Properties

Label 375.2.g.d
Level $375$
Weight $2$
Character orbit 375.g
Analytic conductor $2.994$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [375,2,Mod(76,375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(375, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("375.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + \beta_{3} q^{3} + ( - \beta_{11} + \beta_{8}) q^{4} + ( - \beta_{13} - \beta_{11} + \beta_{5} - \beta_1 + 1) q^{6} + ( - \beta_{15} - \beta_{12} - \beta_{9} - \beta_{6} + \beta_{5} - \beta_1 + 1) q^{7} + ( - \beta_{15} + \beta_{14} - \beta_{12} - \beta_{8} - \beta_{7} - \beta_{4} + \beta_{3} - 2 \beta_{2}) q^{8} - \beta_{10} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{5} q^{2} + \beta_{3} q^{3} + ( - \beta_{11} + \beta_{8}) q^{4} + ( - \beta_{13} - \beta_{11} + \beta_{5} - \beta_1 + 1) q^{6} + ( - \beta_{15} - \beta_{12} - \beta_{9} - \beta_{6} + \beta_{5} - \beta_1 + 1) q^{7} + ( - \beta_{15} + \beta_{14} - \beta_{12} - \beta_{8} - \beta_{7} - \beta_{4} + \beta_{3} - 2 \beta_{2}) q^{8} - \beta_{10} q^{9} + (\beta_{14} + \beta_{9} + 2 \beta_{8} - \beta_{6} - \beta_{4} + \beta_{3} + 2 \beta_{2}) q^{11} + ( - \beta_{6} + \beta_1) q^{12} + ( - \beta_{15} - 2 \beta_{11} - 3 \beta_{10} - \beta_{7} + 2 \beta_{5} - \beta_1 + 1) q^{13} + ( - \beta_{13} + \beta_{12} - \beta_{11} + \beta_{9} + 2 \beta_{5} - \beta_{3} + \beta_{2} + 2) q^{14} + (2 \beta_{15} + 2 \beta_{10} + \beta_{7} + \beta_{6} - \beta_1 - 1) q^{16} + (\beta_{15} - \beta_{14} - \beta_{11} + \beta_{10} - \beta_{8} - 2 \beta_{7} + 2 \beta_{6} - 2 \beta_{2} - \beta_1) q^{17} + ( - \beta_{13} + 1) q^{18} + ( - \beta_{13} + 2 \beta_{12} - 2 \beta_{11} - \beta_{10} - \beta_{6} + \beta_{5} + 2 \beta_{4} + \cdots + 1) q^{19}+ \cdots + ( - \beta_{15} - \beta_{12} - \beta_{9} - \beta_{6} + \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} - 2 q^{4} + 2 q^{6} + 16 q^{7} - 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{2} + 4 q^{3} - 2 q^{4} + 2 q^{6} + 16 q^{7} - 6 q^{8} - 4 q^{9} - 6 q^{11} + 2 q^{12} - 8 q^{13} + 12 q^{14} - 10 q^{16} - 8 q^{17} + 8 q^{18} + 2 q^{19} + 4 q^{21} + 4 q^{22} - 2 q^{23} - 24 q^{24} + 12 q^{26} + 4 q^{27} - 28 q^{28} - 16 q^{29} + 6 q^{31} - 4 q^{32} - 4 q^{33} + 36 q^{34} - 2 q^{36} - 24 q^{37} + 38 q^{38} + 8 q^{39} - 14 q^{41} + 18 q^{42} + 40 q^{43} - 26 q^{44} + 16 q^{46} + 10 q^{47} + 10 q^{48} - 32 q^{51} - 48 q^{52} - 12 q^{53} + 2 q^{54} + 28 q^{57} - 44 q^{58} - 12 q^{59} - 28 q^{62} - 4 q^{63} - 8 q^{64} + 16 q^{66} + 12 q^{67} - 4 q^{68} + 12 q^{69} - 8 q^{71} - 6 q^{72} + 8 q^{73} + 52 q^{74} - 32 q^{76} - 18 q^{77} - 32 q^{78} + 20 q^{79} - 4 q^{81} + 32 q^{82} - 6 q^{83} - 12 q^{84} - 36 q^{86} - 14 q^{87} - 16 q^{88} - 18 q^{89} + 26 q^{91} + 36 q^{92} + 44 q^{93} + 38 q^{94} - 26 q^{96} - 8 q^{97} + 18 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 11 \nu^{15} + 22 \nu^{14} - 194 \nu^{13} + 388 \nu^{12} - 1257 \nu^{11} + 2515 \nu^{10} - 3731 \nu^{9} + 7477 \nu^{8} - 5277 \nu^{7} + 10628 \nu^{6} - 3223 \nu^{5} + 6579 \nu^{4} - 565 \nu^{3} + \cdots + 9 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -11\nu^{14} - 194\nu^{12} - 1257\nu^{10} - 3731\nu^{8} - 5277\nu^{6} - 3223\nu^{4} - 565\nu^{2} - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 7 \nu^{15} + 32 \nu^{14} - 124 \nu^{13} + 564 \nu^{12} - 810 \nu^{11} + 3652 \nu^{10} - 2444 \nu^{9} + 10838 \nu^{8} - 3583 \nu^{7} + 15360 \nu^{6} - 2400 \nu^{5} + 9462 \nu^{4} - 595 \nu^{3} + \cdots + 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16\nu^{14} + 282\nu^{12} + 1826\nu^{10} + 5419\nu^{8} + 7680\nu^{6} + 4732\nu^{4} + 865\nu^{2} + 13 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 11 \nu^{15} - 22 \nu^{14} - 194 \nu^{13} - 388 \nu^{12} - 1257 \nu^{11} - 2515 \nu^{10} - 3731 \nu^{9} - 7477 \nu^{8} - 5277 \nu^{7} - 10628 \nu^{6} - 3223 \nu^{5} - 6579 \nu^{4} - 565 \nu^{3} + \cdots - 9 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{15} + 34 \nu^{14} - 19 \nu^{13} + 600 \nu^{12} - 138 \nu^{11} + 3893 \nu^{10} - 490 \nu^{9} + 11593 \nu^{8} - 916 \nu^{7} + 16526 \nu^{6} - 893 \nu^{5} + 10291 \nu^{4} - 405 \nu^{3} + 1922 \nu^{2} + \cdots + 21 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 7 \nu^{15} + 32 \nu^{14} + 124 \nu^{13} + 564 \nu^{12} + 810 \nu^{11} + 3652 \nu^{10} + 2444 \nu^{9} + 10838 \nu^{8} + 3583 \nu^{7} + 15360 \nu^{6} + 2400 \nu^{5} + 9462 \nu^{4} + 595 \nu^{3} + \cdots + 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 47 \nu^{15} + 11 \nu^{14} + 828 \nu^{13} + 194 \nu^{12} + 5356 \nu^{11} + 1257 \nu^{10} + 15855 \nu^{9} + 3731 \nu^{8} + 22317 \nu^{7} + 5277 \nu^{6} + 13446 \nu^{5} + 3223 \nu^{4} + 2160 \nu^{3} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{15} + 56 \nu^{14} + 19 \nu^{13} + 988 \nu^{12} + 138 \nu^{11} + 6407 \nu^{10} + 490 \nu^{9} + 19055 \nu^{8} + 916 \nu^{7} + 27080 \nu^{6} + 893 \nu^{5} + 16737 \nu^{4} + 405 \nu^{3} + 3052 \nu^{2} + \cdots + 25 ) / 4 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 29 \nu^{15} - 32 \nu^{14} - 512 \nu^{13} - 564 \nu^{12} - 3325 \nu^{11} - 3652 \nu^{10} - 9921 \nu^{9} - 10838 \nu^{8} - 14211 \nu^{7} - 15360 \nu^{6} - 8977 \nu^{5} - 9462 \nu^{4} + \cdots - 10 ) / 4 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 45 \nu^{15} + 23 \nu^{14} + 794 \nu^{13} + 406 \nu^{12} + 5150 \nu^{11} + 2635 \nu^{10} + 15324 \nu^{9} + 7847 \nu^{8} + 21803 \nu^{7} + 11175 \nu^{6} + 13514 \nu^{5} + 6935 \nu^{4} + 2487 \nu^{3} + \cdots + 10 ) / 4 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 45 \nu^{15} - 64 \nu^{14} + 791 \nu^{13} - 1129 \nu^{12} + 5098 \nu^{11} - 7321 \nu^{10} + 14996 \nu^{9} - 21780 \nu^{8} + 20870 \nu^{7} - 31001 \nu^{6} + 12277 \nu^{5} - 19266 \nu^{4} + \cdots - 38 ) / 4 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -45\nu^{14} - 794\nu^{12} - 5150\nu^{10} - 15324\nu^{8} - 21803\nu^{6} - 13514\nu^{4} - 2485\nu^{2} - 17 ) / 2 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 13 \nu^{15} - 91 \nu^{14} - 230 \nu^{13} - 1605 \nu^{12} - 1498 \nu^{11} - 10404 \nu^{10} - 4486 \nu^{9} - 30930 \nu^{8} - 6443 \nu^{7} - 43958 \nu^{6} - 4052 \nu^{5} - 27219 \nu^{4} + \cdots - 39 ) / 4 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 45 \nu^{15} - 64 \nu^{14} - 791 \nu^{13} - 1129 \nu^{12} - 5098 \nu^{11} - 7321 \nu^{10} - 14996 \nu^{9} - 21780 \nu^{8} - 20870 \nu^{7} - 31001 \nu^{6} - 12277 \nu^{5} - 19266 \nu^{4} + \cdots - 38 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{15} - 4 \beta_{14} - 2 \beta_{13} + 3 \beta_{12} - 4 \beta_{11} - 2 \beta_{10} + \beta_{9} - 3 \beta_{7} - \beta_{6} + 3 \beta_{5} + 2 \beta_{4} - 3 \beta_{3} + 3 \beta_{2} - \beta _1 + 3 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{13} + \beta_{9} + \beta_{6} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 3 \beta_{15} + 12 \beta_{14} + 11 \beta_{13} - 9 \beta_{12} + 22 \beta_{11} + 6 \beta_{10} - 5 \beta_{9} - 8 \beta_{8} + 4 \beta_{7} + 5 \beta_{6} - 14 \beta_{5} - 6 \beta_{4} + 14 \beta_{3} - 15 \beta_{2} + 8 \beta _1 - 14 ) / 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{13} - 7\beta_{9} - \beta_{7} - 7\beta_{6} + 2\beta_{4} - \beta_{3} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 16 \beta_{15} - 54 \beta_{14} - 62 \beta_{13} + 38 \beta_{12} - 124 \beta_{11} - 22 \beta_{10} + 21 \beta_{9} + 60 \beta_{8} + 7 \beta_{7} - 21 \beta_{6} + 73 \beta_{5} + 27 \beta_{4} - 83 \beta_{3} + 78 \beta_{2} - 51 \beta _1 + 73 ) / 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 43 \beta_{13} + 44 \beta_{9} + 9 \beta_{7} + 44 \beta_{6} + 3 \beta_{5} - 16 \beta_{4} + 9 \beta_{3} + \beta_{2} - 3 \beta _1 - 76 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 103 \beta_{15} + 292 \beta_{14} + 366 \beta_{13} - 189 \beta_{12} + 732 \beta_{11} + 116 \beta_{10} - 85 \beta_{9} - 388 \beta_{8} - 106 \beta_{7} + 85 \beta_{6} - 404 \beta_{5} - 146 \beta_{4} + 514 \beta_{3} - 425 \beta_{2} + \cdots - 424 ) / 5 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 4 \beta_{15} - 255 \beta_{13} - 4 \beta_{12} - 273 \beta_{9} - 66 \beta_{7} - 273 \beta_{6} - 38 \beta_{5} + 102 \beta_{4} - 66 \beta_{3} - 18 \beta_{2} + 38 \beta _1 + 440 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 686 \beta_{15} - 1704 \beta_{14} - 2217 \beta_{13} + 1018 \beta_{12} - 4434 \beta_{11} - 752 \beta_{10} + 316 \beta_{9} + 2420 \beta_{8} + 767 \beta_{7} - 316 \beta_{6} + 2293 \beta_{5} + 852 \beta_{4} - 3223 \beta_{3} + \cdots + 2593 ) / 5 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 60 \beta_{15} + 1500 \beta_{13} + 60 \beta_{12} + 1696 \beta_{9} + 457 \beta_{7} + 1696 \beta_{6} + 346 \beta_{5} - 612 \beta_{4} + 457 \beta_{3} + 200 \beta_{2} - 346 \beta _1 - 2621 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 4573 \beta_{15} + 10262 \beta_{14} + 13611 \beta_{13} - 5689 \beta_{12} + 27222 \beta_{11} + 5176 \beta_{10} - 890 \beta_{9} - 14968 \beta_{8} - 4871 \beta_{7} + 890 \beta_{6} - 13169 \beta_{5} + \cdots - 16199 ) / 5 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 606 \beta_{15} - 8832 \beta_{13} - 606 \beta_{12} - 10573 \beta_{9} - 3096 \beta_{7} - 10573 \beta_{6} - 2773 \beta_{5} + 3608 \beta_{4} - 3096 \beta_{3} - 1809 \beta_{2} + 2773 \beta _1 + 15840 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 30351 \beta_{15} - 62714 \beta_{14} - 84222 \beta_{13} + 32363 \beta_{12} - 168444 \beta_{11} - 35802 \beta_{10} - 244 \beta_{9} + 92600 \beta_{8} + 29837 \beta_{7} + 244 \beta_{6} + 76183 \beta_{5} + \cdots + 102123 ) / 5 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 5188 \beta_{15} + 52218 \beta_{13} + 5188 \beta_{12} + 66151 \beta_{9} + 20741 \beta_{7} + 66151 \beta_{6} + 20817 \beta_{5} - 21204 \beta_{4} + 20741 \beta_{3} + 14675 \beta_{2} - 20817 \beta _1 - 96580 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 200513 \beta_{15} + 386472 \beta_{14} + 523991 \beta_{13} - 185959 \beta_{12} + 1047982 \beta_{11} + 245496 \beta_{10} + 33705 \beta_{9} - 574548 \beta_{8} - 181151 \beta_{7} + \cdots - 646739 ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(-\beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
2.53767i
1.08982i
0.0898194i
1.53767i
1.35083i
0.536547i
1.53655i
2.35083i
1.35083i
0.536547i
1.53655i
2.35083i
2.53767i
1.08982i
0.0898194i
1.53767i
−2.05302 1.49161i −0.309017 0.951057i 1.37197 + 4.22249i 0 −0.784184 + 2.41347i 1.04054 1.91324 5.88835i −0.809017 + 0.587785i 0
76.2 −0.881682 0.640580i −0.309017 0.951057i −0.251013 0.772537i 0 −0.336773 + 1.03648i −3.08724 −0.947104 + 2.91489i −0.809017 + 0.587785i 0
76.3 0.0726655 + 0.0527945i −0.309017 0.951057i −0.615541 1.89444i 0 0.0277557 0.0854234i 4.36070 0.110799 0.341004i −0.809017 + 0.587785i 0
76.4 1.24400 + 0.903822i −0.309017 0.951057i 0.112618 + 0.346603i 0 0.475167 1.46241i 1.68601 0.777165 2.39187i −0.809017 + 0.587785i 0
151.1 −0.417429 1.28472i 0.809017 0.587785i 0.141788 0.103015i 0 −1.09284 0.793998i 1.59580 −2.37722 1.72715i 0.309017 0.951057i 0
151.2 −0.165802 0.510286i 0.809017 0.587785i 1.38513 1.00636i 0 −0.434076 0.315374i −2.57318 −1.61134 1.17071i 0.309017 0.951057i 0
151.3 0.474819 + 1.46134i 0.809017 0.587785i −0.292036 + 0.212177i 0 1.24309 + 0.903160i 1.49550 2.03746 + 1.48030i 0.309017 0.951057i 0
151.4 0.726446 + 2.23577i 0.809017 0.587785i −2.85292 + 2.07277i 0 1.90186 + 1.38178i 3.48189 −2.90300 2.10915i 0.309017 0.951057i 0
226.1 −0.417429 + 1.28472i 0.809017 + 0.587785i 0.141788 + 0.103015i 0 −1.09284 + 0.793998i 1.59580 −2.37722 + 1.72715i 0.309017 + 0.951057i 0
226.2 −0.165802 + 0.510286i 0.809017 + 0.587785i 1.38513 + 1.00636i 0 −0.434076 + 0.315374i −2.57318 −1.61134 + 1.17071i 0.309017 + 0.951057i 0
226.3 0.474819 1.46134i 0.809017 + 0.587785i −0.292036 0.212177i 0 1.24309 0.903160i 1.49550 2.03746 1.48030i 0.309017 + 0.951057i 0
226.4 0.726446 2.23577i 0.809017 + 0.587785i −2.85292 2.07277i 0 1.90186 1.38178i 3.48189 −2.90300 + 2.10915i 0.309017 + 0.951057i 0
301.1 −2.05302 + 1.49161i −0.309017 + 0.951057i 1.37197 4.22249i 0 −0.784184 2.41347i 1.04054 1.91324 + 5.88835i −0.809017 0.587785i 0
301.2 −0.881682 + 0.640580i −0.309017 + 0.951057i −0.251013 + 0.772537i 0 −0.336773 1.03648i −3.08724 −0.947104 2.91489i −0.809017 0.587785i 0
301.3 0.0726655 0.0527945i −0.309017 + 0.951057i −0.615541 + 1.89444i 0 0.0277557 + 0.0854234i 4.36070 0.110799 + 0.341004i −0.809017 0.587785i 0
301.4 1.24400 0.903822i −0.309017 + 0.951057i 0.112618 0.346603i 0 0.475167 + 1.46241i 1.68601 0.777165 + 2.39187i −0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 301.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 375.2.g.d 16
5.b even 2 1 375.2.g.e 16
5.c odd 4 1 75.2.i.a 16
5.c odd 4 1 375.2.i.c 16
15.e even 4 1 225.2.m.b 16
25.d even 5 1 inner 375.2.g.d 16
25.d even 5 1 1875.2.a.p 8
25.e even 10 1 375.2.g.e 16
25.e even 10 1 1875.2.a.m 8
25.f odd 20 1 75.2.i.a 16
25.f odd 20 1 375.2.i.c 16
25.f odd 20 2 1875.2.b.h 16
75.h odd 10 1 5625.2.a.bd 8
75.j odd 10 1 5625.2.a.t 8
75.l even 20 1 225.2.m.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.2.i.a 16 5.c odd 4 1
75.2.i.a 16 25.f odd 20 1
225.2.m.b 16 15.e even 4 1
225.2.m.b 16 75.l even 20 1
375.2.g.d 16 1.a even 1 1 trivial
375.2.g.d 16 25.d even 5 1 inner
375.2.g.e 16 5.b even 2 1
375.2.g.e 16 25.e even 10 1
375.2.i.c 16 5.c odd 4 1
375.2.i.c 16 25.f odd 20 1
1875.2.a.m 8 25.e even 10 1
1875.2.a.p 8 25.d even 5 1
1875.2.b.h 16 25.f odd 20 2
5625.2.a.t 8 75.j odd 10 1
5625.2.a.bd 8 75.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 2 T_{2}^{15} + 7 T_{2}^{14} + 16 T_{2}^{13} + 46 T_{2}^{12} + 22 T_{2}^{11} + 125 T_{2}^{10} + 68 T_{2}^{9} + 249 T_{2}^{8} + 214 T_{2}^{7} + 455 T_{2}^{6} + 474 T_{2}^{5} + 586 T_{2}^{4} + 158 T_{2}^{3} + 93 T_{2}^{2} - 16 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 2 T^{15} + 7 T^{14} + 16 T^{13} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( (T^{8} - 8 T^{7} + 4 T^{6} + 108 T^{5} + \cdots + 505)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + 6 T^{15} + 48 T^{14} + \cdots + 27888961 \) Copy content Toggle raw display
$13$ \( T^{16} + 8 T^{15} + 62 T^{14} + \cdots + 78961 \) Copy content Toggle raw display
$17$ \( T^{16} + 8 T^{15} + 95 T^{14} + \cdots + 53860921 \) Copy content Toggle raw display
$19$ \( T^{16} - 2 T^{15} + 23 T^{14} + \cdots + 6375625 \) Copy content Toggle raw display
$23$ \( T^{16} + 2 T^{15} + 113 T^{14} + \cdots + 4389025 \) Copy content Toggle raw display
$29$ \( T^{16} + 16 T^{15} + 217 T^{14} + \cdots + 156025 \) Copy content Toggle raw display
$31$ \( T^{16} - 6 T^{15} + 97 T^{14} + \cdots + 15625 \) Copy content Toggle raw display
$37$ \( T^{16} + 24 T^{15} + \cdots + 8653650625 \) Copy content Toggle raw display
$41$ \( T^{16} + 14 T^{15} + 82 T^{14} + \cdots + 22137025 \) Copy content Toggle raw display
$43$ \( (T^{8} - 20 T^{7} + 6 T^{6} + 1760 T^{5} + \cdots + 22961)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} - 10 T^{15} + \cdots + 36687479166361 \) Copy content Toggle raw display
$53$ \( T^{16} + 12 T^{15} + \cdots + 40398990025 \) Copy content Toggle raw display
$59$ \( T^{16} + 12 T^{15} + 188 T^{14} + \cdots + 12924025 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 275701483356121 \) Copy content Toggle raw display
$67$ \( T^{16} - 12 T^{15} + 110 T^{14} + \cdots + 13980121 \) Copy content Toggle raw display
$71$ \( T^{16} + 8 T^{15} + \cdots + 25529328841 \) Copy content Toggle raw display
$73$ \( T^{16} - 8 T^{15} + \cdots + 757413387025 \) Copy content Toggle raw display
$79$ \( T^{16} - 20 T^{15} + \cdots + 3940125750625 \) Copy content Toggle raw display
$83$ \( T^{16} + 6 T^{15} + \cdots + 2356228681 \) Copy content Toggle raw display
$89$ \( T^{16} + 18 T^{15} + 68 T^{14} - 1034 T^{13} + \cdots + 25 \) Copy content Toggle raw display
$97$ \( T^{16} + 8 T^{15} + 50 T^{14} + \cdots + 216648961 \) Copy content Toggle raw display
show more
show less