Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.i (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 5x^{14} + 6x^{12} - 20x^{10} - 79x^{8} - 80x^{6} + 96x^{4} + 320x^{2} + 256 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 5^{2} \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 5x^{14} + 6x^{12} - 20x^{10} - 79x^{8} - 80x^{6} + 96x^{4} + 320x^{2} + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{15} - \nu^{13} + 14\nu^{11} + 44\nu^{9} - \nu^{7} - 108\nu^{5} - 288\nu^{3} - 192\nu ) / 384 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{14} - 9\nu^{12} - 10\nu^{10} + 12\nu^{8} + 63\nu^{6} + 76\nu^{4} + 48\nu^{2} + 64 ) / 192 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{15} + \nu^{13} - 46\nu^{11} - 76\nu^{9} + 65\nu^{7} + 364\nu^{5} + 256\nu^{3} - 192\nu ) / 384 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{14} - 9\nu^{12} - 26\nu^{10} - 4\nu^{8} + 95\nu^{6} + 204\nu^{4} + 32\nu^{2} - 128 ) / 192 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{15} - 5\nu^{13} + 10\nu^{11} + 100\nu^{9} + 175\nu^{7} - 112\nu^{5} - 720\nu^{3} - 960\nu ) / 384 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{13} - 3\nu^{11} - 4\nu^{9} + 8\nu^{7} + 23\nu^{5} + 18\nu^{3} + 8\nu ) / 48 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -3\nu^{14} - 11\nu^{12} - 30\nu^{10} - 12\nu^{8} + 93\nu^{6} + 180\nu^{4} + 320\nu^{2} + 192 ) / 192 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 3\nu^{14} + 7\nu^{12} + 26\nu^{10} + 68\nu^{8} + 83\nu^{6} - 184\nu^{4} - 752\nu^{2} - 960 ) / 192 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 5\nu^{14} + 9\nu^{12} - 18\nu^{10} - 100\nu^{8} - 139\nu^{6} + 96\nu^{4} + 512\nu^{2} + 512 ) / 192 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 2\nu^{15} + 5\nu^{13} + 3\nu^{11} - 22\nu^{9} - 58\nu^{7} - 21\nu^{5} + 96\nu^{3} + 224\nu ) / 96 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -\nu^{14} - 3\nu^{12} + 2\nu^{10} + 30\nu^{8} + 51\nu^{6} - 14\nu^{4} - 162\nu^{2} - 200 ) / 24 \)
|
\(\beta_{12}\) | \(=\) |
\( ( -5\nu^{15} - 33\nu^{13} - 38\nu^{11} + 84\nu^{9} + 363\nu^{7} + 392\nu^{5} - 192\nu^{3} - 832\nu ) / 384 \)
|
\(\beta_{13}\) | \(=\) |
\( ( -5\nu^{15} - 15\nu^{13} - 4\nu^{11} + 72\nu^{9} + 147\nu^{7} + 26\nu^{5} - 216\nu^{3} - 224\nu ) / 192 \)
|
\(\beta_{14}\) | \(=\) |
\( ( -3\nu^{15} - 6\nu^{13} + 15\nu^{11} + 86\nu^{9} + 113\nu^{7} - 103\nu^{5} - 508\nu^{3} - 448\nu ) / 96 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 13\nu^{14} + 49\nu^{12} - 2\nu^{10} - 356\nu^{8} - 707\nu^{6} + 96\nu^{4} + 2016\nu^{2} + 2304 ) / 192 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{14} + 2\beta_{13} - \beta_{12} + 3\beta_{10} + 2\beta_{6} - \beta_{5} + \beta_{3} - \beta_1 ) / 5 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{15} + 3\beta_{11} + \beta_{9} + \beta_{8} + 3\beta_{7} - 3\beta_{4} + 4\beta_{2} - 3 ) / 5 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -2\beta_{14} + \beta_{13} + 2\beta_{12} - \beta_{10} - 9\beta_{6} + 2\beta_{5} - 2\beta_{3} - 8\beta_1 ) / 5 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} + \beta_{11} - \beta_{9} - \beta_{7} + 2\beta_{4} + \beta_{2} + 1 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 6\beta_{14} - 8\beta_{13} + 9\beta_{12} + 3\beta_{10} - 8\beta_{6} - 16\beta_{5} + 6\beta_{3} + 9\beta_1 ) / 5 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 2\beta_{15} - 7\beta_{11} - 14\beta_{9} + 16\beta_{8} + 18\beta_{7} - 3\beta_{4} + 9\beta_{2} + 12 ) / 5 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 8\beta_{14} - 4\beta_{13} - 3\beta_{12} - \beta_{10} + 6\beta_{6} + 2\beta_{5} - 7\beta_{3} - 58\beta_1 ) / 5 \)
|
\(\nu^{8}\) | \(=\) |
\( 3\beta_{15} + 10\beta_{11} + 9\beta_{9} - 4\beta_{8} - 2\beta_{7} - 2\beta_{4} + 4 \)
|
\(\nu^{9}\) | \(=\) |
\( ( -19\beta_{14} + 42\beta_{13} + 14\beta_{12} + 38\beta_{10} - 78\beta_{6} + 19\beta_{5} + 26\beta_{3} + 49\beta_1 ) / 5 \)
|
\(\nu^{10}\) | \(=\) |
\( ( 27\beta_{15} - 27\beta_{11} - 114\beta_{9} + 51\beta_{8} + 3\beta_{7} + 27\beta_{4} + 114\beta_{2} - 13 ) / 5 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 73 \beta_{14} - 139 \beta_{13} + 62 \beta_{12} - 51 \beta_{10} + 11 \beta_{6} - 133 \beta_{5} - 62 \beta_{3} - 133 \beta_1 ) / 5 \)
|
\(\nu^{12}\) | \(=\) |
\( 10\beta_{15} + 18\beta_{11} + 5\beta_{9} + 5\beta_{8} + 18\beta_{7} + 3\beta_{4} - 31\beta_{2} + 36 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 31\beta_{14} + 67\beta_{13} - 31\beta_{12} + 68\beta_{10} - 243\beta_{6} - \beta_{5} + 136\beta_{3} - 206\beta_1 ) / 5 \)
|
\(\nu^{14}\) | \(=\) |
\( ( 62\beta_{15} + 143\beta_{11} + 241\beta_{9} + 81\beta_{8} - 62\beta_{7} - 98\beta_{4} + 434\beta_{2} + 62 ) / 5 \)
|
\(\nu^{15}\) | \(=\) |
\( ( - 117 \beta_{14} + 31 \beta_{13} + 162 \beta_{12} + 279 \beta_{10} + 31 \beta_{6} + 317 \beta_{5} - 117 \beta_{3} + 162 \beta_1 ) / 5 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(1 - \beta_{2} - \beta_{4} + \beta_{9}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−1.59076 | + | 2.18949i | −0.951057 | + | 0.309017i | −1.64533 | − | 5.06380i | 0 | 0.836312 | − | 2.57390i | − | 0.470294i | 8.55667 | + | 2.78023i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
49.2 | −1.00297 | + | 1.38048i | 0.951057 | − | 0.309017i | −0.281722 | − | 0.867051i | 0 | −0.527295 | + | 1.62285i | − | 3.94243i | −1.76619 | − | 0.573870i | 0.809017 | − | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 1.00297 | − | 1.38048i | −0.951057 | + | 0.309017i | −0.281722 | − | 0.867051i | 0 | −0.527295 | + | 1.62285i | 3.94243i | 1.76619 | + | 0.573870i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.4 | 1.59076 | − | 2.18949i | 0.951057 | − | 0.309017i | −1.64533 | − | 5.06380i | 0 | 0.836312 | − | 2.57390i | 0.470294i | −8.55667 | − | 2.78023i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.1 | −1.59076 | − | 2.18949i | −0.951057 | − | 0.309017i | −1.64533 | + | 5.06380i | 0 | 0.836312 | + | 2.57390i | 0.470294i | 8.55667 | − | 2.78023i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.2 | −1.00297 | − | 1.38048i | 0.951057 | + | 0.309017i | −0.281722 | + | 0.867051i | 0 | −0.527295 | − | 1.62285i | 3.94243i | −1.76619 | + | 0.573870i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.3 | 1.00297 | + | 1.38048i | −0.951057 | − | 0.309017i | −0.281722 | + | 0.867051i | 0 | −0.527295 | − | 1.62285i | − | 3.94243i | 1.76619 | − | 0.573870i | 0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.4 | 1.59076 | + | 2.18949i | 0.951057 | + | 0.309017i | −1.64533 | + | 5.06380i | 0 | 0.836312 | + | 2.57390i | − | 0.470294i | −8.55667 | + | 2.78023i | 0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.1 | −2.01846 | − | 0.655837i | 0.587785 | − | 0.809017i | 2.02602 | + | 1.47199i | 0 | −1.71700 | + | 1.24748i | − | 4.35840i | −0.629102 | − | 0.865884i | −0.309017 | − | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.2 | −1.06740 | − | 0.346820i | −0.587785 | + | 0.809017i | −0.598970 | − | 0.435177i | 0 | 0.907987 | − | 0.659691i | 1.11373i | 1.80780 | + | 2.48822i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.3 | 1.06740 | + | 0.346820i | 0.587785 | − | 0.809017i | −0.598970 | − | 0.435177i | 0 | 0.907987 | − | 0.659691i | − | 1.11373i | −1.80780 | − | 2.48822i | −0.309017 | − | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
274.4 | 2.01846 | + | 0.655837i | −0.587785 | + | 0.809017i | 2.02602 | + | 1.47199i | 0 | −1.71700 | + | 1.24748i | 4.35840i | 0.629102 | + | 0.865884i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.1 | −2.01846 | + | 0.655837i | 0.587785 | + | 0.809017i | 2.02602 | − | 1.47199i | 0 | −1.71700 | − | 1.24748i | 4.35840i | −0.629102 | + | 0.865884i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.2 | −1.06740 | + | 0.346820i | −0.587785 | − | 0.809017i | −0.598970 | + | 0.435177i | 0 | 0.907987 | + | 0.659691i | − | 1.11373i | 1.80780 | − | 2.48822i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.3 | 1.06740 | − | 0.346820i | 0.587785 | + | 0.809017i | −0.598970 | + | 0.435177i | 0 | 0.907987 | + | 0.659691i | 1.11373i | −1.80780 | + | 2.48822i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
349.4 | 2.01846 | − | 0.655837i | −0.587785 | − | 0.809017i | 2.02602 | − | 1.47199i | 0 | −1.71700 | − | 1.24748i | − | 4.35840i | 0.629102 | − | 0.865884i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.i.b | 16 | |
5.b | even | 2 | 1 | inner | 375.2.i.b | 16 | |
5.c | odd | 4 | 1 | 75.2.g.b | ✓ | 8 | |
5.c | odd | 4 | 1 | 375.2.g.b | 8 | ||
15.e | even | 4 | 1 | 225.2.h.c | 8 | ||
25.d | even | 5 | 1 | inner | 375.2.i.b | 16 | |
25.d | even | 5 | 1 | 1875.2.b.c | 8 | ||
25.e | even | 10 | 1 | inner | 375.2.i.b | 16 | |
25.e | even | 10 | 1 | 1875.2.b.c | 8 | ||
25.f | odd | 20 | 1 | 75.2.g.b | ✓ | 8 | |
25.f | odd | 20 | 1 | 375.2.g.b | 8 | ||
25.f | odd | 20 | 1 | 1875.2.a.e | 4 | ||
25.f | odd | 20 | 1 | 1875.2.a.h | 4 | ||
75.l | even | 20 | 1 | 225.2.h.c | 8 | ||
75.l | even | 20 | 1 | 5625.2.a.i | 4 | ||
75.l | even | 20 | 1 | 5625.2.a.n | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.b | ✓ | 8 | 5.c | odd | 4 | 1 | |
75.2.g.b | ✓ | 8 | 25.f | odd | 20 | 1 | |
225.2.h.c | 8 | 15.e | even | 4 | 1 | ||
225.2.h.c | 8 | 75.l | even | 20 | 1 | ||
375.2.g.b | 8 | 5.c | odd | 4 | 1 | ||
375.2.g.b | 8 | 25.f | odd | 20 | 1 | ||
375.2.i.b | 16 | 1.a | even | 1 | 1 | trivial | |
375.2.i.b | 16 | 5.b | even | 2 | 1 | inner | |
375.2.i.b | 16 | 25.d | even | 5 | 1 | inner | |
375.2.i.b | 16 | 25.e | even | 10 | 1 | inner | |
1875.2.a.e | 4 | 25.f | odd | 20 | 1 | ||
1875.2.a.h | 4 | 25.f | odd | 20 | 1 | ||
1875.2.b.c | 8 | 25.d | even | 5 | 1 | ||
1875.2.b.c | 8 | 25.e | even | 10 | 1 | ||
5625.2.a.i | 4 | 75.l | even | 20 | 1 | ||
5625.2.a.n | 4 | 75.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 3T_{2}^{14} + 48T_{2}^{12} - 341T_{2}^{10} + 1475T_{2}^{8} - 2801T_{2}^{6} + 11828T_{2}^{4} - 19723T_{2}^{2} + 14641 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - 3 T^{14} + 48 T^{12} + \cdots + 14641 \)
$3$
\( (T^{8} - T^{6} + T^{4} - T^{2} + 1)^{2} \)
$5$
\( T^{16} \)
$7$
\( (T^{8} + 36 T^{6} + 346 T^{4} + 441 T^{2} + \cdots + 81)^{2} \)
$11$
\( (T^{8} - 16 T^{7} + 127 T^{6} + \cdots + 11881)^{2} \)
$13$
\( T^{16} - 22 T^{14} + 253 T^{12} + \cdots + 6561 \)
$17$
\( T^{16} - 13 T^{14} + 83 T^{12} + \cdots + 14641 \)
$19$
\( (T^{8} - 5 T^{7} + 5 T^{6} + 75 T^{5} + \cdots + 75625)^{2} \)
$23$
\( T^{16} - 67 T^{14} + 1808 T^{12} + \cdots + 130321 \)
$29$
\( (T^{8} + 5 T^{7} + 70 T^{6} + 615 T^{5} + \cdots + 164025)^{2} \)
$31$
\( (T^{8} + 19 T^{7} + 172 T^{6} + \cdots + 505521)^{2} \)
$37$
\( T^{16} - 153 T^{14} + 10283 T^{12} + \cdots + 1 \)
$41$
\( (T^{4} + 7 T^{3} + 69 T^{2} + 143 T + 121)^{4} \)
$43$
\( (T^{8} + 134 T^{6} + 4291 T^{4} + \cdots + 9801)^{2} \)
$47$
\( T^{16} - 63 T^{14} + \cdots + 9354951841 \)
$53$
\( T^{16} - 77 T^{14} + \cdots + 4640470641 \)
$59$
\( (T^{8} + 30 T^{7} + 495 T^{6} + \cdots + 13286025)^{2} \)
$61$
\( (T^{8} + 14 T^{7} + 157 T^{6} + 842 T^{5} + \cdots + 81)^{2} \)
$67$
\( T^{16} - 58 T^{14} + \cdots + 855036081 \)
$71$
\( (T^{8} - 21 T^{7} + 447 T^{6} + \cdots + 829921)^{2} \)
$73$
\( T^{16} + \cdots + 562029482679921 \)
$79$
\( (T^{8} - 30 T^{7} + 605 T^{6} + \cdots + 96924025)^{2} \)
$83$
\( T^{16} - 82 T^{14} + \cdots + 918609150481 \)
$89$
\( (T^{8} + 255 T^{6} + 2415 T^{5} + \cdots + 10923025)^{2} \)
$97$
\( T^{16} + 22 T^{14} + \cdots + 19485170468401 \)
show more
show less