi\)
−0.271288 + 0.962498i \(0.587449\pi\)
\(492\) 3.22358 0.145330
\(493\) 24.3524 1.09678
\(494\) 15.0220 0.675870
\(495\) 0 0
\(496\) −7.40507 −0.332498
\(497\) −16.9726 −0.761326
\(498\) −13.1311 −0.588419
\(499\) −27.3600 −1.22480 −0.612400 0.790548i \(-0.709796\pi\)
−0.612400 + 0.790548i \(0.709796\pi\)
\(500\) 0 0
\(501\) −8.94427 −0.399601
\(502\) 18.0966 0.807692
\(503\) −9.16257 −0.408539 −0.204269 0.978915i \(-0.565482\pi\)
−0.204269 + 0.978915i \(0.565482\pi\)
\(504\) 2.07768 0.0925474
\(505\) 0 0
\(506\) −2.00811 −0.0892716
\(507\) 8.22056 0.365088
\(508\) −14.9673 −0.664067
\(509\) −2.34831 −0.104087 −0.0520434 0.998645i \(-0.516573\pi\)
−0.0520434 + 0.998645i \(0.516573\pi\)
\(510\) 0 0
\(511\) −7.98554 −0.353259
\(512\) 1.00000 0.0441942
\(513\) 6.87129 0.303375
\(514\) 1.28053 0.0564818
\(515\) 0 0
\(516\) 9.53920 0.419940
\(517\) 4.81955 0.211963
\(518\) 11.0267 0.484483
\(519\) −16.3391 −0.717205
\(520\) 0 0
\(521\) −1.53432 −0.0672196 −0.0336098 0.999435i \(-0.510700\pi\)
−0.0336098 + 0.999435i \(0.510700\pi\)
\(522\) −9.03373 −0.395396
\(523\) −41.5860 −1.81843 −0.909215 0.416328i \(-0.863317\pi\)
−0.909215 + 0.416328i \(0.863317\pi\)
\(524\) 13.8551 0.605265
\(525\) 0 0
\(526\) −7.11425 −0.310196
\(527\) 19.9620 0.869558
\(528\) −0.520147 −0.0226365
\(529\) −8.09525 −0.351968
\(530\) 0 0
\(531\) 8.64875 0.375324
\(532\) −14.2764 −0.618959
\(533\) 7.04737 0.305255
\(534\) 9.85880 0.426632
\(535\) 0 0
\(536\) −6.69385 −0.289130
\(537\) −3.67853 −0.158740
\(538\) −9.42986 −0.406550
\(539\) −1.39567 −0.0601160
\(540\) 0 0
\(541\) 19.0419 0.818677 0.409338 0.912383i \(-0.365760\pi\)
0.409338 + 0.912383i \(0.365760\pi\)
\(542\) 1.37489 0.0590566
\(543\) 23.0493 0.989138
\(544\) −2.69572 −0.115578
\(545\) 0 0
\(546\) 4.54222 0.194389
\(547\) −27.3208 −1.16816 −0.584078 0.811698i \(-0.698544\pi\)
−0.584078 + 0.811698i \(0.698544\pi\)
\(548\) 19.8939 0.849825
\(549\) 12.5882 0.537253
\(550\) 0 0
\(551\) 62.0734 2.64441
\(552\) 3.86067 0.164321
\(553\) 7.29772 0.310331
\(554\) 19.5967 0.832583
\(555\) 0 0
\(556\) 5.64365 0.239344
\(557\) 9.89921 0.419443 0.209721 0.977761i \(-0.432744\pi\)
0.209721 + 0.977761i \(0.432744\pi\)
\(558\) −7.40507 −0.313482
\(559\) 20.8545 0.882052
\(560\) 0 0
\(561\) 1.40217 0.0591996
\(562\) −2.83807 −0.119717
\(563\) −2.01184 −0.0847891 −0.0423946 0.999101i \(-0.513499\pi\)
−0.0423946 + 0.999101i \(0.513499\pi\)
\(564\) −9.26574 −0.390158
\(565\) 0 0
\(566\) −2.23356 −0.0938836
\(567\) 2.07768 0.0872545
\(568\) −8.16901 −0.342764
\(569\) 23.6051 0.989578 0.494789 0.869013i \(-0.335245\pi\)
0.494789 + 0.869013i \(0.335245\pi\)
\(570\) 0 0
\(571\) 21.2334 0.888592 0.444296 0.895880i \(-0.353454\pi\)
0.444296 + 0.895880i \(0.353454\pi\)
\(572\) −1.13714 −0.0475463
\(573\) 1.78768 0.0746815
\(574\) −6.69758 −0.279552
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −45.3356 −1.88735 −0.943673 0.330880i \(-0.892654\pi\)
−0.943673 + 0.330880i \(0.892654\pi\)
\(578\) −9.73311 −0.404844
\(579\) 6.60138 0.274344
\(580\) 0 0
\(581\) 27.2823 1.13186
\(582\) −10.7598 −0.446006
\(583\) 1.26833 0.0525289
\(584\) −3.84348 −0.159044
\(585\) 0 0
\(586\) 24.0260 0.992505
\(587\) 16.3234 0.673739 0.336869 0.941551i \(-0.390632\pi\)
0.336869 + 0.941551i \(0.390632\pi\)
\(588\) 2.68323 0.110655
\(589\) 50.8824 2.09657
\(590\) 0 0
\(591\) −12.6575 −0.520660
\(592\) 5.30719 0.218124
\(593\) 32.8357 1.34840 0.674199 0.738549i \(-0.264489\pi\)
0.674199 + 0.738549i \(0.264489\pi\)
\(594\) −0.520147 −0.0213419
\(595\) 0 0
\(596\) −15.0956 −0.618339
\(597\) −6.24148 −0.255447
\(598\) 8.44016 0.345144
\(599\) −13.1905 −0.538947 −0.269474 0.963008i \(-0.586850\pi\)
−0.269474 + 0.963008i \(0.586850\pi\)
\(600\) 0 0
\(601\) −19.1992 −0.783152 −0.391576 0.920146i \(-0.628070\pi\)
−0.391576 + 0.920146i \(0.628070\pi\)
\(602\) −19.8194 −0.807780
\(603\) −6.69385 −0.272595
\(604\) −20.9353 −0.851847
\(605\) 0 0
\(606\) 17.6400 0.716576
\(607\) −6.54268 −0.265559 −0.132779 0.991146i \(-0.542390\pi\)
−0.132779 + 0.991146i \(0.542390\pi\)
\(608\) −6.87129 −0.278668
\(609\) 18.7692 0.760568
\(610\) 0 0
\(611\) −20.2567 −0.819498
\(612\) −2.69572 −0.108968
\(613\) 9.33202 0.376917 0.188458 0.982081i \(-0.439651\pi\)
0.188458 + 0.982081i \(0.439651\pi\)
\(614\) 17.1204 0.690922
\(615\) 0 0
\(616\) 1.08070 0.0435427
\(617\) 33.0016 1.32860 0.664298 0.747468i \(-0.268731\pi\)
0.664298 + 0.747468i \(0.268731\pi\)
\(618\) 8.69758 0.349868
\(619\) 28.1291 1.13060 0.565302 0.824884i \(-0.308760\pi\)
0.565302 + 0.824884i \(0.308760\pi\)
\(620\) 0 0
\(621\) 3.86067 0.154923
\(622\) −20.1527 −0.808052
\(623\) −20.4835 −0.820653
\(624\) 2.18619 0.0875177
\(625\) 0 0
\(626\) −25.5043 −1.01936
\(627\) 3.57408 0.142735
\(628\) 5.71998 0.228252
\(629\) −14.3067 −0.570445
\(630\) 0 0
\(631\) −2.39685 −0.0954170 −0.0477085 0.998861i \(-0.515192\pi\)
−0.0477085 + 0.998861i \(0.515192\pi\)
\(632\) 3.51243 0.139717
\(633\) 22.4779 0.893418
\(634\) −31.5182 −1.25175
\(635\) 0 0
\(636\) −2.43841 −0.0966891
\(637\) 5.86606 0.232422
\(638\) −4.69887 −0.186030
\(639\) −8.16901 −0.323161
\(640\) 0 0
\(641\) 12.1756 0.480907 0.240453 0.970661i \(-0.422704\pi\)
0.240453 + 0.970661i \(0.422704\pi\)
\(642\) 5.40977 0.213507
\(643\) −27.0249 −1.06576 −0.532878 0.846192i \(-0.678890\pi\)
−0.532878 + 0.846192i \(0.678890\pi\)
\(644\) −8.02124 −0.316081
\(645\) 0 0
\(646\) 18.5231 0.728780
\(647\) −33.9198 −1.33352 −0.666762 0.745271i \(-0.732320\pi\)
−0.666762 + 0.745271i \(0.732320\pi\)
\(648\) 1.00000 0.0392837
\(649\) 4.49862 0.176586
\(650\) 0 0
\(651\) 15.3854 0.603001
\(652\) 11.8950 0.465846
\(653\) −14.8530 −0.581244 −0.290622 0.956838i \(-0.593862\pi\)
−0.290622 + 0.956838i \(0.593862\pi\)
\(654\) −2.88377 −0.112765
\(655\) 0 0
\(656\) −3.22358 −0.125860
\(657\) −3.84348 −0.149948
\(658\) 19.2513 0.750493
\(659\) 4.71934 0.183839 0.0919196 0.995766i \(-0.470700\pi\)
0.0919196 + 0.995766i \(0.470700\pi\)
\(660\) 0 0
\(661\) 3.49686 0.136012 0.0680060 0.997685i \(-0.478336\pi\)
0.0680060 + 0.997685i \(0.478336\pi\)
\(662\) −7.30062 −0.283747
\(663\) −5.89336 −0.228879
\(664\) 13.1311 0.509586
\(665\) 0 0
\(666\) 5.30719 0.205649
\(667\) 34.8762 1.35041
\(668\) 8.94427 0.346064
\(669\) 17.9299 0.693211
\(670\) 0 0
\(671\) 6.54774 0.252773
\(672\) −2.07768 −0.0801484
\(673\) 24.6344 0.949586 0.474793 0.880098i \(-0.342523\pi\)
0.474793 + 0.880098i \(0.342523\pi\)
\(674\) −26.7448 −1.03017
\(675\) 0 0
\(676\) −8.22056 −0.316176
\(677\) 29.8252 1.14628 0.573139 0.819458i \(-0.305726\pi\)
0.573139 + 0.819458i \(0.305726\pi\)
\(678\) 6.36955 0.244621
\(679\) 22.3554 0.857921
\(680\) 0 0
\(681\) 8.85765 0.339426
\(682\) −3.85173 −0.147490
\(683\) −26.0533 −0.996902 −0.498451 0.866918i \(-0.666098\pi\)
−0.498451 + 0.866918i \(0.666098\pi\)
\(684\) −6.87129 −0.262730
\(685\) 0 0
\(686\) −20.1187 −0.768135
\(687\) −22.0626 −0.841740
\(688\) −9.53920 −0.363679
\(689\) −5.33082 −0.203088
\(690\) 0 0
\(691\) 34.4035 1.30877 0.654385 0.756161i \(-0.272928\pi\)
0.654385 + 0.756161i \(0.272928\pi\)
\(692\) 16.3391 0.621118
\(693\) 1.08070 0.0410524
\(694\) −4.87129 −0.184912
\(695\) 0 0
\(696\) 9.03373 0.342423
\(697\) 8.68987 0.329152
\(698\) 16.7173 0.632758
\(699\) −11.5427 −0.436587
\(700\) 0 0
\(701\) 13.2937 0.502095 0.251047 0.967975i \(-0.419225\pi\)
0.251047 + 0.967975i \(0.419225\pi\)
\(702\) 2.18619 0.0825125
\(703\) −36.4672 −1.37539
\(704\) 0.520147 0.0196038
\(705\) 0 0
\(706\) 27.0805 1.01919
\(707\) −36.6503 −1.37838
\(708\) −8.64875 −0.325040
\(709\) −7.27532 −0.273230 −0.136615 0.990624i \(-0.543622\pi\)
−0.136615 + 0.990624i \(0.543622\pi\)
\(710\) 0 0
\(711\) 3.51243 0.131726
\(712\) −9.85880 −0.369474
\(713\) 28.5885 1.07065
\(714\) 5.60085 0.209606
\(715\) 0 0
\(716\) 3.67853 0.137473
\(717\) 0.884927 0.0330482
\(718\) −8.48817 −0.316776
\(719\) −32.1466 −1.19886 −0.599432 0.800425i \(-0.704607\pi\)
−0.599432 + 0.800425i \(0.704607\pi\)
\(720\) 0 0
\(721\) −18.0708 −0.672993
\(722\) 28.2146 1.05004
\(723\) −12.6736 −0.471338
\(724\) −23.0493 −0.856619
\(725\) 0 0
\(726\) 10.7294 0.398207
\(727\) 3.12558 0.115921 0.0579607 0.998319i \(-0.481540\pi\)
0.0579607 + 0.998319i \(0.481540\pi\)
\(728\) −4.54222 −0.168346
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 25.7150 0.951103
\(732\) −12.5882 −0.465275
\(733\) −46.3584 −1.71229 −0.856143 0.516739i \(-0.827146\pi\)
−0.856143 + 0.516739i \(0.827146\pi\)
\(734\) 12.7477 0.470525
\(735\) 0 0
\(736\) −3.86067 −0.142306
\(737\) −3.48179 −0.128253
\(738\) −3.22358 −0.118662
\(739\) −48.0286 −1.76676 −0.883381 0.468656i \(-0.844738\pi\)
−0.883381 + 0.468656i \(0.844738\pi\)
\(740\) 0 0
\(741\) −15.0220 −0.551845
\(742\) 5.06624 0.185987
\(743\) −2.88963 −0.106010 −0.0530051 0.998594i \(-0.516880\pi\)
−0.0530051 + 0.998594i \(0.516880\pi\)
\(744\) 7.40507 0.271483
\(745\) 0 0
\(746\) 10.9405 0.400562
\(747\) 13.1311 0.480442
\(748\) −1.40217 −0.0512684
\(749\) −11.2398 −0.410693
\(750\) 0 0
\(751\) −39.4965 −1.44125 −0.720624 0.693326i \(-0.756144\pi\)
−0.720624 + 0.693326i \(0.756144\pi\)
\(752\) 9.26574 0.337887
\(753\) −18.0966 −0.659478
\(754\) 19.7495 0.719233
\(755\) 0 0
\(756\) −2.07768 −0.0755646
\(757\) 25.4654 0.925555 0.462777 0.886475i \(-0.346853\pi\)
0.462777 + 0.886475i \(0.346853\pi\)
\(758\) −14.2301 −0.516862
\(759\) 2.00811 0.0728899
\(760\) 0 0
\(761\) 41.6705 1.51056 0.755278 0.655405i \(-0.227502\pi\)
0.755278 + 0.655405i \(0.227502\pi\)
\(762\) 14.9673 0.542208
\(763\) 5.99157 0.216909
\(764\) −1.78768 −0.0646761
\(765\) 0 0
\(766\) −7.16419 −0.258853
\(767\) −18.9078 −0.682722
\(768\) −1.00000 −0.0360844
\(769\) 2.07247 0.0747353 0.0373677 0.999302i \(-0.488103\pi\)
0.0373677 + 0.999302i \(0.488103\pi\)
\(770\) 0 0
\(771\) −1.28053 −0.0461172
\(772\) −6.60138 −0.237589
\(773\) −7.98959 −0.287366 −0.143683 0.989624i \(-0.545895\pi\)
−0.143683 + 0.989624i \(0.545895\pi\)
\(774\) −9.53920 −0.342879
\(775\) 0 0
\(776\) 10.7598 0.386253
\(777\) −11.0267 −0.395579
\(778\) −0.918972 −0.0329467
\(779\) 22.1502 0.793612
\(780\) 0 0
\(781\) −4.24908 −0.152044
\(782\) 10.4073 0.372163
\(783\) 9.03373 0.322839
\(784\) −2.68323 −0.0958297
\(785\) 0 0
\(786\) −13.8551 −0.494197
\(787\) −17.9103 −0.638433 −0.319217 0.947682i \(-0.603420\pi\)
−0.319217 + 0.947682i \(0.603420\pi\)
\(788\) 12.6575 0.450905
\(789\) 7.11425 0.253274
\(790\) 0 0
\(791\) −13.2339 −0.470544
\(792\) 0.520147 0.0184826
\(793\) −27.5203 −0.977276
\(794\) 21.8019 0.773721
\(795\) 0 0
\(796\) 6.24148 0.221223
\(797\) −26.2543 −0.929973 −0.464987 0.885318i \(-0.653941\pi\)
−0.464987 + 0.885318i \(0.653941\pi\)
\(798\) 14.2764 0.505378
\(799\) −24.9778 −0.883652
\(800\) 0 0
\(801\) −9.85880 −0.348344
\(802\) 22.8035 0.805219
\(803\) −1.99917 −0.0705493
\(804\) 6.69385 0.236074
\(805\) 0 0
\(806\) 16.1889 0.570230
\(807\) 9.42986 0.331947
\(808\) −17.6400 −0.620573
\(809\) 29.5316 1.03828 0.519138 0.854690i \(-0.326253\pi\)
0.519138 + 0.854690i \(0.326253\pi\)
\(810\) 0 0
\(811\) 29.4744 1.03499 0.517493 0.855687i \(-0.326865\pi\)
0.517493 + 0.855687i \(0.326865\pi\)
\(812\) −18.7692 −0.658671
\(813\) −1.37489 −0.0482196
\(814\) 2.76052 0.0967561
\(815\) 0 0
\(816\) 2.69572 0.0943690
\(817\) 65.5466 2.29318
\(818\) 5.00147 0.174872
\(819\) −4.54222 −0.158718
\(820\) 0 0
\(821\) 44.8174 1.56414 0.782069 0.623192i \(-0.214165\pi\)
0.782069 + 0.623192i \(0.214165\pi\)
\(822\) −19.8939 −0.693879
\(823\) −21.7635 −0.758628 −0.379314 0.925268i \(-0.623840\pi\)
−0.379314 + 0.925268i \(0.623840\pi\)
\(824\) −8.69758 −0.302995
\(825\) 0 0
\(826\) 17.9694 0.625234
\(827\) 19.1072 0.664424 0.332212 0.943205i \(-0.392205\pi\)
0.332212 + 0.943205i \(0.392205\pi\)
\(828\) −3.86067 −0.134167
\(829\) −36.3234 −1.26156 −0.630781 0.775961i \(-0.717265\pi\)
−0.630781 + 0.775961i \(0.717265\pi\)
\(830\) 0 0
\(831\) −19.5967 −0.679801
\(832\) −2.18619 −0.0757926
\(833\) 7.23323 0.250617
\(834\) −5.64365 −0.195424
\(835\) 0 0
\(836\) −3.57408 −0.123612
\(837\) 7.40507 0.255957
\(838\) −22.8254 −0.788489
\(839\) 19.8589 0.685604 0.342802 0.939408i \(-0.388624\pi\)
0.342802 + 0.939408i \(0.388624\pi\)
\(840\) 0 0
\(841\) 52.6083 1.81408
\(842\) 15.7134 0.541521
\(843\) 2.83807 0.0977483
\(844\) −22.4779 −0.773723
\(845\) 0 0
\(846\) 9.26574 0.318563
\(847\) −22.2924 −0.765976
\(848\) 2.43841 0.0837352
\(849\) 2.23356 0.0766556
\(850\) 0 0
\(851\) −20.4893 −0.702363
\(852\) 8.16901 0.279866
\(853\) −26.0342 −0.891394 −0.445697 0.895184i \(-0.647044\pi\)
−0.445697 + 0.895184i \(0.647044\pi\)
\(854\) 26.1544 0.894985
\(855\) 0 0
\(856\) −5.40977 −0.184902
\(857\) −34.8614 −1.19084 −0.595421 0.803414i \(-0.703015\pi\)
−0.595421 + 0.803414i \(0.703015\pi\)
\(858\) 1.13714 0.0388214
\(859\) −15.1199 −0.515883 −0.257942 0.966161i \(-0.583044\pi\)
−0.257942 + 0.966161i \(0.583044\pi\)
\(860\) 0 0
\(861\) 6.69758 0.228253
\(862\) −9.55671 −0.325503
\(863\) −22.9029 −0.779624 −0.389812 0.920895i \(-0.627460\pi\)
−0.389812 + 0.920895i \(0.627460\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 8.12215 0.276002
\(867\) 9.73311 0.330554
\(868\) −15.3854 −0.522215
\(869\) 1.82698 0.0619761
\(870\) 0 0
\(871\) 14.6340 0.495856
\(872\) 2.88377 0.0976569
\(873\) 10.7598 0.364163
\(874\) 26.5278 0.897315
\(875\) 0 0
\(876\) 3.84348 0.129859
\(877\) 16.4875 0.556744 0.278372 0.960473i \(-0.410205\pi\)
0.278372 + 0.960473i \(0.410205\pi\)
\(878\) 9.21952 0.311144
\(879\) −24.0260 −0.810377
\(880\) 0 0
\(881\) 23.1913 0.781334 0.390667 0.920532i \(-0.372244\pi\)
0.390667 + 0.920532i \(0.372244\pi\)
\(882\) −2.68323 −0.0903491
\(883\) −24.4716 −0.823536 −0.411768 0.911289i \(-0.635089\pi\)
−0.411768 + 0.911289i \(0.635089\pi\)
\(884\) 5.89336 0.198215
\(885\) 0 0
\(886\) 9.63232 0.323604
\(887\) −3.94954 −0.132613 −0.0663064 0.997799i \(-0.521121\pi\)
−0.0663064 + 0.997799i \(0.521121\pi\)
\(888\) −5.30719 −0.178098
\(889\) −31.0973 −1.04297
\(890\) 0 0
\(891\) 0.520147 0.0174256
\(892\) −17.9299 −0.600338
\(893\) −63.6676 −2.13055
\(894\) 15.0956 0.504872
\(895\) 0 0
\(896\) 2.07768 0.0694105
\(897\) −8.44016 −0.281809
\(898\) −21.3096 −0.711110
\(899\) 66.8954 2.23109
\(900\) 0 0
\(901\) −6.57325 −0.218987
\(902\) −1.67674 −0.0558292
\(903\) 19.8194 0.659549
\(904\) −6.36955 −0.211848
\(905\) 0 0
\(906\) 20.9353 0.695530
\(907\) 52.8637 1.75531 0.877656 0.479291i \(-0.159106\pi\)
0.877656 + 0.479291i \(0.159106\pi\)
\(908\) −8.85765 −0.293951
\(909\) −17.6400 −0.585082
\(910\) 0 0
\(911\) 11.5092 0.381317 0.190659 0.981656i \(-0.438938\pi\)
0.190659 + 0.981656i \(0.438938\pi\)
\(912\) 6.87129 0.227531
\(913\) 6.83011 0.226044
\(914\) −13.4662 −0.445423
\(915\) 0 0
\(916\) 22.0626 0.728968
\(917\) 28.7866 0.950617
\(918\) 2.69572 0.0889719
\(919\) 31.0263 1.02346 0.511732 0.859145i \(-0.329004\pi\)
0.511732 + 0.859145i \(0.329004\pi\)
\(920\) 0 0
\(921\) −17.1204 −0.564135
\(922\) 32.8357 1.08138
\(923\) 17.8590 0.587837
\(924\) −1.08070 −0.0355524
\(925\) 0 0
\(926\) −22.9306 −0.753547
\(927\) −8.69758 −0.285666
\(928\) −9.03373 −0.296547
\(929\) −11.9550 −0.392230 −0.196115 0.980581i \(-0.562833\pi\)
−0.196115 + 0.980581i \(0.562833\pi\)
\(930\) 0 0
\(931\) 18.4373 0.604257
\(932\) 11.5427 0.378095
\(933\) 20.1527 0.659771
\(934\) 20.8340 0.681710
\(935\) 0 0
\(936\) −2.18619 −0.0714579
\(937\) 14.6931 0.480003 0.240001 0.970773i \(-0.422852\pi\)
0.240001 + 0.970773i \(0.422852\pi\)
\(938\) −13.9077 −0.454103
\(939\) 25.5043 0.832302
\(940\) 0 0
\(941\) 50.5426 1.64764 0.823820 0.566851i \(-0.191838\pi\)
0.823820 + 0.566851i \(0.191838\pi\)
\(942\) −5.71998 −0.186367
\(943\) 12.4452 0.405271
\(944\) 8.64875 0.281493
\(945\) 0 0
\(946\) −4.96179 −0.161322
\(947\) −39.6824 −1.28950 −0.644752 0.764391i \(-0.723040\pi\)
−0.644752 + 0.764391i \(0.723040\pi\)
\(948\) −3.51243 −0.114078
\(949\) 8.40259 0.272759
\(950\) 0 0
\(951\) 31.5182 1.02205
\(952\) −5.60085 −0.181525
\(953\) 50.6244 1.63989 0.819943 0.572445i \(-0.194005\pi\)
0.819943 + 0.572445i \(0.194005\pi\)
\(954\) 2.43841 0.0789463
\(955\) 0 0
\(956\) −0.884927 −0.0286206
\(957\) 4.69887 0.151893
\(958\) 13.5227 0.436897
\(959\) 41.3332 1.33472
\(960\) 0 0
\(961\) 23.8351 0.768875
\(962\) −11.6025 −0.374081
\(963\) −5.40977 −0.174328
\(964\) 12.6736 0.408191
\(965\) 0 0
\(966\) 8.02124 0.258079
\(967\) −11.0521 −0.355413 −0.177706 0.984084i \(-0.556868\pi\)
−0.177706 + 0.984084i \(0.556868\pi\)
\(968\) −10.7294 −0.344857
\(969\) −18.5231 −0.595046
\(970\) 0 0
\(971\) 24.6590 0.791344 0.395672 0.918392i \(-0.370512\pi\)
0.395672 + 0.918392i \(0.370512\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 11.7257 0.375909
\(974\) 26.6228 0.853050
\(975\) 0 0
\(976\) 12.5882 0.402940
\(977\) 8.11694 0.259684 0.129842 0.991535i \(-0.458553\pi\)
0.129842 + 0.991535i \(0.458553\pi\)
\(978\) −11.8950 −0.380361
\(979\) −5.12803 −0.163892
\(980\) 0 0
\(981\) 2.88377 0.0920718
\(982\) −12.0227 −0.383659
\(983\) 26.7026 0.851680 0.425840 0.904799i \(-0.359979\pi\)
0.425840 + 0.904799i \(0.359979\pi\)
\(984\) 3.22358 0.102764
\(985\) 0 0
\(986\) 24.3524 0.775538
\(987\) −19.2513 −0.612775
\(988\) 15.0220 0.477912
\(989\) 36.8277 1.17105
\(990\) 0 0
\(991\) −52.9146 −1.68089 −0.840444 0.541899i \(-0.817706\pi\)
−0.840444 + 0.541899i \(0.817706\pi\)
\(992\) −7.40507 −0.235111
\(993\) 7.30062 0.231678
\(994\) −16.9726 −0.538338
\(995\) 0 0
\(996\) −13.1311 −0.416075
\(997\) −28.2703 −0.895330 −0.447665 0.894201i \(-0.647744\pi\)
−0.447665 + 0.894201i \(0.647744\pi\)
\(998\) −27.3600 −0.866065
\(999\) −5.30719 −0.167912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.o.1.4 4
5.2 odd 4 3750.2.c.e.1249.8 8
5.3 odd 4 3750.2.c.e.1249.1 8
5.4 even 2 3750.2.a.m.1.1 4
25.2 odd 20 150.2.h.a.79.2 yes 8
25.9 even 10 750.2.g.e.151.1 8
25.11 even 5 750.2.g.c.601.2 8
25.12 odd 20 750.2.h.c.349.1 8
25.13 odd 20 150.2.h.a.19.2 8
25.14 even 10 750.2.g.e.601.1 8
25.16 even 5 750.2.g.c.151.2 8
25.23 odd 20 750.2.h.c.649.1 8
75.2 even 20 450.2.l.a.379.1 8
75.38 even 20 450.2.l.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.19.2 8 25.13 odd 20
150.2.h.a.79.2 yes 8 25.2 odd 20
450.2.l.a.19.1 8 75.38 even 20
450.2.l.a.379.1 8 75.2 even 20
750.2.g.c.151.2 8 25.16 even 5
750.2.g.c.601.2 8 25.11 even 5
750.2.g.e.151.1 8 25.9 even 10
750.2.g.e.601.1 8 25.14 even 10
750.2.h.c.349.1 8 25.12 odd 20
750.2.h.c.649.1 8 25.23 odd 20
3750.2.a.m.1.1 4 5.4 even 2
3750.2.a.o.1.4 4 1.1 even 1 trivial
3750.2.c.e.1249.1 8 5.3 odd 4
3750.2.c.e.1249.8 8 5.2 odd 4