Properties

Label 375.2.i.d.349.5
Level $375$
Weight $2$
Character 375.349
Analytic conductor $2.994$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(49,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.i (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 349.5
Character \(\chi\) \(=\) 375.349
Dual form 375.2.i.d.274.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.32085 - 0.754089i) q^{2} +(0.587785 + 0.809017i) q^{3} +(3.19965 - 2.32468i) q^{4} +(1.97423 + 1.43436i) q^{6} +3.44028i q^{7} +(2.80415 - 3.85959i) q^{8} +(-0.309017 + 0.951057i) q^{9} +(-1.00942 - 3.10669i) q^{11} +(3.76141 + 1.22216i) q^{12} +(-3.07385 - 0.998755i) q^{13} +(2.59428 + 7.98437i) q^{14} +(1.15323 - 3.54927i) q^{16} +(2.97030 - 4.08826i) q^{17} +2.44028i q^{18} +(-2.49274 - 1.81108i) q^{19} +(-2.78325 + 2.02215i) q^{21} +(-4.68544 - 6.44895i) q^{22} +(-1.47190 + 0.478250i) q^{23} +4.77071 q^{24} -7.88709 q^{26} +(-0.951057 + 0.309017i) q^{27} +(7.99756 + 11.0077i) q^{28} +(-2.52590 + 1.83517i) q^{29} +(-6.02080 - 4.37437i) q^{31} +0.434479i q^{32} +(1.92004 - 2.64270i) q^{33} +(3.81069 - 11.7281i) q^{34} +(1.22216 + 3.76141i) q^{36} +(5.47655 + 1.77944i) q^{37} +(-7.15098 - 2.32349i) q^{38} +(-0.998755 - 3.07385i) q^{39} +(1.67476 - 5.15437i) q^{41} +(-4.93461 + 6.79191i) q^{42} +2.53106i q^{43} +(-10.4519 - 7.59371i) q^{44} +(-3.05541 + 2.21989i) q^{46} +(4.15659 + 5.72106i) q^{47} +(3.54927 - 1.15323i) q^{48} -4.83555 q^{49} +5.05337 q^{51} +(-12.1570 + 3.95006i) q^{52} +(5.96693 + 8.21277i) q^{53} +(-1.97423 + 1.43436i) q^{54} +(13.2781 + 9.64708i) q^{56} -3.08119i q^{57} +(-4.47834 + 6.16391i) q^{58} +(-0.534773 + 1.64586i) q^{59} +(2.42149 + 7.45259i) q^{61} +(-17.2720 - 5.61202i) q^{62} +(-3.27190 - 1.06311i) q^{63} +(2.63409 + 8.10689i) q^{64} +(2.46328 - 7.58119i) q^{66} +(1.08687 - 1.49595i) q^{67} -19.9860i q^{68} +(-1.25207 - 0.909685i) q^{69} +(0.577613 - 0.419660i) q^{71} +(2.80415 + 3.85959i) q^{72} +(1.78825 - 0.581036i) q^{73} +14.0521 q^{74} -12.1861 q^{76} +(10.6879 - 3.47270i) q^{77} +(-4.63591 - 6.38079i) q^{78} +(-10.7868 + 7.83708i) q^{79} +(-0.809017 - 0.587785i) q^{81} -13.2254i q^{82} +(2.32614 - 3.20166i) q^{83} +(-4.20457 + 12.9403i) q^{84} +(1.90864 + 5.87419i) q^{86} +(-2.96937 - 0.964807i) q^{87} +(-14.8211 - 4.81567i) q^{88} +(-2.63713 - 8.11624i) q^{89} +(3.43600 - 10.5749i) q^{91} +(-3.59779 + 4.95193i) q^{92} -7.44212i q^{93} +(13.9610 + 10.1433i) q^{94} +(-0.351501 + 0.255380i) q^{96} +(-6.26157 - 8.61831i) q^{97} +(-11.2226 + 3.64643i) q^{98} +3.26656 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{4} + 6 q^{9} - 8 q^{11} - 12 q^{14} + 32 q^{16} - 14 q^{19} - 6 q^{21} - 12 q^{24} - 112 q^{26} + 2 q^{29} + 26 q^{31} + 50 q^{34} - 4 q^{39} + 16 q^{41} - 66 q^{44} - 44 q^{46} + 56 q^{49}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32085 0.754089i 1.64109 0.533221i 0.664306 0.747461i \(-0.268727\pi\)
0.976781 + 0.214240i \(0.0687273\pi\)
\(3\) 0.587785 + 0.809017i 0.339358 + 0.467086i
\(4\) 3.19965 2.32468i 1.59982 1.16234i
\(5\) 0 0
\(6\) 1.97423 + 1.43436i 0.805976 + 0.585576i
\(7\) 3.44028i 1.30030i 0.759804 + 0.650152i \(0.225295\pi\)
−0.759804 + 0.650152i \(0.774705\pi\)
\(8\) 2.80415 3.85959i 0.991418 1.36457i
\(9\) −0.309017 + 0.951057i −0.103006 + 0.317019i
\(10\) 0 0
\(11\) −1.00942 3.10669i −0.304353 0.936701i −0.979918 0.199401i \(-0.936100\pi\)
0.675565 0.737300i \(-0.263900\pi\)
\(12\) 3.76141 + 1.22216i 1.08583 + 0.352806i
\(13\) −3.07385 0.998755i −0.852533 0.277005i −0.150026 0.988682i \(-0.547936\pi\)
−0.702506 + 0.711677i \(0.747936\pi\)
\(14\) 2.59428 + 7.98437i 0.693350 + 2.13391i
\(15\) 0 0
\(16\) 1.15323 3.54927i 0.288307 0.887317i
\(17\) 2.97030 4.08826i 0.720403 0.991550i −0.279107 0.960260i \(-0.590039\pi\)
0.999510 0.0312897i \(-0.00996144\pi\)
\(18\) 2.44028i 0.575180i
\(19\) −2.49274 1.81108i −0.571873 0.415490i 0.263912 0.964547i \(-0.414987\pi\)
−0.835785 + 0.549056i \(0.814987\pi\)
\(20\) 0 0
\(21\) −2.78325 + 2.02215i −0.607354 + 0.441269i
\(22\) −4.68544 6.44895i −0.998938 1.37492i
\(23\) −1.47190 + 0.478250i −0.306913 + 0.0997219i −0.458424 0.888734i \(-0.651586\pi\)
0.151512 + 0.988455i \(0.451586\pi\)
\(24\) 4.77071 0.973817
\(25\) 0 0
\(26\) −7.88709 −1.54679
\(27\) −0.951057 + 0.309017i −0.183031 + 0.0594703i
\(28\) 7.99756 + 11.0077i 1.51140 + 2.08026i
\(29\) −2.52590 + 1.83517i −0.469047 + 0.340783i −0.797070 0.603887i \(-0.793618\pi\)
0.328022 + 0.944670i \(0.393618\pi\)
\(30\) 0 0
\(31\) −6.02080 4.37437i −1.08137 0.785659i −0.103446 0.994635i \(-0.532987\pi\)
−0.977921 + 0.208976i \(0.932987\pi\)
\(32\) 0.434479i 0.0768057i
\(33\) 1.92004 2.64270i 0.334236 0.460036i
\(34\) 3.81069 11.7281i 0.653528 2.01135i
\(35\) 0 0
\(36\) 1.22216 + 3.76141i 0.203693 + 0.626902i
\(37\) 5.47655 + 1.77944i 0.900339 + 0.292538i 0.722377 0.691499i \(-0.243050\pi\)
0.177962 + 0.984037i \(0.443050\pi\)
\(38\) −7.15098 2.32349i −1.16004 0.376921i
\(39\) −0.998755 3.07385i −0.159929 0.492210i
\(40\) 0 0
\(41\) 1.67476 5.15437i 0.261553 0.804977i −0.730915 0.682469i \(-0.760906\pi\)
0.992468 0.122508i \(-0.0390938\pi\)
\(42\) −4.93461 + 6.79191i −0.761427 + 1.04801i
\(43\) 2.53106i 0.385982i 0.981201 + 0.192991i \(0.0618189\pi\)
−0.981201 + 0.192991i \(0.938181\pi\)
\(44\) −10.4519 7.59371i −1.57568 1.14480i
\(45\) 0 0
\(46\) −3.05541 + 2.21989i −0.450496 + 0.327305i
\(47\) 4.15659 + 5.72106i 0.606301 + 0.834502i 0.996267 0.0863273i \(-0.0275131\pi\)
−0.389966 + 0.920829i \(0.627513\pi\)
\(48\) 3.54927 1.15323i 0.512293 0.166454i
\(49\) −4.83555 −0.690793
\(50\) 0 0
\(51\) 5.05337 0.707614
\(52\) −12.1570 + 3.95006i −1.68588 + 0.547774i
\(53\) 5.96693 + 8.21277i 0.819621 + 1.12811i 0.989767 + 0.142692i \(0.0455759\pi\)
−0.170147 + 0.985419i \(0.554424\pi\)
\(54\) −1.97423 + 1.43436i −0.268659 + 0.195192i
\(55\) 0 0
\(56\) 13.2781 + 9.64708i 1.77436 + 1.28915i
\(57\) 3.08119i 0.408114i
\(58\) −4.47834 + 6.16391i −0.588035 + 0.809361i
\(59\) −0.534773 + 1.64586i −0.0696215 + 0.214273i −0.979814 0.199913i \(-0.935934\pi\)
0.910192 + 0.414187i \(0.135934\pi\)
\(60\) 0 0
\(61\) 2.42149 + 7.45259i 0.310040 + 0.954206i 0.977748 + 0.209783i \(0.0672756\pi\)
−0.667708 + 0.744424i \(0.732724\pi\)
\(62\) −17.2720 5.61202i −2.19355 0.712727i
\(63\) −3.27190 1.06311i −0.412221 0.133939i
\(64\) 2.63409 + 8.10689i 0.329261 + 1.01336i
\(65\) 0 0
\(66\) 2.46328 7.58119i 0.303209 0.933180i
\(67\) 1.08687 1.49595i 0.132783 0.182760i −0.737448 0.675404i \(-0.763969\pi\)
0.870231 + 0.492644i \(0.163969\pi\)
\(68\) 19.9860i 2.42366i
\(69\) −1.25207 0.909685i −0.150732 0.109513i
\(70\) 0 0
\(71\) 0.577613 0.419660i 0.0685500 0.0498045i −0.552982 0.833193i \(-0.686510\pi\)
0.621533 + 0.783388i \(0.286510\pi\)
\(72\) 2.80415 + 3.85959i 0.330473 + 0.454857i
\(73\) 1.78825 0.581036i 0.209298 0.0680052i −0.202491 0.979284i \(-0.564904\pi\)
0.411790 + 0.911279i \(0.364904\pi\)
\(74\) 14.0521 1.63352
\(75\) 0 0
\(76\) −12.1861 −1.39784
\(77\) 10.6879 3.47270i 1.21800 0.395751i
\(78\) −4.63591 6.38079i −0.524914 0.722482i
\(79\) −10.7868 + 7.83708i −1.21361 + 0.881740i −0.995554 0.0941957i \(-0.969972\pi\)
−0.218058 + 0.975936i \(0.569972\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 13.2254i 1.46050i
\(83\) 2.32614 3.20166i 0.255328 0.351428i −0.662041 0.749468i \(-0.730309\pi\)
0.917368 + 0.398040i \(0.130309\pi\)
\(84\) −4.20457 + 12.9403i −0.458756 + 1.41190i
\(85\) 0 0
\(86\) 1.90864 + 5.87419i 0.205814 + 0.633430i
\(87\) −2.96937 0.964807i −0.318350 0.103438i
\(88\) −14.8211 4.81567i −1.57993 0.513352i
\(89\) −2.63713 8.11624i −0.279535 0.860320i −0.987984 0.154558i \(-0.950605\pi\)
0.708449 0.705762i \(-0.249395\pi\)
\(90\) 0 0
\(91\) 3.43600 10.5749i 0.360191 1.10855i
\(92\) −3.59779 + 4.95193i −0.375095 + 0.516274i
\(93\) 7.44212i 0.771712i
\(94\) 13.9610 + 10.1433i 1.43997 + 1.04620i
\(95\) 0 0
\(96\) −0.351501 + 0.255380i −0.0358749 + 0.0260646i
\(97\) −6.26157 8.61831i −0.635766 0.875057i 0.362615 0.931939i \(-0.381884\pi\)
−0.998381 + 0.0568823i \(0.981884\pi\)
\(98\) −11.2226 + 3.64643i −1.13365 + 0.368345i
\(99\) 3.26656 0.328302
\(100\) 0 0
\(101\) 1.76173 0.175299 0.0876496 0.996151i \(-0.472064\pi\)
0.0876496 + 0.996151i \(0.472064\pi\)
\(102\) 11.7281 3.81069i 1.16126 0.377315i
\(103\) −9.35416 12.8749i −0.921693 1.26860i −0.963013 0.269456i \(-0.913156\pi\)
0.0413198 0.999146i \(-0.486844\pi\)
\(104\) −12.4743 + 9.06313i −1.22321 + 0.888713i
\(105\) 0 0
\(106\) 20.0415 + 14.5610i 1.94660 + 1.41429i
\(107\) 15.7807i 1.52558i 0.646649 + 0.762788i \(0.276170\pi\)
−0.646649 + 0.762788i \(0.723830\pi\)
\(108\) −2.32468 + 3.19965i −0.223692 + 0.307886i
\(109\) 3.06539 9.43429i 0.293611 0.903641i −0.690074 0.723739i \(-0.742422\pi\)
0.983685 0.179902i \(-0.0575781\pi\)
\(110\) 0 0
\(111\) 1.77944 + 5.47655i 0.168897 + 0.519811i
\(112\) 12.2105 + 3.96743i 1.15378 + 0.374887i
\(113\) 5.24399 + 1.70388i 0.493313 + 0.160287i 0.545100 0.838371i \(-0.316492\pi\)
−0.0517868 + 0.998658i \(0.516492\pi\)
\(114\) −2.32349 7.15098i −0.217615 0.669751i
\(115\) 0 0
\(116\) −3.81580 + 11.7438i −0.354288 + 1.09039i
\(117\) 1.89974 2.61477i 0.175631 0.241736i
\(118\) 4.22306i 0.388764i
\(119\) 14.0648 + 10.2187i 1.28932 + 0.936743i
\(120\) 0 0
\(121\) 0.266626 0.193715i 0.0242387 0.0176105i
\(122\) 11.2398 + 15.4703i 1.01761 + 1.40061i
\(123\) 5.15437 1.67476i 0.464754 0.151008i
\(124\) −29.4334 −2.64320
\(125\) 0 0
\(126\) −8.39527 −0.747910
\(127\) −0.943532 + 0.306572i −0.0837250 + 0.0272039i −0.350580 0.936533i \(-0.614016\pi\)
0.266855 + 0.963737i \(0.414016\pi\)
\(128\) 11.7159 + 16.1255i 1.03555 + 1.42531i
\(129\) −2.04767 + 1.48772i −0.180287 + 0.130986i
\(130\) 0 0
\(131\) 10.2029 + 7.41286i 0.891434 + 0.647665i 0.936252 0.351330i \(-0.114271\pi\)
−0.0448175 + 0.998995i \(0.514271\pi\)
\(132\) 12.9192i 1.12447i
\(133\) 6.23063 8.57573i 0.540264 0.743610i
\(134\) 1.39438 4.29147i 0.120456 0.370727i
\(135\) 0 0
\(136\) −7.44984 22.9282i −0.638818 1.96608i
\(137\) −7.83732 2.54650i −0.669588 0.217562i −0.0455566 0.998962i \(-0.514506\pi\)
−0.624031 + 0.781400i \(0.714506\pi\)
\(138\) −3.59186 1.16706i −0.305759 0.0993471i
\(139\) −2.49182 7.66904i −0.211354 0.650479i −0.999392 0.0348539i \(-0.988903\pi\)
0.788039 0.615626i \(-0.211097\pi\)
\(140\) 0 0
\(141\) −2.18525 + 6.72551i −0.184031 + 0.566390i
\(142\) 1.02409 1.40954i 0.0859397 0.118286i
\(143\) 10.5577i 0.882875i
\(144\) 3.01919 + 2.19357i 0.251599 + 0.182797i
\(145\) 0 0
\(146\) 3.71209 2.69699i 0.307215 0.223205i
\(147\) −2.84226 3.91204i −0.234426 0.322660i
\(148\) 21.6597 7.03765i 1.78041 0.578491i
\(149\) 19.1101 1.56556 0.782781 0.622298i \(-0.213801\pi\)
0.782781 + 0.622298i \(0.213801\pi\)
\(150\) 0 0
\(151\) 1.58550 0.129026 0.0645132 0.997917i \(-0.479451\pi\)
0.0645132 + 0.997917i \(0.479451\pi\)
\(152\) −13.9800 + 4.54239i −1.13393 + 0.368437i
\(153\) 2.97030 + 4.08826i 0.240134 + 0.330517i
\(154\) 22.1862 16.1192i 1.78782 1.29892i
\(155\) 0 0
\(156\) −10.3414 7.51345i −0.827973 0.601558i
\(157\) 21.8510i 1.74390i 0.489599 + 0.871948i \(0.337143\pi\)
−0.489599 + 0.871948i \(0.662857\pi\)
\(158\) −19.1247 + 26.3229i −1.52148 + 2.09414i
\(159\) −3.13700 + 9.65469i −0.248780 + 0.765667i
\(160\) 0 0
\(161\) −1.64531 5.06376i −0.129669 0.399080i
\(162\) −2.32085 0.754089i −0.182343 0.0592468i
\(163\) 9.63786 + 3.13153i 0.754896 + 0.245280i 0.661087 0.750310i \(-0.270096\pi\)
0.0938092 + 0.995590i \(0.470096\pi\)
\(164\) −6.62363 20.3854i −0.517219 1.59184i
\(165\) 0 0
\(166\) 2.98429 9.18469i 0.231626 0.712870i
\(167\) 0.888195 1.22250i 0.0687306 0.0945996i −0.773268 0.634080i \(-0.781379\pi\)
0.841998 + 0.539480i \(0.181379\pi\)
\(168\) 16.4126i 1.26626i
\(169\) −2.06617 1.50116i −0.158936 0.115474i
\(170\) 0 0
\(171\) 2.49274 1.81108i 0.190624 0.138497i
\(172\) 5.88389 + 8.09848i 0.448643 + 0.617504i
\(173\) 13.1772 4.28153i 1.00184 0.325518i 0.238241 0.971206i \(-0.423429\pi\)
0.763602 + 0.645688i \(0.223429\pi\)
\(174\) −7.61901 −0.577595
\(175\) 0 0
\(176\) −12.1906 −0.918897
\(177\) −1.64586 + 0.534773i −0.123711 + 0.0401960i
\(178\) −12.2407 16.8479i −0.917482 1.26281i
\(179\) 11.6949 8.49685i 0.874119 0.635085i −0.0575701 0.998341i \(-0.518335\pi\)
0.931689 + 0.363257i \(0.118335\pi\)
\(180\) 0 0
\(181\) −13.9068 10.1039i −1.03369 0.751017i −0.0646435 0.997908i \(-0.520591\pi\)
−0.969043 + 0.246891i \(0.920591\pi\)
\(182\) 27.1338i 2.01129i
\(183\) −4.60595 + 6.33955i −0.340482 + 0.468633i
\(184\) −2.28159 + 7.02201i −0.168201 + 0.517670i
\(185\) 0 0
\(186\) −5.61202 17.2720i −0.411493 1.26645i
\(187\) −15.6992 5.10099i −1.14804 0.373021i
\(188\) 26.5993 + 8.64262i 1.93995 + 0.630328i
\(189\) −1.06311 3.27190i −0.0773296 0.237996i
\(190\) 0 0
\(191\) 3.25778 10.0264i 0.235725 0.725486i −0.761300 0.648400i \(-0.775438\pi\)
0.997024 0.0770858i \(-0.0245615\pi\)
\(192\) −5.01034 + 6.89613i −0.361590 + 0.497686i
\(193\) 0.682908i 0.0491568i −0.999698 0.0245784i \(-0.992176\pi\)
0.999698 0.0245784i \(-0.00782434\pi\)
\(194\) −21.0311 15.2800i −1.50995 1.09704i
\(195\) 0 0
\(196\) −15.4721 + 11.2411i −1.10515 + 0.802936i
\(197\) −13.6937 18.8478i −0.975639 1.34285i −0.939146 0.343518i \(-0.888381\pi\)
−0.0364929 0.999334i \(-0.511619\pi\)
\(198\) 7.58119 2.46328i 0.538772 0.175058i
\(199\) −10.1946 −0.722679 −0.361339 0.932434i \(-0.617680\pi\)
−0.361339 + 0.932434i \(0.617680\pi\)
\(200\) 0 0
\(201\) 1.84910 0.130425
\(202\) 4.08872 1.32850i 0.287681 0.0934733i
\(203\) −6.31351 8.68980i −0.443122 0.609905i
\(204\) 16.1690 11.7475i 1.13206 0.822488i
\(205\) 0 0
\(206\) −31.4184 22.8268i −2.18902 1.59042i
\(207\) 1.54765i 0.107569i
\(208\) −7.08969 + 9.75813i −0.491582 + 0.676604i
\(209\) −3.11023 + 9.57230i −0.215139 + 0.662130i
\(210\) 0 0
\(211\) 5.64172 + 17.3634i 0.388392 + 1.19535i 0.933990 + 0.357300i \(0.116303\pi\)
−0.545598 + 0.838047i \(0.683697\pi\)
\(212\) 38.1841 + 12.4068i 2.62250 + 0.852101i
\(213\) 0.679025 + 0.220629i 0.0465260 + 0.0151172i
\(214\) 11.9000 + 36.6245i 0.813470 + 2.50360i
\(215\) 0 0
\(216\) −1.47423 + 4.53722i −0.100309 + 0.308718i
\(217\) 15.0491 20.7133i 1.02160 1.40611i
\(218\) 24.2071i 1.63951i
\(219\) 1.52117 + 1.10520i 0.102791 + 0.0746823i
\(220\) 0 0
\(221\) −13.2134 + 9.60011i −0.888831 + 0.645774i
\(222\) 8.25961 + 11.3684i 0.554349 + 0.762996i
\(223\) −16.3813 + 5.32262i −1.09698 + 0.356429i −0.800938 0.598748i \(-0.795665\pi\)
−0.296037 + 0.955176i \(0.595665\pi\)
\(224\) −1.49473 −0.0998708
\(225\) 0 0
\(226\) 13.4554 0.895039
\(227\) −4.11692 + 1.33767i −0.273250 + 0.0887842i −0.442437 0.896800i \(-0.645886\pi\)
0.169187 + 0.985584i \(0.445886\pi\)
\(228\) −7.16279 9.85874i −0.474367 0.652911i
\(229\) 16.4349 11.9407i 1.08605 0.789062i 0.107322 0.994224i \(-0.465772\pi\)
0.978728 + 0.205163i \(0.0657723\pi\)
\(230\) 0 0
\(231\) 9.09165 + 6.60547i 0.598187 + 0.434608i
\(232\) 14.8950i 0.977906i
\(233\) −0.200409 + 0.275839i −0.0131292 + 0.0180708i −0.815531 0.578713i \(-0.803555\pi\)
0.802402 + 0.596784i \(0.203555\pi\)
\(234\) 2.43724 7.50107i 0.159328 0.490360i
\(235\) 0 0
\(236\) 2.11502 + 6.50936i 0.137676 + 0.423723i
\(237\) −12.6807 4.12020i −0.823697 0.267635i
\(238\) 40.3480 + 13.1099i 2.61537 + 0.849786i
\(239\) 2.21407 + 6.81421i 0.143216 + 0.440774i 0.996777 0.0802185i \(-0.0255618\pi\)
−0.853561 + 0.520993i \(0.825562\pi\)
\(240\) 0 0
\(241\) −3.88194 + 11.9474i −0.250058 + 0.769599i 0.744705 + 0.667393i \(0.232590\pi\)
−0.994763 + 0.102206i \(0.967410\pi\)
\(242\) 0.472720 0.650643i 0.0303876 0.0418249i
\(243\) 1.00000i 0.0641500i
\(244\) 25.0728 + 18.2165i 1.60512 + 1.16619i
\(245\) 0 0
\(246\) 10.6996 7.77370i 0.682181 0.495633i
\(247\) 5.85348 + 8.05662i 0.372448 + 0.512631i
\(248\) −33.7665 + 10.9714i −2.14417 + 0.696684i
\(249\) 3.95747 0.250795
\(250\) 0 0
\(251\) 17.0160 1.07404 0.537022 0.843568i \(-0.319549\pi\)
0.537022 + 0.843568i \(0.319549\pi\)
\(252\) −12.9403 + 4.20457i −0.815164 + 0.264863i
\(253\) 2.97154 + 4.08998i 0.186819 + 0.257135i
\(254\) −1.95861 + 1.42301i −0.122894 + 0.0892879i
\(255\) 0 0
\(256\) 25.5586 + 18.5694i 1.59741 + 1.16059i
\(257\) 4.13200i 0.257747i −0.991661 0.128874i \(-0.958864\pi\)
0.991661 0.128874i \(-0.0411361\pi\)
\(258\) −3.63045 + 4.99689i −0.226022 + 0.311093i
\(259\) −6.12177 + 18.8409i −0.380388 + 1.17072i
\(260\) 0 0
\(261\) −0.964807 2.96937i −0.0597201 0.183799i
\(262\) 29.2694 + 9.51020i 1.80827 + 0.587542i
\(263\) −0.986940 0.320676i −0.0608573 0.0197737i 0.278430 0.960456i \(-0.410186\pi\)
−0.339287 + 0.940683i \(0.610186\pi\)
\(264\) −4.81567 14.8211i −0.296384 0.912176i
\(265\) 0 0
\(266\) 7.99348 24.6014i 0.490112 1.50841i
\(267\) 5.01611 6.90408i 0.306981 0.422523i
\(268\) 7.31315i 0.446722i
\(269\) −12.7741 9.28093i −0.778851 0.565869i 0.125783 0.992058i \(-0.459856\pi\)
−0.904634 + 0.426189i \(0.859856\pi\)
\(270\) 0 0
\(271\) 11.0838 8.05286i 0.673294 0.489176i −0.197832 0.980236i \(-0.563390\pi\)
0.871126 + 0.491059i \(0.163390\pi\)
\(272\) −11.0849 15.2571i −0.672122 0.925096i
\(273\) 10.5749 3.43600i 0.640023 0.207956i
\(274\) −20.1095 −1.21486
\(275\) 0 0
\(276\) −6.12092 −0.368436
\(277\) 6.63827 2.15691i 0.398855 0.129596i −0.102719 0.994710i \(-0.532754\pi\)
0.501574 + 0.865114i \(0.332754\pi\)
\(278\) −11.5663 15.9196i −0.693699 0.954795i
\(279\) 6.02080 4.37437i 0.360456 0.261886i
\(280\) 0 0
\(281\) −6.43834 4.67773i −0.384079 0.279050i 0.378946 0.925419i \(-0.376287\pi\)
−0.763025 + 0.646369i \(0.776287\pi\)
\(282\) 17.2567i 1.02762i
\(283\) −16.3376 + 22.4868i −0.971169 + 1.33670i −0.0297149 + 0.999558i \(0.509460\pi\)
−0.941454 + 0.337141i \(0.890540\pi\)
\(284\) 0.872582 2.68553i 0.0517782 0.159357i
\(285\) 0 0
\(286\) 7.96141 + 24.5027i 0.470768 + 1.44888i
\(287\) 17.7325 + 5.76163i 1.04672 + 0.340099i
\(288\) −0.413214 0.134261i −0.0243488 0.00791142i
\(289\) −2.63794 8.11876i −0.155173 0.477574i
\(290\) 0 0
\(291\) 3.29190 10.1314i 0.192975 0.593915i
\(292\) 4.37103 6.01621i 0.255795 0.352072i
\(293\) 14.2098i 0.830146i −0.909788 0.415073i \(-0.863756\pi\)
0.909788 0.415073i \(-0.136244\pi\)
\(294\) −9.54649 6.93593i −0.556763 0.404512i
\(295\) 0 0
\(296\) 22.2250 16.1474i 1.29180 0.938548i
\(297\) 1.92004 + 2.64270i 0.111412 + 0.153345i
\(298\) 44.3517 14.4107i 2.56922 0.834791i
\(299\) 5.00206 0.289276
\(300\) 0 0
\(301\) −8.70755 −0.501895
\(302\) 3.67971 1.19561i 0.211744 0.0687997i
\(303\) 1.03552 + 1.42527i 0.0594892 + 0.0818798i
\(304\) −9.30270 + 6.75881i −0.533547 + 0.387644i
\(305\) 0 0
\(306\) 9.97652 + 7.24837i 0.570320 + 0.414362i
\(307\) 23.2911i 1.32930i 0.747157 + 0.664648i \(0.231418\pi\)
−0.747157 + 0.664648i \(0.768582\pi\)
\(308\) 26.1245 35.9573i 1.48858 2.04886i
\(309\) 4.91777 15.1354i 0.279762 0.861020i
\(310\) 0 0
\(311\) −2.33284 7.17976i −0.132283 0.407127i 0.862874 0.505419i \(-0.168662\pi\)
−0.995158 + 0.0982923i \(0.968662\pi\)
\(312\) −14.6645 4.76477i −0.830211 0.269752i
\(313\) −30.1072 9.78241i −1.70176 0.552934i −0.712830 0.701337i \(-0.752587\pi\)
−0.988927 + 0.148402i \(0.952587\pi\)
\(314\) 16.4776 + 50.7127i 0.929883 + 2.86188i
\(315\) 0 0
\(316\) −16.2953 + 50.1518i −0.916682 + 2.82126i
\(317\) −15.1861 + 20.9019i −0.852938 + 1.17397i 0.130270 + 0.991479i \(0.458416\pi\)
−0.983208 + 0.182490i \(0.941584\pi\)
\(318\) 24.7726i 1.38918i
\(319\) 8.25100 + 5.99471i 0.461968 + 0.335639i
\(320\) 0 0
\(321\) −12.7668 + 9.27565i −0.712575 + 0.517716i
\(322\) −7.63705 10.5115i −0.425596 0.585783i
\(323\) −14.8083 + 4.81152i −0.823959 + 0.267720i
\(324\) −3.95498 −0.219721
\(325\) 0 0
\(326\) 24.7295 1.36964
\(327\) 9.43429 3.06539i 0.521717 0.169516i
\(328\) −15.1975 20.9175i −0.839139 1.15498i
\(329\) −19.6821 + 14.2999i −1.08511 + 0.788376i
\(330\) 0 0
\(331\) −16.2679 11.8193i −0.894166 0.649650i 0.0427948 0.999084i \(-0.486374\pi\)
−0.936961 + 0.349434i \(0.886374\pi\)
\(332\) 15.6517i 0.859001i
\(333\) −3.38469 + 4.65863i −0.185480 + 0.255291i
\(334\) 1.13949 3.50700i 0.0623504 0.191895i
\(335\) 0 0
\(336\) 3.96743 + 12.2105i 0.216441 + 0.666137i
\(337\) −3.21816 1.04564i −0.175304 0.0569599i 0.220050 0.975489i \(-0.429378\pi\)
−0.395354 + 0.918529i \(0.629378\pi\)
\(338\) −5.92729 1.92589i −0.322402 0.104755i
\(339\) 1.70388 + 5.24399i 0.0925419 + 0.284815i
\(340\) 0 0
\(341\) −7.51225 + 23.1203i −0.406811 + 1.25204i
\(342\) 4.41955 6.08299i 0.238982 0.328930i
\(343\) 7.44633i 0.402064i
\(344\) 9.76882 + 7.09747i 0.526700 + 0.382670i
\(345\) 0 0
\(346\) 27.3536 19.8735i 1.47054 1.06841i
\(347\) −17.1612 23.6204i −0.921262 1.26801i −0.963172 0.268887i \(-0.913344\pi\)
0.0419100 0.999121i \(-0.486656\pi\)
\(348\) −11.7438 + 3.81580i −0.629534 + 0.204548i
\(349\) 20.3979 1.09187 0.545937 0.837826i \(-0.316174\pi\)
0.545937 + 0.837826i \(0.316174\pi\)
\(350\) 0 0
\(351\) 3.23204 0.172513
\(352\) 1.34979 0.438573i 0.0719440 0.0233760i
\(353\) 1.09532 + 1.50757i 0.0582978 + 0.0802400i 0.837170 0.546942i \(-0.184208\pi\)
−0.778873 + 0.627182i \(0.784208\pi\)
\(354\) −3.41653 + 2.48225i −0.181586 + 0.131930i
\(355\) 0 0
\(356\) −27.3055 19.8386i −1.44719 1.05145i
\(357\) 17.3850i 0.920113i
\(358\) 20.7347 28.5389i 1.09586 1.50833i
\(359\) −1.18599 + 3.65011i −0.0625943 + 0.192645i −0.977463 0.211105i \(-0.932294\pi\)
0.914869 + 0.403751i \(0.132294\pi\)
\(360\) 0 0
\(361\) −2.93759 9.04097i −0.154610 0.475841i
\(362\) −39.8949 12.9626i −2.09683 0.681301i
\(363\) 0.313438 + 0.101842i 0.0164512 + 0.00534532i
\(364\) −13.5893 41.8236i −0.712274 2.19215i
\(365\) 0 0
\(366\) −5.90913 + 18.1864i −0.308875 + 0.950620i
\(367\) −15.0638 + 20.7335i −0.786324 + 1.08228i 0.208232 + 0.978079i \(0.433229\pi\)
−0.994556 + 0.104203i \(0.966771\pi\)
\(368\) 5.77570i 0.301079i
\(369\) 4.38457 + 3.18557i 0.228251 + 0.165834i
\(370\) 0 0
\(371\) −28.2543 + 20.5279i −1.46689 + 1.06576i
\(372\) −17.3005 23.8122i −0.896991 1.23460i
\(373\) −20.3877 + 6.62437i −1.05564 + 0.342997i −0.784878 0.619651i \(-0.787274\pi\)
−0.270758 + 0.962648i \(0.587274\pi\)
\(374\) −40.2821 −2.08294
\(375\) 0 0
\(376\) 33.7366 1.73983
\(377\) 9.59712 3.11829i 0.494277 0.160600i
\(378\) −4.93461 6.79191i −0.253809 0.349338i
\(379\) −20.9304 + 15.2068i −1.07512 + 0.781120i −0.976826 0.214037i \(-0.931339\pi\)
−0.0982945 + 0.995157i \(0.531339\pi\)
\(380\) 0 0
\(381\) −0.802617 0.583135i −0.0411193 0.0298749i
\(382\) 25.7264i 1.31628i
\(383\) −8.54263 + 11.7579i −0.436508 + 0.600802i −0.969432 0.245362i \(-0.921093\pi\)
0.532924 + 0.846163i \(0.321093\pi\)
\(384\) −6.15940 + 18.9567i −0.314321 + 0.967379i
\(385\) 0 0
\(386\) −0.514974 1.58493i −0.0262115 0.0806706i
\(387\) −2.40718 0.782139i −0.122364 0.0397584i
\(388\) −40.0696 13.0194i −2.03423 0.660960i
\(389\) −7.13973 21.9738i −0.361999 1.11412i −0.951839 0.306598i \(-0.900809\pi\)
0.589840 0.807520i \(-0.299191\pi\)
\(390\) 0 0
\(391\) −2.41677 + 7.43806i −0.122221 + 0.376159i
\(392\) −13.5596 + 18.6632i −0.684864 + 0.942635i
\(393\) 12.6115i 0.636167i
\(394\) −45.9940 33.4166i −2.31715 1.68350i
\(395\) 0 0
\(396\) 10.4519 7.59371i 0.525225 0.381598i
\(397\) 8.19052 + 11.2733i 0.411070 + 0.565790i 0.963479 0.267784i \(-0.0862912\pi\)
−0.552409 + 0.833573i \(0.686291\pi\)
\(398\) −23.6602 + 7.68766i −1.18598 + 0.385348i
\(399\) 10.6002 0.530673
\(400\) 0 0
\(401\) −27.5822 −1.37739 −0.688694 0.725052i \(-0.741816\pi\)
−0.688694 + 0.725052i \(0.741816\pi\)
\(402\) 4.29147 1.39438i 0.214039 0.0695456i
\(403\) 14.1381 + 19.4594i 0.704270 + 0.969344i
\(404\) 5.63693 4.09547i 0.280448 0.203757i
\(405\) 0 0
\(406\) −21.2056 15.4068i −1.05242 0.764625i
\(407\) 18.8101i 0.932383i
\(408\) 14.1704 19.5039i 0.701541 0.965588i
\(409\) −4.08288 + 12.5658i −0.201886 + 0.621340i 0.797941 + 0.602735i \(0.205922\pi\)
−0.999827 + 0.0186048i \(0.994078\pi\)
\(410\) 0 0
\(411\) −2.54650 7.83732i −0.125610 0.386587i
\(412\) −59.8601 19.4497i −2.94909 0.958218i
\(413\) −5.66223 1.83977i −0.278620 0.0905292i
\(414\) −1.16706 3.59186i −0.0573581 0.176530i
\(415\) 0 0
\(416\) 0.433937 1.33552i 0.0212755 0.0654794i
\(417\) 4.73973 6.52367i 0.232105 0.319466i
\(418\) 24.5612i 1.20133i
\(419\) −7.15797 5.20057i −0.349690 0.254064i 0.399049 0.916930i \(-0.369340\pi\)
−0.748739 + 0.662865i \(0.769340\pi\)
\(420\) 0 0
\(421\) 30.3192 22.0282i 1.47767 1.07359i 0.499367 0.866390i \(-0.333566\pi\)
0.978299 0.207197i \(-0.0664341\pi\)
\(422\) 26.1871 + 36.0435i 1.27477 + 1.75457i
\(423\) −6.72551 + 2.18525i −0.327005 + 0.106250i
\(424\) 48.4301 2.35197
\(425\) 0 0
\(426\) 1.74229 0.0844140
\(427\) −25.6390 + 8.33062i −1.24076 + 0.403147i
\(428\) 36.6850 + 50.4926i 1.77324 + 2.44065i
\(429\) −8.54132 + 6.20563i −0.412379 + 0.299611i
\(430\) 0 0
\(431\) 21.5397 + 15.6495i 1.03753 + 0.753809i 0.969802 0.243895i \(-0.0784252\pi\)
0.0677274 + 0.997704i \(0.478425\pi\)
\(432\) 3.73192i 0.179552i
\(433\) 20.5708 28.3133i 0.988571 1.36065i 0.0564887 0.998403i \(-0.482010\pi\)
0.932082 0.362248i \(-0.117990\pi\)
\(434\) 19.3069 59.4206i 0.926762 2.85228i
\(435\) 0 0
\(436\) −12.1235 37.3124i −0.580613 1.78694i
\(437\) 4.53521 + 1.47358i 0.216949 + 0.0704909i
\(438\) 4.36383 + 1.41789i 0.208512 + 0.0677496i
\(439\) −6.19701 19.0724i −0.295767 0.910277i −0.982963 0.183805i \(-0.941159\pi\)
0.687196 0.726472i \(-0.258841\pi\)
\(440\) 0 0
\(441\) 1.49427 4.59888i 0.0711556 0.218994i
\(442\) −23.4270 + 32.2445i −1.11431 + 1.53371i
\(443\) 4.14871i 0.197111i 0.995132 + 0.0985556i \(0.0314222\pi\)
−0.995132 + 0.0985556i \(0.968578\pi\)
\(444\) 18.4248 + 13.3864i 0.874402 + 0.635291i
\(445\) 0 0
\(446\) −34.0048 + 24.7060i −1.61018 + 1.16986i
\(447\) 11.2326 + 15.4604i 0.531286 + 0.731252i
\(448\) −27.8900 + 9.06201i −1.31768 + 0.428140i
\(449\) 8.34804 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(450\) 0 0
\(451\) −17.7035 −0.833627
\(452\) 20.7399 6.73880i 0.975523 0.316967i
\(453\) 0.931936 + 1.28270i 0.0437862 + 0.0602665i
\(454\) −8.54602 + 6.20905i −0.401085 + 0.291405i
\(455\) 0 0
\(456\) −11.8921 8.64014i −0.556900 0.404612i
\(457\) 20.5774i 0.962571i −0.876564 0.481285i \(-0.840170\pi\)
0.876564 0.481285i \(-0.159830\pi\)
\(458\) 29.1386 40.1059i 1.36156 1.87402i
\(459\) −1.56158 + 4.80604i −0.0728882 + 0.224327i
\(460\) 0 0
\(461\) 8.86541 + 27.2849i 0.412903 + 1.27079i 0.914113 + 0.405460i \(0.132889\pi\)
−0.501210 + 0.865326i \(0.667111\pi\)
\(462\) 26.0815 + 8.47438i 1.21342 + 0.394264i
\(463\) 38.1181 + 12.3853i 1.77150 + 0.575594i 0.998284 0.0585520i \(-0.0186483\pi\)
0.773213 + 0.634146i \(0.218648\pi\)
\(464\) 3.60058 + 11.0815i 0.167153 + 0.514444i
\(465\) 0 0
\(466\) −0.257111 + 0.791307i −0.0119105 + 0.0366566i
\(467\) 4.78569 6.58694i 0.221456 0.304807i −0.683805 0.729665i \(-0.739676\pi\)
0.905260 + 0.424858i \(0.139676\pi\)
\(468\) 12.7827i 0.590878i
\(469\) 5.14650 + 3.73915i 0.237643 + 0.172658i
\(470\) 0 0
\(471\) −17.6778 + 12.8437i −0.814550 + 0.591805i
\(472\) 4.85276 + 6.67925i 0.223366 + 0.307438i
\(473\) 7.86319 2.55491i 0.361550 0.117475i
\(474\) −32.5369 −1.49447
\(475\) 0 0
\(476\) 68.7575 3.15149
\(477\) −9.65469 + 3.13700i −0.442058 + 0.143633i
\(478\) 10.2770 + 14.1451i 0.470061 + 0.646983i
\(479\) −22.7027 + 16.4945i −1.03731 + 0.753652i −0.969759 0.244064i \(-0.921519\pi\)
−0.0675535 + 0.997716i \(0.521519\pi\)
\(480\) 0 0
\(481\) −15.0569 10.9395i −0.686534 0.498796i
\(482\) 30.6554i 1.39631i
\(483\) 3.12957 4.30749i 0.142401 0.195998i
\(484\) 0.402784 1.23964i 0.0183084 0.0563473i
\(485\) 0 0
\(486\) −0.754089 2.32085i −0.0342062 0.105276i
\(487\) 14.4725 + 4.70239i 0.655810 + 0.213086i 0.617974 0.786198i \(-0.287954\pi\)
0.0378360 + 0.999284i \(0.487954\pi\)
\(488\) 35.5541 + 11.5522i 1.60946 + 0.522945i
\(489\) 3.13153 + 9.63786i 0.141613 + 0.435839i
\(490\) 0 0
\(491\) 2.56246 7.88645i 0.115642 0.355910i −0.876438 0.481514i \(-0.840087\pi\)
0.992080 + 0.125604i \(0.0400869\pi\)
\(492\) 12.5989 17.3409i 0.568002 0.781788i
\(493\) 15.7775i 0.710585i
\(494\) 19.6604 + 14.2842i 0.884565 + 0.642674i
\(495\) 0 0
\(496\) −22.4691 + 16.3248i −1.00889 + 0.733005i
\(497\) 1.44375 + 1.98715i 0.0647611 + 0.0891360i
\(498\) 9.18469 2.98429i 0.411576 0.133729i
\(499\) 24.4006 1.09232 0.546160 0.837681i \(-0.316089\pi\)
0.546160 + 0.837681i \(0.316089\pi\)
\(500\) 0 0
\(501\) 1.51109 0.0675104
\(502\) 39.4916 12.8316i 1.76260 0.572703i
\(503\) −6.15596 8.47295i −0.274481 0.377790i 0.649415 0.760434i \(-0.275014\pi\)
−0.923896 + 0.382644i \(0.875014\pi\)
\(504\) −13.2781 + 9.64708i −0.591452 + 0.429715i
\(505\) 0 0
\(506\) 9.98070 + 7.25141i 0.443696 + 0.322364i
\(507\) 2.55393i 0.113424i
\(508\) −2.30629 + 3.17433i −0.102325 + 0.140838i
\(509\) 3.41769 10.5186i 0.151486 0.466227i −0.846302 0.532704i \(-0.821176\pi\)
0.997788 + 0.0664770i \(0.0211759\pi\)
\(510\) 0 0
\(511\) 1.99893 + 6.15207i 0.0884274 + 0.272152i
\(512\) 35.4071 + 11.5045i 1.56479 + 0.508431i
\(513\) 2.93039 + 0.952141i 0.129380 + 0.0420381i
\(514\) −3.11590 9.58974i −0.137436 0.422985i
\(515\) 0 0
\(516\) −3.09335 + 9.52034i −0.136177 + 0.419110i
\(517\) 13.5778 18.6882i 0.597150 0.821906i
\(518\) 48.3432i 2.12408i
\(519\) 11.2092 + 8.14395i 0.492029 + 0.357480i
\(520\) 0 0
\(521\) 33.5105 24.3468i 1.46812 1.06665i 0.486967 0.873420i \(-0.338103\pi\)
0.981153 0.193231i \(-0.0618968\pi\)
\(522\) −4.47834 6.16391i −0.196012 0.269787i
\(523\) −12.9748 + 4.21576i −0.567347 + 0.184342i −0.578624 0.815594i \(-0.696410\pi\)
0.0112775 + 0.999936i \(0.496410\pi\)
\(524\) 49.8783 2.17894
\(525\) 0 0
\(526\) −2.53235 −0.110416
\(527\) −35.7671 + 11.6214i −1.55804 + 0.506238i
\(528\) −7.16543 9.86236i −0.311835 0.429204i
\(529\) −16.6696 + 12.1112i −0.724766 + 0.526573i
\(530\) 0 0
\(531\) −1.40005 1.01720i −0.0607572 0.0441427i
\(532\) 41.9235i 1.81762i
\(533\) −10.2959 + 14.1711i −0.445965 + 0.613818i
\(534\) 6.43533 19.8059i 0.278484 0.857086i
\(535\) 0 0
\(536\) −2.72600 8.38976i −0.117745 0.362382i
\(537\) 13.7482 + 4.46706i 0.593278 + 0.192768i
\(538\) −36.6454 11.9068i −1.57990 0.513339i
\(539\) 4.88112 + 15.0225i 0.210245 + 0.647066i
\(540\) 0 0
\(541\) 4.53011 13.9423i 0.194765 0.599424i −0.805214 0.592984i \(-0.797950\pi\)
0.999979 0.00644072i \(-0.00205016\pi\)
\(542\) 19.6513 27.0476i 0.844094 1.16180i
\(543\) 17.1898i 0.737685i
\(544\) 1.77626 + 1.29053i 0.0761566 + 0.0553310i
\(545\) 0 0
\(546\) 21.9517 15.9489i 0.939447 0.682548i
\(547\) 15.6423 + 21.5298i 0.668818 + 0.920549i 0.999733 0.0231115i \(-0.00735726\pi\)
−0.330915 + 0.943661i \(0.607357\pi\)
\(548\) −30.9965 + 10.0714i −1.32410 + 0.430227i
\(549\) −7.83611 −0.334437
\(550\) 0 0
\(551\) 9.62005 0.409828
\(552\) −7.02201 + 2.28159i −0.298877 + 0.0971109i
\(553\) −26.9618 37.1097i −1.14653 1.57806i
\(554\) 13.7799 10.0117i 0.585453 0.425356i
\(555\) 0 0
\(556\) −25.8010 18.7455i −1.09421 0.794988i
\(557\) 10.3141i 0.437020i 0.975835 + 0.218510i \(0.0701197\pi\)
−0.975835 + 0.218510i \(0.929880\pi\)
\(558\) 10.6747 14.6925i 0.451896 0.621981i
\(559\) 2.52790 7.78008i 0.106919 0.329063i
\(560\) 0 0
\(561\) −5.10099 15.6992i −0.215364 0.662822i
\(562\) −18.4698 6.00121i −0.779103 0.253146i
\(563\) −32.7193 10.6311i −1.37895 0.448049i −0.476628 0.879105i \(-0.658141\pi\)
−0.902325 + 0.431056i \(0.858141\pi\)
\(564\) 8.64262 + 26.5993i 0.363920 + 1.12003i
\(565\) 0 0
\(566\) −20.9600 + 64.5083i −0.881016 + 2.71149i
\(567\) 2.02215 2.78325i 0.0849222 0.116885i
\(568\) 3.40614i 0.142918i
\(569\) −9.87387 7.17378i −0.413934 0.300741i 0.361259 0.932466i \(-0.382347\pi\)
−0.775193 + 0.631725i \(0.782347\pi\)
\(570\) 0 0
\(571\) −34.0308 + 24.7248i −1.42415 + 1.03470i −0.433076 + 0.901357i \(0.642572\pi\)
−0.991070 + 0.133345i \(0.957428\pi\)
\(572\) 24.5432 + 33.7808i 1.02620 + 1.41245i
\(573\) 10.0264 3.25778i 0.418859 0.136096i
\(574\) 45.4992 1.89910
\(575\) 0 0
\(576\) −8.52409 −0.355170
\(577\) 16.6768 5.41863i 0.694266 0.225581i 0.0594353 0.998232i \(-0.481070\pi\)
0.634830 + 0.772652i \(0.281070\pi\)
\(578\) −12.2445 16.8532i −0.509305 0.700999i
\(579\) 0.552485 0.401404i 0.0229605 0.0166818i
\(580\) 0 0
\(581\) 11.0146 + 8.00260i 0.456964 + 0.332004i
\(582\) 25.9959i 1.07756i
\(583\) 19.4913 26.8275i 0.807249 1.11108i
\(584\) 2.77196 8.53120i 0.114704 0.353024i
\(585\) 0 0
\(586\) −10.7155 32.9788i −0.442651 1.36234i
\(587\) 20.8395 + 6.77115i 0.860137 + 0.279475i 0.705686 0.708525i \(-0.250639\pi\)
0.154451 + 0.988000i \(0.450639\pi\)
\(588\) −18.1885 5.90980i −0.750081 0.243716i
\(589\) 7.08595 + 21.8083i 0.291971 + 0.898595i
\(590\) 0 0
\(591\) 7.19923 22.1569i 0.296137 0.911415i
\(592\) 12.6314 17.3856i 0.519148 0.714545i
\(593\) 38.0061i 1.56072i −0.625330 0.780361i \(-0.715035\pi\)
0.625330 0.780361i \(-0.284965\pi\)
\(594\) 6.44895 + 4.68544i 0.264604 + 0.192246i
\(595\) 0 0
\(596\) 61.1456 44.4249i 2.50462 1.81971i
\(597\) −5.99226 8.24764i −0.245247 0.337553i
\(598\) 11.6090 3.77200i 0.474728 0.154248i
\(599\) −16.3154 −0.666629 −0.333314 0.942816i \(-0.608167\pi\)
−0.333314 + 0.942816i \(0.608167\pi\)
\(600\) 0 0
\(601\) 2.31871 0.0945822 0.0472911 0.998881i \(-0.484941\pi\)
0.0472911 + 0.998881i \(0.484941\pi\)
\(602\) −20.2089 + 6.56626i −0.823653 + 0.267621i
\(603\) 1.08687 + 1.49595i 0.0442609 + 0.0609199i
\(604\) 5.07305 3.68579i 0.206420 0.149973i
\(605\) 0 0
\(606\) 3.47807 + 2.52697i 0.141287 + 0.102651i
\(607\) 32.2134i 1.30750i −0.756709 0.653752i \(-0.773194\pi\)
0.756709 0.653752i \(-0.226806\pi\)
\(608\) 0.786876 1.08304i 0.0319120 0.0439231i
\(609\) 3.31921 10.2155i 0.134501 0.413952i
\(610\) 0 0
\(611\) −7.06281 21.7371i −0.285731 0.879389i
\(612\) 19.0078 + 6.17601i 0.768345 + 0.249651i
\(613\) 24.6782 + 8.01843i 0.996742 + 0.323861i 0.761563 0.648091i \(-0.224432\pi\)
0.235179 + 0.971952i \(0.424432\pi\)
\(614\) 17.5636 + 54.0552i 0.708809 + 2.18149i
\(615\) 0 0
\(616\) 16.5673 50.9888i 0.667514 2.05440i
\(617\) −1.11899 + 1.54016i −0.0450488 + 0.0620043i −0.830947 0.556351i \(-0.812201\pi\)
0.785898 + 0.618356i \(0.212201\pi\)
\(618\) 38.8353i 1.56218i
\(619\) −16.0829 11.6849i −0.646425 0.469655i 0.215627 0.976476i \(-0.430821\pi\)
−0.862052 + 0.506821i \(0.830821\pi\)
\(620\) 0 0
\(621\) 1.25207 0.909685i 0.0502440 0.0365044i
\(622\) −10.8283 14.9039i −0.434177 0.597594i
\(623\) 27.9222 9.07246i 1.11868 0.363480i
\(624\) −12.0617 −0.482855
\(625\) 0 0
\(626\) −77.2509 −3.08757
\(627\) −9.57230 + 3.11023i −0.382281 + 0.124211i
\(628\) 50.7965 + 69.9154i 2.02700 + 2.78993i
\(629\) 23.5418 17.1041i 0.938673 0.681986i
\(630\) 0 0
\(631\) 26.6152 + 19.3371i 1.05953 + 0.769796i 0.974002 0.226539i \(-0.0727412\pi\)
0.0855315 + 0.996335i \(0.472741\pi\)
\(632\) 63.6090i 2.53023i
\(633\) −10.7312 + 14.7702i −0.426526 + 0.587063i
\(634\) −19.4828 + 59.9618i −0.773760 + 2.38139i
\(635\) 0 0
\(636\) 12.4068 + 38.1841i 0.491961 + 1.51410i
\(637\) 14.8638 + 4.82953i 0.588923 + 0.191353i
\(638\) 23.6699 + 7.69080i 0.937099 + 0.304482i
\(639\) 0.220629 + 0.679025i 0.00872793 + 0.0268618i
\(640\) 0 0
\(641\) −12.5963 + 38.7673i −0.497523 + 1.53122i 0.315465 + 0.948937i \(0.397839\pi\)
−0.812988 + 0.582280i \(0.802161\pi\)
\(642\) −22.6352 + 31.1547i −0.893341 + 1.22958i
\(643\) 24.9947i 0.985695i 0.870116 + 0.492847i \(0.164044\pi\)
−0.870116 + 0.492847i \(0.835956\pi\)
\(644\) −17.0360 12.3774i −0.671314 0.487738i
\(645\) 0 0
\(646\) −30.7396 + 22.3336i −1.20943 + 0.878705i
\(647\) −18.8228 25.9073i −0.739999 1.01852i −0.998619 0.0525420i \(-0.983268\pi\)
0.258620 0.965979i \(-0.416732\pi\)
\(648\) −4.53722 + 1.47423i −0.178239 + 0.0579132i
\(649\) 5.65299 0.221899
\(650\) 0 0
\(651\) 25.6030 1.00346
\(652\) 38.1176 12.3852i 1.49280 0.485040i
\(653\) 26.2606 + 36.1446i 1.02766 + 1.41445i 0.906693 + 0.421791i \(0.138599\pi\)
0.120964 + 0.992657i \(0.461401\pi\)
\(654\) 19.5840 14.2286i 0.765794 0.556382i
\(655\) 0 0
\(656\) −16.3629 11.8883i −0.638862 0.464161i
\(657\) 1.88027i 0.0733564i
\(658\) −34.8957 + 48.0298i −1.36038 + 1.87240i
\(659\) 7.42307 22.8458i 0.289162 0.889948i −0.695959 0.718082i \(-0.745020\pi\)
0.985120 0.171866i \(-0.0549796\pi\)
\(660\) 0 0
\(661\) 11.7095 + 36.0382i 0.455447 + 1.40172i 0.870610 + 0.491974i \(0.163725\pi\)
−0.415163 + 0.909747i \(0.636275\pi\)
\(662\) −46.6682 15.1634i −1.81381 0.589343i
\(663\) −15.5333 5.04708i −0.603264 0.196012i
\(664\) −5.83423 17.9559i −0.226412 0.696824i
\(665\) 0 0
\(666\) −4.34233 + 13.3643i −0.168262 + 0.517857i
\(667\) 2.84020 3.90920i 0.109973 0.151365i
\(668\) 5.97633i 0.231231i
\(669\) −13.9348 10.1242i −0.538750 0.391425i
\(670\) 0 0
\(671\) 20.7085 15.0456i 0.799444 0.580830i
\(672\) −0.878580 1.20926i −0.0338920 0.0466483i
\(673\) 17.5249 5.69418i 0.675534 0.219494i 0.0488951 0.998804i \(-0.484430\pi\)
0.626639 + 0.779310i \(0.284430\pi\)
\(674\) −8.25737 −0.318062
\(675\) 0 0
\(676\) −10.1008 −0.388491
\(677\) −21.6996 + 7.05064i −0.833985 + 0.270978i −0.694723 0.719277i \(-0.744473\pi\)
−0.139262 + 0.990256i \(0.544473\pi\)
\(678\) 7.90887 + 10.8856i 0.303738 + 0.418060i
\(679\) 29.6494 21.5416i 1.13784 0.826690i
\(680\) 0 0
\(681\) −3.50206 2.54440i −0.134199 0.0975015i
\(682\) 59.3236i 2.27162i
\(683\) 18.9304 26.0555i 0.724353 0.996987i −0.275015 0.961440i \(-0.588683\pi\)
0.999368 0.0355465i \(-0.0113172\pi\)
\(684\) 3.76570 11.5896i 0.143985 0.443141i
\(685\) 0 0
\(686\) 5.61519 + 17.2818i 0.214389 + 0.659822i
\(687\) 19.3204 + 6.27758i 0.737120 + 0.239505i
\(688\) 8.98339 + 2.91888i 0.342489 + 0.111281i
\(689\) −10.1389 31.2043i −0.386261 1.18879i
\(690\) 0 0
\(691\) 7.59466 23.3740i 0.288915 0.889188i −0.696283 0.717767i \(-0.745164\pi\)
0.985198 0.171421i \(-0.0548358\pi\)
\(692\) 32.2092 44.3321i 1.22441 1.68525i
\(693\) 11.2379i 0.426893i
\(694\) −57.6404 41.8782i −2.18800 1.58967i
\(695\) 0 0
\(696\) −12.0503 + 8.75508i −0.456767 + 0.331860i
\(697\) −16.0979 22.1568i −0.609751 0.839251i
\(698\) 47.3404 15.3818i 1.79186 0.582211i
\(699\) −0.340956 −0.0128961
\(700\) 0 0
\(701\) −3.66355 −0.138370 −0.0691852 0.997604i \(-0.522040\pi\)
−0.0691852 + 0.997604i \(0.522040\pi\)
\(702\) 7.50107 2.43724i 0.283109 0.0919879i
\(703\) −10.4289 14.3541i −0.393333 0.541377i
\(704\) 22.5267 16.3666i 0.849005 0.616838i
\(705\) 0 0
\(706\) 3.67890 + 2.67288i 0.138457 + 0.100595i
\(707\) 6.06087i 0.227942i
\(708\) −4.02300 + 5.53719i −0.151194 + 0.208100i
\(709\) 8.24980 25.3903i 0.309828 0.953552i −0.668003 0.744158i \(-0.732851\pi\)
0.977831 0.209394i \(-0.0671491\pi\)
\(710\) 0 0
\(711\) −4.12020 12.6807i −0.154519 0.475562i
\(712\) −38.7202 12.5810i −1.45110 0.471492i
\(713\) 10.9541 + 3.55919i 0.410233 + 0.133293i
\(714\) 13.1099 + 40.3480i 0.490624 + 1.50999i
\(715\) 0 0
\(716\) 17.6671 54.3739i 0.660252 2.03205i
\(717\) −4.21141 + 5.79651i −0.157278 + 0.216475i
\(718\) 9.36569i 0.349524i
\(719\) 14.4570 + 10.5036i 0.539156 + 0.391720i 0.823771 0.566922i \(-0.191866\pi\)
−0.284616 + 0.958642i \(0.591866\pi\)
\(720\) 0 0
\(721\) 44.2933 32.1810i 1.64957 1.19848i
\(722\) −13.6354 18.7675i −0.507457 0.698455i
\(723\) −11.9474 + 3.88194i −0.444328 + 0.144371i
\(724\) −67.9853 −2.52665
\(725\) 0 0
\(726\) 0.804239 0.0298481
\(727\) −32.4050 + 10.5290i −1.20184 + 0.390500i −0.840436 0.541910i \(-0.817701\pi\)
−0.361400 + 0.932411i \(0.617701\pi\)
\(728\) −31.1797 42.9152i −1.15560 1.59054i
\(729\) 0.809017 0.587785i 0.0299636 0.0217698i
\(730\) 0 0
\(731\) 10.3476 + 7.51799i 0.382721 + 0.278063i
\(732\) 30.9917i 1.14549i
\(733\) −23.6176 + 32.5068i −0.872335 + 1.20067i 0.106150 + 0.994350i \(0.466147\pi\)
−0.978485 + 0.206316i \(0.933853\pi\)
\(734\) −19.3258 + 59.4788i −0.713330 + 2.19540i
\(735\) 0 0
\(736\) −0.207789 0.639509i −0.00765921 0.0235726i
\(737\) −5.74457 1.86652i −0.211604 0.0687542i
\(738\) 12.5781 + 4.08688i 0.463007 + 0.150440i
\(739\) −4.78203 14.7176i −0.175910 0.541395i 0.823764 0.566933i \(-0.191870\pi\)
−0.999674 + 0.0255381i \(0.991870\pi\)
\(740\) 0 0
\(741\) −3.07736 + 9.47113i −0.113050 + 0.347931i
\(742\) −50.0939 + 68.9484i −1.83901 + 2.53118i
\(743\) 17.1140i 0.627853i −0.949447 0.313926i \(-0.898355\pi\)
0.949447 0.313926i \(-0.101645\pi\)
\(744\) −28.7235 20.8688i −1.05305 0.765089i
\(745\) 0 0
\(746\) −42.3214 + 30.7483i −1.54950 + 1.12577i
\(747\) 2.32614 + 3.20166i 0.0851092 + 0.117143i
\(748\) −62.0902 + 20.1743i −2.27024 + 0.737647i
\(749\) −54.2900 −1.98371
\(750\) 0 0
\(751\) −11.1559 −0.407086 −0.203543 0.979066i \(-0.565246\pi\)
−0.203543 + 0.979066i \(0.565246\pi\)
\(752\) 25.0991 8.15518i 0.915268 0.297389i
\(753\) 10.0018 + 13.7663i 0.364485 + 0.501671i
\(754\) 19.9220 14.4742i 0.725516 0.527118i
\(755\) 0 0
\(756\) −11.0077 7.99756i −0.400346 0.290868i
\(757\) 24.6773i 0.896911i −0.893805 0.448456i \(-0.851974\pi\)
0.893805 0.448456i \(-0.148026\pi\)
\(758\) −37.1089 + 51.0760i −1.34786 + 1.85516i
\(759\) −1.56223 + 4.80806i −0.0567054 + 0.174521i
\(760\) 0 0
\(761\) −12.4372 38.2779i −0.450850 1.38757i −0.875939 0.482422i \(-0.839757\pi\)
0.425089 0.905151i \(-0.360243\pi\)
\(762\) −2.30249 0.748123i −0.0834103 0.0271016i
\(763\) 32.4566 + 10.5458i 1.17501 + 0.381784i
\(764\) −12.8845 39.6543i −0.466143 1.43464i
\(765\) 0 0
\(766\) −10.9596 + 33.7302i −0.395987 + 1.21872i
\(767\) 3.28763 4.52503i 0.118709 0.163389i
\(768\) 31.5921i 1.13998i
\(769\) 17.8801 + 12.9907i 0.644773 + 0.468455i 0.861487 0.507780i \(-0.169534\pi\)
−0.216714 + 0.976235i \(0.569534\pi\)
\(770\) 0 0
\(771\) 3.34286 2.42873i 0.120390 0.0874685i
\(772\) −1.58754 2.18507i −0.0571370 0.0786423i
\(773\) −4.66049 + 1.51429i −0.167626 + 0.0544651i −0.391628 0.920124i \(-0.628088\pi\)
0.224002 + 0.974589i \(0.428088\pi\)
\(774\) −6.17649 −0.222009
\(775\) 0 0
\(776\) −50.8215 −1.82439
\(777\) −18.8409 + 6.12177i −0.675913 + 0.219617i
\(778\) −33.1405 45.6139i −1.18814 1.63534i
\(779\) −13.5097 + 9.81537i −0.484035 + 0.351672i
\(780\) 0 0
\(781\) −1.88681 1.37085i −0.0675153 0.0490528i
\(782\) 19.0851i 0.682481i
\(783\) 1.83517 2.52590i 0.0655837 0.0902682i
\(784\) −5.57648 + 17.1627i −0.199160 + 0.612952i
\(785\) 0 0
\(786\) 9.51020 + 29.2694i 0.339218 + 1.04400i
\(787\) 3.55198 + 1.15411i 0.126614 + 0.0411395i 0.371639 0.928377i \(-0.378796\pi\)
−0.245024 + 0.969517i \(0.578796\pi\)
\(788\) −87.6303 28.4728i −3.12170 1.01430i
\(789\) −0.320676 0.986940i −0.0114164 0.0351360i
\(790\) 0 0
\(791\) −5.86182 + 18.0408i −0.208422 + 0.641458i
\(792\) 9.15994 12.6076i 0.325484 0.447991i
\(793\) 25.3266i 0.899375i
\(794\) 27.5100 + 19.9872i 0.976294 + 0.709319i
\(795\) 0 0
\(796\) −32.6193 + 23.6993i −1.15616 + 0.839998i
\(797\) 1.96557 + 2.70538i 0.0696242 + 0.0958295i 0.842409 0.538839i \(-0.181137\pi\)
−0.772785 + 0.634668i \(0.781137\pi\)
\(798\) 24.6014 7.99348i 0.870880 0.282966i
\(799\) 35.7355 1.26423
\(800\) 0 0
\(801\) 8.53392 0.301531
\(802\) −64.0140 + 20.7994i −2.26041 + 0.734453i
\(803\) −3.61019 4.96901i −0.127401 0.175352i
\(804\) 5.91646 4.29856i 0.208658 0.151599i
\(805\) 0 0
\(806\) 47.4866 + 34.5010i 1.67264 + 1.21525i
\(807\) 15.7897i 0.555823i
\(808\) 4.94017 6.79957i 0.173795 0.239208i
\(809\) −10.5954 + 32.6094i −0.372516 + 1.14649i 0.572624 + 0.819818i \(0.305926\pi\)
−0.945140 + 0.326667i \(0.894074\pi\)
\(810\) 0 0
\(811\) −1.07152 3.29778i −0.0376260 0.115801i 0.930479 0.366344i \(-0.119391\pi\)
−0.968105 + 0.250543i \(0.919391\pi\)
\(812\) −40.4020 13.1274i −1.41783 0.460682i
\(813\) 13.0298 + 4.23364i 0.456975 + 0.148480i
\(814\) −14.1845 43.6554i −0.497167 1.53012i
\(815\) 0 0
\(816\) 5.82768 17.9358i 0.204010 0.627877i
\(817\) 4.58394 6.30926i 0.160372 0.220733i
\(818\) 32.2422i 1.12732i
\(819\) 8.99556 + 6.53566i 0.314330 + 0.228374i
\(820\) 0 0
\(821\) 11.8771 8.62922i 0.414514 0.301162i −0.360913 0.932600i \(-0.617535\pi\)
0.775427 + 0.631438i \(0.217535\pi\)
\(822\) −11.8201 16.2689i −0.412273 0.567445i
\(823\) 19.8483 6.44912i 0.691870 0.224802i 0.0580851 0.998312i \(-0.481501\pi\)
0.633785 + 0.773510i \(0.281501\pi\)
\(824\) −75.9223 −2.64488
\(825\) 0 0
\(826\) −14.5285 −0.505512
\(827\) 43.0710 13.9946i 1.49773 0.486641i 0.558372 0.829590i \(-0.311426\pi\)
0.939354 + 0.342950i \(0.111426\pi\)
\(828\) −3.59779 4.95193i −0.125032 0.172091i
\(829\) −7.81291 + 5.67641i −0.271354 + 0.197150i −0.715137 0.698984i \(-0.753636\pi\)
0.443784 + 0.896134i \(0.353636\pi\)
\(830\) 0 0
\(831\) 5.64685 + 4.10268i 0.195887 + 0.142320i
\(832\) 27.5502i 0.955131i
\(833\) −14.3630 + 19.7690i −0.497649 + 0.684955i
\(834\) 6.08075 18.7146i 0.210559 0.648035i
\(835\) 0 0
\(836\) 12.3009 + 37.8583i 0.425436 + 1.30936i
\(837\) 7.07787 + 2.29974i 0.244647 + 0.0794907i
\(838\) −20.5342 6.67198i −0.709344 0.230480i
\(839\) 7.77848 + 23.9397i 0.268543 + 0.826490i 0.990856 + 0.134924i \(0.0430789\pi\)
−0.722313 + 0.691566i \(0.756921\pi\)
\(840\) 0 0
\(841\) −5.94919 + 18.3097i −0.205144 + 0.631370i
\(842\) 53.7550 73.9874i 1.85252 2.54977i
\(843\) 7.95823i 0.274096i
\(844\) 58.4159 + 42.4416i 2.01076 + 1.46090i
\(845\) 0 0
\(846\) −13.9610 + 10.1433i −0.479989 + 0.348733i
\(847\) 0.666435 + 0.917269i 0.0228990 + 0.0315177i
\(848\) 36.0305 11.7070i 1.23729 0.402021i
\(849\) −27.7952 −0.953928
\(850\) 0 0
\(851\) −8.91196 −0.305498
\(852\) 2.68553 0.872582i 0.0920048 0.0298942i
\(853\) 1.88589 + 2.59571i 0.0645717 + 0.0888753i 0.840081 0.542460i \(-0.182507\pi\)
−0.775510 + 0.631336i \(0.782507\pi\)
\(854\) −53.2222 + 38.6682i −1.82123 + 1.32320i
\(855\) 0 0
\(856\) 60.9069 + 44.2514i 2.08175 + 1.51248i
\(857\) 19.4569i 0.664634i −0.943168 0.332317i \(-0.892170\pi\)
0.943168 0.332317i \(-0.107830\pi\)
\(858\) −15.1435 + 20.8432i −0.516991 + 0.711577i
\(859\) −5.20173 + 16.0093i −0.177481 + 0.546230i −0.999738 0.0228862i \(-0.992714\pi\)
0.822257 + 0.569116i \(0.192714\pi\)
\(860\) 0 0
\(861\) 5.76163 + 17.7325i 0.196356 + 0.604322i
\(862\) 61.7914 + 20.0772i 2.10462 + 0.683833i
\(863\) 3.62560 + 1.17803i 0.123417 + 0.0401006i 0.370074 0.929002i \(-0.379332\pi\)
−0.246657 + 0.969103i \(0.579332\pi\)
\(864\) −0.134261 0.413214i −0.00456766 0.0140578i
\(865\) 0 0
\(866\) 26.3910 81.2231i 0.896802 2.76007i
\(867\) 5.01767 6.90623i 0.170409 0.234548i
\(868\) 101.259i 3.43697i
\(869\) 35.2358 + 25.6003i 1.19529 + 0.868431i
\(870\) 0 0
\(871\) −4.83497 + 3.51281i −0.163827 + 0.119027i
\(872\) −27.8166 38.2863i −0.941990 1.29654i
\(873\) 10.1314 3.29190i 0.342897 0.111414i
\(874\) 11.6367 0.393619
\(875\) 0 0
\(876\) 7.43645 0.251254
\(877\) −24.4851 + 7.95569i −0.826803 + 0.268644i −0.691698 0.722187i \(-0.743137\pi\)
−0.135105 + 0.990831i \(0.543137\pi\)
\(878\) −28.7646 39.5911i −0.970759 1.33613i
\(879\) 11.4960 8.35231i 0.387749 0.281717i
\(880\) 0 0
\(881\) −36.6110 26.5995i −1.23346 0.896159i −0.236313 0.971677i \(-0.575939\pi\)
−0.997144 + 0.0755181i \(0.975939\pi\)
\(882\) 11.8001i 0.397330i
\(883\) 26.0964 35.9186i 0.878212 1.20876i −0.0987003 0.995117i \(-0.531469\pi\)
0.976913 0.213639i \(-0.0685315\pi\)
\(884\) −19.9611 + 61.4340i −0.671365 + 2.06625i
\(885\) 0 0
\(886\) 3.12850 + 9.62853i 0.105104 + 0.323477i
\(887\) 37.0844 + 12.0495i 1.24517 + 0.404581i 0.856189 0.516664i \(-0.172826\pi\)
0.388984 + 0.921245i \(0.372826\pi\)
\(888\) 26.1270 + 8.48919i 0.876766 + 0.284878i
\(889\) −1.05470 3.24602i −0.0353734 0.108868i
\(890\) 0 0
\(891\) −1.00942 + 3.10669i −0.0338170 + 0.104078i
\(892\) −40.0411 + 55.1119i −1.34068 + 1.84528i
\(893\) 21.7890i 0.729142i
\(894\) 37.7278 + 27.4108i 1.26181 + 0.916755i
\(895\) 0 0
\(896\) −55.4764 + 40.3059i −1.85334 + 1.34653i
\(897\) 2.94014 + 4.04675i 0.0981683 + 0.135117i
\(898\) 19.3745 6.29517i 0.646537 0.210072i
\(899\) 23.2356 0.774952
\(900\) 0 0
\(901\) 51.2995 1.70903
\(902\) −41.0872 + 13.3500i −1.36805 + 0.444508i
\(903\) −5.11817 7.04455i −0.170322 0.234428i
\(904\) 21.2812 15.4617i 0.707803 0.514249i
\(905\) 0 0
\(906\) 3.13015 + 2.27419i 0.103992 + 0.0755548i
\(907\) 11.0201i 0.365915i −0.983121 0.182958i \(-0.941433\pi\)
0.983121 0.182958i \(-0.0585671\pi\)
\(908\) −10.0630 + 13.8506i −0.333954 + 0.459648i
\(909\) −0.544406 + 1.67551i −0.0180568 + 0.0555731i
\(910\) 0 0
\(911\) −16.3540 50.3325i −0.541833 1.66759i −0.728404 0.685148i \(-0.759737\pi\)
0.186571 0.982441i \(-0.440263\pi\)
\(912\) −10.9360 3.55332i −0.362127 0.117662i
\(913\) −12.2946 3.99477i −0.406893 0.132207i
\(914\) −15.5172 47.7570i −0.513263 1.57966i
\(915\) 0 0
\(916\) 24.8277 76.4119i 0.820331 2.52472i
\(917\) −25.5023 + 35.1010i −0.842162 + 1.15914i
\(918\) 12.3317i 0.407005i
\(919\) −38.5129 27.9812i −1.27042 0.923016i −0.271203 0.962522i \(-0.587421\pi\)
−0.999219 + 0.0395064i \(0.987421\pi\)
\(920\) 0 0
\(921\) −18.8429 + 13.6902i −0.620896 + 0.451107i
\(922\) 41.1505 + 56.6388i 1.35522 + 1.86530i
\(923\) −2.19463 + 0.713080i −0.0722372 + 0.0234713i
\(924\) 44.4457 1.46216
\(925\) 0 0
\(926\) 97.8059 3.21410
\(927\) 15.1354 4.91777i 0.497110 0.161521i
\(928\) −0.797343 1.09745i −0.0261741 0.0360255i
\(929\) 17.5465 12.7483i 0.575682 0.418258i −0.261483 0.965208i \(-0.584211\pi\)
0.837165 + 0.546951i \(0.184211\pi\)
\(930\) 0 0
\(931\) 12.0538 + 8.75757i 0.395046 + 0.287018i
\(932\) 1.34848i 0.0441708i
\(933\) 4.43733 6.10746i 0.145272 0.199949i
\(934\) 6.13972 18.8961i 0.200898 0.618300i
\(935\) 0 0
\(936\) −4.76477 14.6645i −0.155741 0.479323i
\(937\) −2.09317 0.680112i −0.0683809 0.0222183i 0.274627 0.961551i \(-0.411446\pi\)
−0.343008 + 0.939333i \(0.611446\pi\)
\(938\) 14.7639 + 4.79708i 0.482058 + 0.156630i
\(939\) −9.78241 30.1072i −0.319237 0.982510i
\(940\) 0 0
\(941\) −5.18833 + 15.9680i −0.169135 + 0.520543i −0.999317 0.0369489i \(-0.988236\pi\)
0.830183 + 0.557492i \(0.188236\pi\)
\(942\) −31.3422 + 43.1388i −1.02118 + 1.40554i
\(943\) 8.38767i 0.273140i
\(944\) 5.22489 + 3.79611i 0.170056 + 0.123553i
\(945\) 0 0
\(946\) 16.3226 11.8591i 0.530695 0.385572i
\(947\) 21.5207 + 29.6207i 0.699329 + 0.962544i 0.999961 + 0.00880418i \(0.00280249\pi\)
−0.300632 + 0.953740i \(0.597198\pi\)
\(948\) −50.1518 + 16.2953i −1.62885 + 0.529247i
\(949\) −6.07711 −0.197271
\(950\) 0 0
\(951\) −25.8362 −0.837796
\(952\) 78.8796 25.6295i 2.55650 0.830658i
\(953\) −25.8201 35.5383i −0.836394 1.15120i −0.986699 0.162558i \(-0.948026\pi\)
0.150305 0.988640i \(-0.451974\pi\)
\(954\) −20.0415 + 14.5610i −0.648867 + 0.471430i
\(955\) 0 0
\(956\) 22.9251 + 16.6561i 0.741450 + 0.538695i
\(957\) 10.1988i 0.329680i
\(958\) −40.2512 + 55.4010i −1.30046 + 1.78993i
\(959\) 8.76068 26.9626i 0.282897 0.870668i
\(960\) 0 0
\(961\) 7.53541 + 23.1916i 0.243078 + 0.748116i
\(962\) −43.1940 14.0346i −1.39263 0.452493i
\(963\) −15.0083 4.87650i −0.483636 0.157143i
\(964\) 15.3530 + 47.2517i 0.494487 + 1.52188i
\(965\) 0 0
\(966\) 4.01503 12.3570i 0.129182 0.397580i
\(967\) −14.3899 + 19.8059i −0.462747 + 0.636916i −0.975076 0.221873i \(-0.928783\pi\)
0.512329 + 0.858789i \(0.328783\pi\)
\(968\) 1.57227i 0.0505348i
\(969\) −12.5967 9.15206i −0.404665 0.294007i
\(970\) 0 0
\(971\) 15.8773 11.5355i 0.509526 0.370192i −0.303118 0.952953i \(-0.598028\pi\)
0.812644 + 0.582761i \(0.198028\pi\)
\(972\) −2.32468 3.19965i −0.0745642 0.102629i
\(973\) 26.3837 8.57257i 0.845822 0.274824i
\(974\) 37.1344 1.18986
\(975\) 0 0
\(976\) 29.2438 0.936070
\(977\) 29.0298 9.43236i 0.928746 0.301768i 0.194696 0.980864i \(-0.437628\pi\)
0.734050 + 0.679096i \(0.237628\pi\)
\(978\) 14.5356 + 20.0066i 0.464798 + 0.639739i
\(979\) −22.5526 + 16.3854i −0.720785 + 0.523681i
\(980\) 0 0
\(981\) 8.02529 + 5.83071i 0.256228 + 0.186160i
\(982\) 20.2356i 0.645743i
\(983\) 6.09271 8.38590i 0.194327 0.267469i −0.700723 0.713433i \(-0.747139\pi\)
0.895051 + 0.445964i \(0.147139\pi\)
\(984\) 7.98977 24.5900i 0.254705 0.783901i
\(985\) 0 0
\(986\) 11.8977 + 36.6173i 0.378899 + 1.16613i
\(987\) −23.1376 7.51788i −0.736479 0.239297i
\(988\) 37.4582 + 12.1709i 1.19170 + 0.387208i
\(989\) −1.21048 3.72546i −0.0384909 0.118463i
\(990\) 0 0
\(991\) −3.12376 + 9.61395i −0.0992295 + 0.305397i −0.988333 0.152309i \(-0.951329\pi\)
0.889103 + 0.457707i \(0.151329\pi\)
\(992\) 1.90057 2.61591i 0.0603431 0.0830552i
\(993\) 20.1083i 0.638116i
\(994\) 4.84921 + 3.52316i 0.153808 + 0.111748i
\(995\) 0 0
\(996\) 12.6625 9.19986i 0.401227 0.291509i
\(997\) 12.5574 + 17.2838i 0.397697 + 0.547382i 0.960164 0.279437i \(-0.0901478\pi\)
−0.562467 + 0.826819i \(0.690148\pi\)
\(998\) 56.6300 18.4002i 1.79259 0.582448i
\(999\) −5.75838 −0.182187
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.i.d.349.5 24
5.2 odd 4 75.2.g.c.31.3 12
5.3 odd 4 375.2.g.c.151.1 12
5.4 even 2 inner 375.2.i.d.349.2 24
15.2 even 4 225.2.h.d.181.1 12
25.2 odd 20 1875.2.a.j.1.6 6
25.3 odd 20 375.2.g.c.226.1 12
25.4 even 10 inner 375.2.i.d.274.5 24
25.11 even 5 1875.2.b.f.1249.2 12
25.14 even 10 1875.2.b.f.1249.11 12
25.21 even 5 inner 375.2.i.d.274.2 24
25.22 odd 20 75.2.g.c.46.3 yes 12
25.23 odd 20 1875.2.a.k.1.1 6
75.2 even 20 5625.2.a.p.1.1 6
75.23 even 20 5625.2.a.q.1.6 6
75.47 even 20 225.2.h.d.46.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.g.c.31.3 12 5.2 odd 4
75.2.g.c.46.3 yes 12 25.22 odd 20
225.2.h.d.46.1 12 75.47 even 20
225.2.h.d.181.1 12 15.2 even 4
375.2.g.c.151.1 12 5.3 odd 4
375.2.g.c.226.1 12 25.3 odd 20
375.2.i.d.274.2 24 25.21 even 5 inner
375.2.i.d.274.5 24 25.4 even 10 inner
375.2.i.d.349.2 24 5.4 even 2 inner
375.2.i.d.349.5 24 1.1 even 1 trivial
1875.2.a.j.1.6 6 25.2 odd 20
1875.2.a.k.1.1 6 25.23 odd 20
1875.2.b.f.1249.2 12 25.11 even 5
1875.2.b.f.1249.11 12 25.14 even 10
5625.2.a.p.1.1 6 75.2 even 20
5625.2.a.q.1.6 6 75.23 even 20