Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.j (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.2180099135\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −3.59614 | + | 1.16846i | −2.93845 | − | 0.604570i | 8.33088 | − | 6.05274i | 0 | 11.2735 | − | 1.25934i | 3.47419 | −13.9965 | + | 19.2645i | 8.26899 | + | 3.55300i | 0 | ||||||
26.2 | −3.59614 | + | 1.16846i | 0.333051 | − | 2.98146i | 8.33088 | − | 6.05274i | 0 | 2.28600 | + | 11.1109i | −3.47419 | −13.9965 | + | 19.2645i | −8.77815 | − | 1.98595i | 0 | ||||||
26.3 | −3.39551 | + | 1.10327i | −1.74641 | + | 2.43927i | 7.07623 | − | 5.14118i | 0 | 3.23878 | − | 10.2093i | 0.132726 | −9.96116 | + | 13.7104i | −2.90011 | − | 8.51994i | 0 | ||||||
26.4 | −3.39551 | + | 1.10327i | 2.85956 | − | 0.907156i | 7.07623 | − | 5.14118i | 0 | −8.70882 | + | 6.23512i | −0.132726 | −9.96116 | + | 13.7104i | 7.35413 | − | 5.18813i | 0 | ||||||
26.5 | −2.91717 | + | 0.947845i | −0.724906 | + | 2.91110i | 4.37538 | − | 3.17890i | 0 | −0.644600 | − | 9.17926i | −13.1629 | −2.53897 | + | 3.49459i | −7.94902 | − | 4.22055i | 0 | ||||||
26.6 | −2.91717 | + | 0.947845i | 2.99263 | + | 0.210153i | 4.37538 | − | 3.17890i | 0 | −8.92919 | + | 2.22350i | 13.1629 | −2.53897 | + | 3.49459i | 8.91167 | + | 1.25782i | 0 | ||||||
26.7 | −2.35931 | + | 0.766585i | −2.98708 | − | 0.278125i | 1.74261 | − | 1.26608i | 0 | 7.26065 | − | 1.63367i | −4.33341 | 2.69174 | − | 3.70486i | 8.84529 | + | 1.66157i | 0 | ||||||
26.8 | −2.35931 | + | 0.766585i | 0.658545 | − | 2.92683i | 1.74261 | − | 1.26608i | 0 | 0.689952 | + | 7.41011i | 4.33341 | 2.69174 | − | 3.70486i | −8.13264 | − | 3.85490i | 0 | ||||||
26.9 | −2.16649 | + | 0.703935i | 0.536292 | + | 2.95168i | 0.962078 | − | 0.698991i | 0 | −3.23966 | − | 6.01726i | 7.40536 | 3.76357 | − | 5.18010i | −8.42478 | + | 3.16592i | 0 | ||||||
26.10 | −2.16649 | + | 0.703935i | 2.64149 | + | 1.42216i | 0.962078 | − | 0.698991i | 0 | −6.72386 | − | 1.22166i | −7.40536 | 3.76357 | − | 5.18010i | 4.95491 | + | 7.51325i | 0 | ||||||
26.11 | −1.81520 | + | 0.589794i | −2.32377 | − | 1.89739i | −0.288978 | + | 0.209955i | 0 | 5.33718 | + | 2.07358i | −4.41289 | 4.88814 | − | 6.72795i | 1.79986 | + | 8.81819i | 0 | ||||||
26.12 | −1.81520 | + | 0.589794i | −1.08643 | − | 2.79637i | −0.288978 | + | 0.209955i | 0 | 3.62137 | + | 4.43519i | 4.41289 | 4.88814 | − | 6.72795i | −6.63932 | + | 6.07614i | 0 | ||||||
26.13 | −1.05391 | + | 0.342438i | −1.51263 | + | 2.59074i | −2.24260 | + | 1.62934i | 0 | 0.707019 | − | 3.24840i | 8.38289 | 4.41098 | − | 6.07119i | −4.42388 | − | 7.83768i | 0 | ||||||
26.14 | −1.05391 | + | 0.342438i | 2.93137 | − | 0.638017i | −2.24260 | + | 1.62934i | 0 | −2.87093 | + | 1.67623i | −8.38289 | 4.41098 | − | 6.07119i | 8.18587 | − | 3.74053i | 0 | ||||||
26.15 | −0.697111 | + | 0.226505i | −2.55471 | + | 1.57273i | −2.80141 | + | 2.03534i | 0 | 1.42468 | − | 1.67502i | 0.520138 | 3.21523 | − | 4.42538i | 4.05306 | − | 8.03571i | 0 | ||||||
26.16 | −0.697111 | + | 0.226505i | 2.28520 | − | 1.94367i | −2.80141 | + | 2.03534i | 0 | −1.15279 | + | 1.87256i | −0.520138 | 3.21523 | − | 4.42538i | 1.44428 | − | 8.88336i | 0 | ||||||
26.17 | −0.612148 | + | 0.198899i | 0.680442 | + | 2.92181i | −2.90090 | + | 2.10763i | 0 | −0.997676 | − | 1.65324i | −8.00714 | 2.86989 | − | 3.95006i | −8.07400 | + | 3.97625i | 0 | ||||||
26.18 | −0.612148 | + | 0.198899i | 2.56854 | + | 1.55003i | −2.90090 | + | 2.10763i | 0 | −1.88063 | − | 0.437966i | 8.00714 | 2.86989 | − | 3.95006i | 4.19482 | + | 7.96263i | 0 | ||||||
26.19 | 0.612148 | − | 0.198899i | −2.56854 | − | 1.55003i | −2.90090 | + | 2.10763i | 0 | −1.88063 | − | 0.437966i | −8.00714 | −2.86989 | + | 3.95006i | 4.19482 | + | 7.96263i | 0 | ||||||
26.20 | 0.612148 | − | 0.198899i | −0.680442 | − | 2.92181i | −2.90090 | + | 2.10763i | 0 | −0.997676 | − | 1.65324i | 8.00714 | −2.86989 | + | 3.95006i | −8.07400 | + | 3.97625i | 0 | ||||||
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
75.h | odd | 10 | 1 | inner |
75.j | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.3.j.b | 144 | |
3.b | odd | 2 | 1 | inner | 375.3.j.b | 144 | |
5.b | even | 2 | 1 | inner | 375.3.j.b | 144 | |
5.c | odd | 4 | 1 | 75.3.h.a | ✓ | 72 | |
5.c | odd | 4 | 1 | 375.3.h.a | 72 | ||
15.d | odd | 2 | 1 | inner | 375.3.j.b | 144 | |
15.e | even | 4 | 1 | 75.3.h.a | ✓ | 72 | |
15.e | even | 4 | 1 | 375.3.h.a | 72 | ||
25.d | even | 5 | 1 | inner | 375.3.j.b | 144 | |
25.e | even | 10 | 1 | inner | 375.3.j.b | 144 | |
25.f | odd | 20 | 1 | 75.3.h.a | ✓ | 72 | |
25.f | odd | 20 | 1 | 375.3.h.a | 72 | ||
75.h | odd | 10 | 1 | inner | 375.3.j.b | 144 | |
75.j | odd | 10 | 1 | inner | 375.3.j.b | 144 | |
75.l | even | 20 | 1 | 75.3.h.a | ✓ | 72 | |
75.l | even | 20 | 1 | 375.3.h.a | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.3.h.a | ✓ | 72 | 5.c | odd | 4 | 1 | |
75.3.h.a | ✓ | 72 | 15.e | even | 4 | 1 | |
75.3.h.a | ✓ | 72 | 25.f | odd | 20 | 1 | |
75.3.h.a | ✓ | 72 | 75.l | even | 20 | 1 | |
375.3.h.a | 72 | 5.c | odd | 4 | 1 | ||
375.3.h.a | 72 | 15.e | even | 4 | 1 | ||
375.3.h.a | 72 | 25.f | odd | 20 | 1 | ||
375.3.h.a | 72 | 75.l | even | 20 | 1 | ||
375.3.j.b | 144 | 1.a | even | 1 | 1 | trivial | |
375.3.j.b | 144 | 3.b | odd | 2 | 1 | inner | |
375.3.j.b | 144 | 5.b | even | 2 | 1 | inner | |
375.3.j.b | 144 | 15.d | odd | 2 | 1 | inner | |
375.3.j.b | 144 | 25.d | even | 5 | 1 | inner | |
375.3.j.b | 144 | 25.e | even | 10 | 1 | inner | |
375.3.j.b | 144 | 75.h | odd | 10 | 1 | inner | |
375.3.j.b | 144 | 75.j | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{72} - 55 T_{2}^{70} + 1735 T_{2}^{68} - 41465 T_{2}^{66} + 847535 T_{2}^{64} + \cdots + 16\!\cdots\!25 \)
acting on \(S_{3}^{\mathrm{new}}(375, [\chi])\).