Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.i (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 9 \nu^{15} - 11 \nu^{14} + 158 \nu^{13} - 194 \nu^{12} + 1016 \nu^{11} - 1257 \nu^{10} + 2975 \nu^{9} - 3731 \nu^{8} + 4097 \nu^{7} - 5277 \nu^{6} + 2332 \nu^{5} - 3223 \nu^{4} + 270 \nu^{3} - 565 \nu^{2} + \cdots - 2 ) / 4 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 15 \nu^{15} - 6 \nu^{14} + 263 \nu^{13} - 106 \nu^{12} + 1688 \nu^{11} - 689 \nu^{10} + 4929 \nu^{9} - 2058 \nu^{8} + 6764 \nu^{7} - 2948 \nu^{6} + 3837 \nu^{5} - 1847 \nu^{4} + 444 \nu^{3} - 339 \nu^{2} + \cdots + 2 ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 9 \nu^{15} - 11 \nu^{14} - 158 \nu^{13} - 194 \nu^{12} - 1016 \nu^{11} - 1257 \nu^{10} - 2975 \nu^{9} - 3731 \nu^{8} - 4097 \nu^{7} - 5277 \nu^{6} - 2332 \nu^{5} - 3223 \nu^{4} - 270 \nu^{3} + \cdots - 2 ) / 4 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 15 \nu^{15} - 6 \nu^{14} - 263 \nu^{13} - 106 \nu^{12} - 1688 \nu^{11} - 689 \nu^{10} - 4929 \nu^{9} - 2058 \nu^{8} - 6764 \nu^{7} - 2948 \nu^{6} - 3837 \nu^{5} - 1847 \nu^{4} - 444 \nu^{3} + \cdots + 2 ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -24\nu^{14} - 423\nu^{12} - 2739\nu^{10} - 8128\nu^{8} - 11513\nu^{6} - 7066\nu^{4} - 1247\nu^{2} - 2\nu - 2 ) / 4 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -24\nu^{14} - 423\nu^{12} - 2739\nu^{10} - 8128\nu^{8} - 11513\nu^{6} - 7066\nu^{4} - 1247\nu^{2} + 2\nu - 2 ) / 4 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 7 \nu^{15} - 32 \nu^{14} + 124 \nu^{13} - 564 \nu^{12} + 810 \nu^{11} - 3652 \nu^{10} + 2444 \nu^{9} - 10838 \nu^{8} + 3583 \nu^{7} - 15360 \nu^{6} + 2400 \nu^{5} - 9462 \nu^{4} + 595 \nu^{3} + \cdots - 12 ) / 4 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 7 \nu^{15} - 32 \nu^{14} - 124 \nu^{13} - 564 \nu^{12} - 810 \nu^{11} - 3652 \nu^{10} - 2444 \nu^{9} - 10838 \nu^{8} - 3583 \nu^{7} - 15360 \nu^{6} - 2400 \nu^{5} - 9462 \nu^{4} - 595 \nu^{3} + \cdots - 12 ) / 4 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 12 \nu^{15} - 45 \nu^{14} + 208 \nu^{13} - 794 \nu^{12} + 1308 \nu^{11} - 5150 \nu^{10} + 3668 \nu^{9} - 15324 \nu^{8} + 4594 \nu^{7} - 21803 \nu^{6} + 1920 \nu^{5} - 13514 \nu^{4} - 330 \nu^{3} + \cdots - 17 ) / 4 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 10 \nu^{15} + 45 \nu^{14} - 177 \nu^{13} + 794 \nu^{12} - 1154 \nu^{11} + 5150 \nu^{10} - 3465 \nu^{9} + 15324 \nu^{8} - 5013 \nu^{7} + 21803 \nu^{6} - 3225 \nu^{5} + 13514 \nu^{4} + \cdots + 23 ) / 4 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 6 \nu^{15} - 45 \nu^{14} + 108 \nu^{13} - 794 \nu^{12} + 724 \nu^{11} - 5150 \nu^{10} + 2282 \nu^{9} - 15324 \nu^{8} + 3600 \nu^{7} - 21803 \nu^{6} + 2744 \nu^{5} - 13514 \nu^{4} + 870 \nu^{3} + \cdots - 17 ) / 4 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 22 \nu^{15} - 29 \nu^{14} - 387 \nu^{13} - 512 \nu^{12} - 2498 \nu^{11} - 3324 \nu^{10} - 7373 \nu^{9} - 9905 \nu^{8} - 10347 \nu^{7} - 14123 \nu^{6} - 6237 \nu^{5} - 8782 \nu^{4} - 1041 \nu^{3} + \cdots - 8 ) / 4 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 10 \nu^{15} + 45 \nu^{14} + 177 \nu^{13} + 794 \nu^{12} + 1154 \nu^{11} + 5150 \nu^{10} + 3465 \nu^{9} + 15324 \nu^{8} + 5013 \nu^{7} + 21803 \nu^{6} + 3225 \nu^{5} + 13514 \nu^{4} + 675 \nu^{3} + \cdots + 23 ) / 4 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 29 \nu^{15} + 32 \nu^{14} + 512 \nu^{13} + 564 \nu^{12} + 3325 \nu^{11} + 3652 \nu^{10} + 9921 \nu^{9} + 10838 \nu^{8} + 14211 \nu^{7} + 15360 \nu^{6} + 8977 \nu^{5} + 9462 \nu^{4} + 1785 \nu^{3} + \cdots + 10 ) / 4 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 45 \nu^{15} - 17 \nu^{14} - 794 \nu^{13} - 299 \nu^{12} - 5150 \nu^{11} - 1930 \nu^{10} - 15324 \nu^{9} - 5701 \nu^{8} - 21803 \nu^{7} - 8032 \nu^{6} - 13514 \nu^{5} - 4923 \nu^{4} - 2487 \nu^{3} + \cdots - 8 ) / 4 \)
|
\(\nu\) | \(=\) |
\( \beta_{6} - \beta_{5} \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{13} + \beta_{11} + \beta_{10} + \beta_{9} + \beta_{3} - \beta _1 - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{15} - \beta_{13} - \beta_{12} + \beta_{10} + 2\beta_{8} - 5\beta_{6} + 4\beta_{5} + \beta_{4} + \beta_{3} - \beta _1 + 1 \)
|
\(\nu^{4}\) | \(=\) |
\( - 2 \beta_{15} - 9 \beta_{13} + 2 \beta_{12} - 9 \beta_{11} - 5 \beta_{10} - 9 \beta_{9} + 3 \beta_{8} + 3 \beta_{7} - 2 \beta_{5} - 7 \beta_{3} + 2 \beta_{2} + 7 \beta _1 + 20 \)
|
\(\nu^{5}\) | \(=\) |
\( 8 \beta_{15} + 7 \beta_{13} + 8 \beta_{12} - 7 \beta_{10} - 17 \beta_{8} + \beta_{7} + 28 \beta_{6} - 20 \beta_{5} - 7 \beta_{4} - 10 \beta_{3} - \beta_{2} + 10 \beta _1 - 8 \)
|
\(\nu^{6}\) | \(=\) |
\( 19 \beta_{15} + 63 \beta_{13} - 19 \beta_{12} + 62 \beta_{11} + 25 \beta_{10} + 62 \beta_{9} - 28 \beta_{8} - 28 \beta_{7} + 19 \beta_{5} + 3 \beta_{4} + 44 \beta_{3} - 16 \beta_{2} - 42 \beta _1 - 130 \)
|
\(\nu^{7}\) | \(=\) |
\( - 57 \beta_{15} - 8 \beta_{14} - 43 \beta_{13} - 57 \beta_{12} + \beta_{11} + 43 \beta_{10} - \beta_{9} + 116 \beta_{8} - 10 \beta_{7} - 167 \beta_{6} + 110 \beta_{5} + 43 \beta_{4} + 78 \beta_{3} + 14 \beta_{2} - 78 \beta _1 + 53 \)
|
\(\nu^{8}\) | \(=\) |
\( - 144 \beta_{15} - 413 \beta_{13} + 144 \beta_{12} - 399 \beta_{11} - 125 \beta_{10} - 399 \beta_{9} + 206 \beta_{8} + 206 \beta_{7} + 4 \beta_{6} - 140 \beta_{5} - 42 \beta_{4} - 269 \beta_{3} + 102 \beta_{2} + 241 \beta _1 + 826 \)
|
\(\nu^{9}\) | \(=\) |
\( 395 \beta_{15} + 120 \beta_{14} + 259 \beta_{13} + 395 \beta_{12} - 18 \beta_{11} - 259 \beta_{10} + 18 \beta_{9} - 752 \beta_{8} + 82 \beta_{7} + 1024 \beta_{6} - 629 \beta_{5} - 255 \beta_{4} - 563 \beta_{3} - 140 \beta_{2} + \cdots - 335 \)
|
\(\nu^{10}\) | \(=\) |
\( 1018 \beta_{15} + 2654 \beta_{13} - 1018 \beta_{12} + 2518 \beta_{11} + 618 \beta_{10} + 2518 \beta_{9} - 1415 \beta_{8} - 1415 \beta_{7} - 60 \beta_{6} + 958 \beta_{5} + 406 \beta_{4} + 1640 \beta_{3} - 612 \beta_{2} + \cdots - 5209 \)
|
\(\nu^{11}\) | \(=\) |
\( - 2699 \beta_{15} - 1212 \beta_{14} - 1564 \beta_{13} - 2699 \beta_{12} + 200 \beta_{11} + 1564 \beta_{10} - 200 \beta_{9} + 4811 \beta_{8} - 625 \beta_{7} - 6359 \beta_{6} + 3660 \beta_{5} + 1496 \beta_{4} + \cdots + 2093 \)
|
\(\nu^{12}\) | \(=\) |
\( - 6987 \beta_{15} - 16954 \beta_{13} + 6987 \beta_{12} - 15819 \beta_{11} - 2980 \beta_{10} - 15819 \beta_{9} + 9477 \beta_{8} + 9477 \beta_{7} + 606 \beta_{6} - 6381 \beta_{5} - 3379 \beta_{4} + \cdots + 32816 \)
|
\(\nu^{13}\) | \(=\) |
\( 18251 \beta_{15} + 10376 \beta_{14} + 9506 \beta_{13} + 18251 \beta_{12} - 1809 \beta_{11} - 9506 \beta_{10} + 1809 \beta_{9} - 30691 \beta_{8} + 4565 \beta_{7} + 39759 \beta_{6} - 21508 \beta_{5} + \cdots - 13063 \)
|
\(\nu^{14}\) | \(=\) |
\( 47209 \beta_{15} + 108172 \beta_{13} - 47209 \beta_{12} + 99427 \beta_{11} + 13754 \beta_{10} + 99427 \beta_{9} - 62762 \beta_{8} - 62762 \beta_{7} - 5188 \beta_{6} + 42021 \beta_{5} + 26005 \beta_{4} + \cdots - 207014 \)
|
\(\nu^{15}\) | \(=\) |
\( - 122384 \beta_{15} - 81360 \beta_{14} - 58148 \beta_{13} - 122384 \beta_{12} + 14675 \beta_{11} + 58148 \beta_{10} - 14675 \beta_{9} + 195806 \beta_{8} - 32398 \beta_{7} - 249699 \beta_{6} + \cdots + 81704 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(-\beta_{7}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−1.49161 | + | 2.05302i | 0.951057 | − | 0.309017i | −1.37197 | − | 4.22249i | 0 | −0.784184 | + | 2.41347i | − | 1.04054i | 5.88835 | + | 1.91324i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
49.2 | −0.0527945 | + | 0.0726655i | −0.951057 | + | 0.309017i | 0.615541 | + | 1.89444i | 0 | 0.0277557 | − | 0.0854234i | 4.36070i | −0.341004 | − | 0.110799i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 0.640580 | − | 0.881682i | −0.951057 | + | 0.309017i | 0.251013 | + | 0.772537i | 0 | −0.336773 | + | 1.03648i | − | 3.08724i | 2.91489 | + | 0.947104i | 0.809017 | − | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.4 | 0.903822 | − | 1.24400i | 0.951057 | − | 0.309017i | −0.112618 | − | 0.346603i | 0 | 0.475167 | − | 1.46241i | − | 1.68601i | 2.39187 | + | 0.777165i | 0.809017 | − | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.1 | −1.49161 | − | 2.05302i | 0.951057 | + | 0.309017i | −1.37197 | + | 4.22249i | 0 | −0.784184 | − | 2.41347i | 1.04054i | 5.88835 | − | 1.91324i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.2 | −0.0527945 | − | 0.0726655i | −0.951057 | − | 0.309017i | 0.615541 | − | 1.89444i | 0 | 0.0277557 | + | 0.0854234i | − | 4.36070i | −0.341004 | + | 0.110799i | 0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.3 | 0.640580 | + | 0.881682i | −0.951057 | − | 0.309017i | 0.251013 | − | 0.772537i | 0 | −0.336773 | − | 1.03648i | 3.08724i | 2.91489 | − | 0.947104i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.4 | 0.903822 | + | 1.24400i | 0.951057 | + | 0.309017i | −0.112618 | + | 0.346603i | 0 | 0.475167 | + | 1.46241i | 1.68601i | 2.39187 | − | 0.777165i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.1 | −1.46134 | − | 0.474819i | −0.587785 | + | 0.809017i | 0.292036 | + | 0.212177i | 0 | 1.24309 | − | 0.903160i | − | 1.49550i | 1.48030 | + | 2.03746i | −0.309017 | − | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.2 | −1.28472 | − | 0.417429i | 0.587785 | − | 0.809017i | −0.141788 | − | 0.103015i | 0 | −1.09284 | + | 0.793998i | 1.59580i | 1.72715 | + | 2.37722i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.3 | 0.510286 | + | 0.165802i | −0.587785 | + | 0.809017i | −1.38513 | − | 1.00636i | 0 | −0.434076 | + | 0.315374i | 2.57318i | −1.17071 | − | 1.61134i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.4 | 2.23577 | + | 0.726446i | 0.587785 | − | 0.809017i | 2.85292 | + | 2.07277i | 0 | 1.90186 | − | 1.38178i | 3.48189i | 2.10915 | + | 2.90300i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.1 | −1.46134 | + | 0.474819i | −0.587785 | − | 0.809017i | 0.292036 | − | 0.212177i | 0 | 1.24309 | + | 0.903160i | 1.49550i | 1.48030 | − | 2.03746i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.2 | −1.28472 | + | 0.417429i | 0.587785 | + | 0.809017i | −0.141788 | + | 0.103015i | 0 | −1.09284 | − | 0.793998i | − | 1.59580i | 1.72715 | − | 2.37722i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.3 | 0.510286 | − | 0.165802i | −0.587785 | − | 0.809017i | −1.38513 | + | 1.00636i | 0 | −0.434076 | − | 0.315374i | − | 2.57318i | −1.17071 | + | 1.61134i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.4 | 2.23577 | − | 0.726446i | 0.587785 | + | 0.809017i | 2.85292 | − | 2.07277i | 0 | 1.90186 | + | 1.38178i | − | 3.48189i | 2.10915 | − | 2.90300i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.i.c | 16 | |
5.b | even | 2 | 1 | 75.2.i.a | ✓ | 16 | |
5.c | odd | 4 | 1 | 375.2.g.d | 16 | ||
5.c | odd | 4 | 1 | 375.2.g.e | 16 | ||
15.d | odd | 2 | 1 | 225.2.m.b | 16 | ||
25.d | even | 5 | 1 | 75.2.i.a | ✓ | 16 | |
25.d | even | 5 | 1 | 1875.2.b.h | 16 | ||
25.e | even | 10 | 1 | inner | 375.2.i.c | 16 | |
25.e | even | 10 | 1 | 1875.2.b.h | 16 | ||
25.f | odd | 20 | 1 | 375.2.g.d | 16 | ||
25.f | odd | 20 | 1 | 375.2.g.e | 16 | ||
25.f | odd | 20 | 1 | 1875.2.a.m | 8 | ||
25.f | odd | 20 | 1 | 1875.2.a.p | 8 | ||
75.j | odd | 10 | 1 | 225.2.m.b | 16 | ||
75.l | even | 20 | 1 | 5625.2.a.t | 8 | ||
75.l | even | 20 | 1 | 5625.2.a.bd | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.i.a | ✓ | 16 | 5.b | even | 2 | 1 | |
75.2.i.a | ✓ | 16 | 25.d | even | 5 | 1 | |
225.2.m.b | 16 | 15.d | odd | 2 | 1 | ||
225.2.m.b | 16 | 75.j | odd | 10 | 1 | ||
375.2.g.d | 16 | 5.c | odd | 4 | 1 | ||
375.2.g.d | 16 | 25.f | odd | 20 | 1 | ||
375.2.g.e | 16 | 5.c | odd | 4 | 1 | ||
375.2.g.e | 16 | 25.f | odd | 20 | 1 | ||
375.2.i.c | 16 | 1.a | even | 1 | 1 | trivial | |
375.2.i.c | 16 | 25.e | even | 10 | 1 | inner | |
1875.2.a.m | 8 | 25.f | odd | 20 | 1 | ||
1875.2.a.p | 8 | 25.f | odd | 20 | 1 | ||
1875.2.b.h | 16 | 25.d | even | 5 | 1 | ||
1875.2.b.h | 16 | 25.e | even | 10 | 1 | ||
5625.2.a.t | 8 | 75.l | even | 20 | 1 | ||
5625.2.a.bd | 8 | 75.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 5 T_{2}^{14} - 10 T_{2}^{13} + 26 T_{2}^{12} + 50 T_{2}^{11} - 95 T_{2}^{10} - 20 T_{2}^{9} + 381 T_{2}^{8} - 30 T_{2}^{7} - 365 T_{2}^{6} + 410 T_{2}^{5} + 226 T_{2}^{4} - 360 T_{2}^{3} + 85 T_{2}^{2} + 10 T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - 5 T^{14} - 10 T^{13} + 26 T^{12} + \cdots + 1 \)
$3$
\( (T^{8} - T^{6} + T^{4} - T^{2} + 1)^{2} \)
$5$
\( T^{16} \)
$7$
\( T^{16} + 56 T^{14} + 1236 T^{12} + \cdots + 255025 \)
$11$
\( T^{16} + 6 T^{15} + 48 T^{14} + \cdots + 27888961 \)
$13$
\( T^{16} - 30 T^{14} - 210 T^{13} + \cdots + 78961 \)
$17$
\( T^{16} + 10 T^{15} - 13 T^{14} + \cdots + 53860921 \)
$19$
\( T^{16} + 2 T^{15} + 23 T^{14} + \cdots + 6375625 \)
$23$
\( T^{16} - 20 T^{15} + 89 T^{14} + \cdots + 4389025 \)
$29$
\( T^{16} - 16 T^{15} + 217 T^{14} + \cdots + 156025 \)
$31$
\( T^{16} - 6 T^{15} + 97 T^{14} + \cdots + 15625 \)
$37$
\( T^{16} - 10 T^{15} + \cdots + 8653650625 \)
$41$
\( T^{16} + 14 T^{15} + 82 T^{14} + \cdots + 22137025 \)
$43$
\( T^{16} + 388 T^{14} + \cdots + 527207521 \)
$47$
\( T^{16} + 40 T^{15} + \cdots + 36687479166361 \)
$53$
\( T^{16} + 10 T^{15} + \cdots + 40398990025 \)
$59$
\( T^{16} - 12 T^{15} + 188 T^{14} + \cdots + 12924025 \)
$61$
\( T^{16} + \cdots + 275701483356121 \)
$67$
\( T^{16} - 40 T^{15} + 762 T^{14} + \cdots + 13980121 \)
$71$
\( T^{16} + 8 T^{15} + \cdots + 25529328841 \)
$73$
\( T^{16} - 20 T^{15} + \cdots + 757413387025 \)
$79$
\( T^{16} + 20 T^{15} + \cdots + 3940125750625 \)
$83$
\( T^{16} + 10 T^{15} + \cdots + 2356228681 \)
$89$
\( T^{16} - 18 T^{15} + 68 T^{14} + 1034 T^{13} + \cdots + 25 \)
$97$
\( T^{16} + 40 T^{15} + \cdots + 216648961 \)
show more
show less