Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.g (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{5})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 5^{2} \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 11 \nu^{15} + 22 \nu^{14} - 194 \nu^{13} + 388 \nu^{12} - 1257 \nu^{11} + 2515 \nu^{10} - 3731 \nu^{9} + 7477 \nu^{8} - 5277 \nu^{7} + 10628 \nu^{6} - 3223 \nu^{5} + 6579 \nu^{4} - 565 \nu^{3} + \cdots + 9 ) / 4 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -11\nu^{14} - 194\nu^{12} - 1257\nu^{10} - 3731\nu^{8} - 5277\nu^{6} - 3223\nu^{4} - 565\nu^{2} - 2 ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 7 \nu^{15} + 32 \nu^{14} - 124 \nu^{13} + 564 \nu^{12} - 810 \nu^{11} + 3652 \nu^{10} - 2444 \nu^{9} + 10838 \nu^{8} - 3583 \nu^{7} + 15360 \nu^{6} - 2400 \nu^{5} + 9462 \nu^{4} - 595 \nu^{3} + \cdots + 12 ) / 4 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 16\nu^{14} + 282\nu^{12} + 1826\nu^{10} + 5419\nu^{8} + 7680\nu^{6} + 4732\nu^{4} + 865\nu^{2} + 13 ) / 2 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 11 \nu^{15} - 22 \nu^{14} - 194 \nu^{13} - 388 \nu^{12} - 1257 \nu^{11} - 2515 \nu^{10} - 3731 \nu^{9} - 7477 \nu^{8} - 5277 \nu^{7} - 10628 \nu^{6} - 3223 \nu^{5} - 6579 \nu^{4} - 565 \nu^{3} + \cdots - 9 ) / 4 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - \nu^{15} + 34 \nu^{14} - 19 \nu^{13} + 600 \nu^{12} - 138 \nu^{11} + 3893 \nu^{10} - 490 \nu^{9} + 11593 \nu^{8} - 916 \nu^{7} + 16526 \nu^{6} - 893 \nu^{5} + 10291 \nu^{4} - 405 \nu^{3} + 1922 \nu^{2} + \cdots + 21 ) / 4 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 7 \nu^{15} + 32 \nu^{14} + 124 \nu^{13} + 564 \nu^{12} + 810 \nu^{11} + 3652 \nu^{10} + 2444 \nu^{9} + 10838 \nu^{8} + 3583 \nu^{7} + 15360 \nu^{6} + 2400 \nu^{5} + 9462 \nu^{4} + 595 \nu^{3} + \cdots + 12 ) / 4 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 47 \nu^{15} + 11 \nu^{14} + 828 \nu^{13} + 194 \nu^{12} + 5356 \nu^{11} + 1257 \nu^{10} + 15855 \nu^{9} + 3731 \nu^{8} + 22317 \nu^{7} + 5277 \nu^{6} + 13446 \nu^{5} + 3223 \nu^{4} + 2160 \nu^{3} + \cdots + 2 ) / 4 \)
|
\(\beta_{9}\) | \(=\) |
\( ( \nu^{15} + 56 \nu^{14} + 19 \nu^{13} + 988 \nu^{12} + 138 \nu^{11} + 6407 \nu^{10} + 490 \nu^{9} + 19055 \nu^{8} + 916 \nu^{7} + 27080 \nu^{6} + 893 \nu^{5} + 16737 \nu^{4} + 405 \nu^{3} + 3052 \nu^{2} + \cdots + 25 ) / 4 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 29 \nu^{15} - 32 \nu^{14} - 512 \nu^{13} - 564 \nu^{12} - 3325 \nu^{11} - 3652 \nu^{10} - 9921 \nu^{9} - 10838 \nu^{8} - 14211 \nu^{7} - 15360 \nu^{6} - 8977 \nu^{5} - 9462 \nu^{4} + \cdots - 10 ) / 4 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 45 \nu^{15} + 23 \nu^{14} + 794 \nu^{13} + 406 \nu^{12} + 5150 \nu^{11} + 2635 \nu^{10} + 15324 \nu^{9} + 7847 \nu^{8} + 21803 \nu^{7} + 11175 \nu^{6} + 13514 \nu^{5} + 6935 \nu^{4} + 2487 \nu^{3} + \cdots + 10 ) / 4 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 45 \nu^{15} - 64 \nu^{14} + 791 \nu^{13} - 1129 \nu^{12} + 5098 \nu^{11} - 7321 \nu^{10} + 14996 \nu^{9} - 21780 \nu^{8} + 20870 \nu^{7} - 31001 \nu^{6} + 12277 \nu^{5} - 19266 \nu^{4} + \cdots - 38 ) / 4 \)
|
\(\beta_{13}\) | \(=\) |
\( ( -45\nu^{14} - 794\nu^{12} - 5150\nu^{10} - 15324\nu^{8} - 21803\nu^{6} - 13514\nu^{4} - 2485\nu^{2} - 17 ) / 2 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 13 \nu^{15} - 91 \nu^{14} - 230 \nu^{13} - 1605 \nu^{12} - 1498 \nu^{11} - 10404 \nu^{10} - 4486 \nu^{9} - 30930 \nu^{8} - 6443 \nu^{7} - 43958 \nu^{6} - 4052 \nu^{5} - 27219 \nu^{4} + \cdots - 39 ) / 4 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 45 \nu^{15} - 64 \nu^{14} - 791 \nu^{13} - 1129 \nu^{12} - 5098 \nu^{11} - 7321 \nu^{10} - 14996 \nu^{9} - 21780 \nu^{8} - 20870 \nu^{7} - 31001 \nu^{6} - 12277 \nu^{5} - 19266 \nu^{4} + \cdots - 38 ) / 4 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{15} - 4 \beta_{14} - 2 \beta_{13} + 3 \beta_{12} - 4 \beta_{11} - 2 \beta_{10} + \beta_{9} - 3 \beta_{7} - \beta_{6} + 3 \beta_{5} + 2 \beta_{4} - 3 \beta_{3} + 3 \beta_{2} - \beta _1 + 3 ) / 5 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{13} + \beta_{9} + \beta_{6} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 3 \beta_{15} + 12 \beta_{14} + 11 \beta_{13} - 9 \beta_{12} + 22 \beta_{11} + 6 \beta_{10} - 5 \beta_{9} - 8 \beta_{8} + 4 \beta_{7} + 5 \beta_{6} - 14 \beta_{5} - 6 \beta_{4} + 14 \beta_{3} - 15 \beta_{2} + 8 \beta _1 - 14 ) / 5 \)
|
\(\nu^{4}\) | \(=\) |
\( -7\beta_{13} - 7\beta_{9} - \beta_{7} - 7\beta_{6} + 2\beta_{4} - \beta_{3} + 14 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 16 \beta_{15} - 54 \beta_{14} - 62 \beta_{13} + 38 \beta_{12} - 124 \beta_{11} - 22 \beta_{10} + 21 \beta_{9} + 60 \beta_{8} + 7 \beta_{7} - 21 \beta_{6} + 73 \beta_{5} + 27 \beta_{4} - 83 \beta_{3} + 78 \beta_{2} - 51 \beta _1 + 73 ) / 5 \)
|
\(\nu^{6}\) | \(=\) |
\( 43 \beta_{13} + 44 \beta_{9} + 9 \beta_{7} + 44 \beta_{6} + 3 \beta_{5} - 16 \beta_{4} + 9 \beta_{3} + \beta_{2} - 3 \beta _1 - 76 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 103 \beta_{15} + 292 \beta_{14} + 366 \beta_{13} - 189 \beta_{12} + 732 \beta_{11} + 116 \beta_{10} - 85 \beta_{9} - 388 \beta_{8} - 106 \beta_{7} + 85 \beta_{6} - 404 \beta_{5} - 146 \beta_{4} + 514 \beta_{3} - 425 \beta_{2} + \cdots - 424 ) / 5 \)
|
\(\nu^{8}\) | \(=\) |
\( - 4 \beta_{15} - 255 \beta_{13} - 4 \beta_{12} - 273 \beta_{9} - 66 \beta_{7} - 273 \beta_{6} - 38 \beta_{5} + 102 \beta_{4} - 66 \beta_{3} - 18 \beta_{2} + 38 \beta _1 + 440 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 686 \beta_{15} - 1704 \beta_{14} - 2217 \beta_{13} + 1018 \beta_{12} - 4434 \beta_{11} - 752 \beta_{10} + 316 \beta_{9} + 2420 \beta_{8} + 767 \beta_{7} - 316 \beta_{6} + 2293 \beta_{5} + 852 \beta_{4} - 3223 \beta_{3} + \cdots + 2593 ) / 5 \)
|
\(\nu^{10}\) | \(=\) |
\( 60 \beta_{15} + 1500 \beta_{13} + 60 \beta_{12} + 1696 \beta_{9} + 457 \beta_{7} + 1696 \beta_{6} + 346 \beta_{5} - 612 \beta_{4} + 457 \beta_{3} + 200 \beta_{2} - 346 \beta _1 - 2621 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 4573 \beta_{15} + 10262 \beta_{14} + 13611 \beta_{13} - 5689 \beta_{12} + 27222 \beta_{11} + 5176 \beta_{10} - 890 \beta_{9} - 14968 \beta_{8} - 4871 \beta_{7} + 890 \beta_{6} - 13169 \beta_{5} + \cdots - 16199 ) / 5 \)
|
\(\nu^{12}\) | \(=\) |
\( - 606 \beta_{15} - 8832 \beta_{13} - 606 \beta_{12} - 10573 \beta_{9} - 3096 \beta_{7} - 10573 \beta_{6} - 2773 \beta_{5} + 3608 \beta_{4} - 3096 \beta_{3} - 1809 \beta_{2} + 2773 \beta _1 + 15840 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 30351 \beta_{15} - 62714 \beta_{14} - 84222 \beta_{13} + 32363 \beta_{12} - 168444 \beta_{11} - 35802 \beta_{10} - 244 \beta_{9} + 92600 \beta_{8} + 29837 \beta_{7} + 244 \beta_{6} + 76183 \beta_{5} + \cdots + 102123 ) / 5 \)
|
\(\nu^{14}\) | \(=\) |
\( 5188 \beta_{15} + 52218 \beta_{13} + 5188 \beta_{12} + 66151 \beta_{9} + 20741 \beta_{7} + 66151 \beta_{6} + 20817 \beta_{5} - 21204 \beta_{4} + 20741 \beta_{3} + 14675 \beta_{2} - 20817 \beta _1 - 96580 \)
|
\(\nu^{15}\) | \(=\) |
\( ( - 200513 \beta_{15} + 386472 \beta_{14} + 523991 \beta_{13} - 185959 \beta_{12} + 1047982 \beta_{11} + 245496 \beta_{10} + 33705 \beta_{9} - 574548 \beta_{8} - 181151 \beta_{7} + \cdots - 646739 ) / 5 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(-\beta_{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 |
|
−2.05302 | − | 1.49161i | −0.309017 | − | 0.951057i | 1.37197 | + | 4.22249i | 0 | −0.784184 | + | 2.41347i | 1.04054 | 1.91324 | − | 5.88835i | −0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
76.2 | −0.881682 | − | 0.640580i | −0.309017 | − | 0.951057i | −0.251013 | − | 0.772537i | 0 | −0.336773 | + | 1.03648i | −3.08724 | −0.947104 | + | 2.91489i | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
76.3 | 0.0726655 | + | 0.0527945i | −0.309017 | − | 0.951057i | −0.615541 | − | 1.89444i | 0 | 0.0277557 | − | 0.0854234i | 4.36070 | 0.110799 | − | 0.341004i | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
76.4 | 1.24400 | + | 0.903822i | −0.309017 | − | 0.951057i | 0.112618 | + | 0.346603i | 0 | 0.475167 | − | 1.46241i | 1.68601 | 0.777165 | − | 2.39187i | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.1 | −0.417429 | − | 1.28472i | 0.809017 | − | 0.587785i | 0.141788 | − | 0.103015i | 0 | −1.09284 | − | 0.793998i | 1.59580 | −2.37722 | − | 1.72715i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.2 | −0.165802 | − | 0.510286i | 0.809017 | − | 0.587785i | 1.38513 | − | 1.00636i | 0 | −0.434076 | − | 0.315374i | −2.57318 | −1.61134 | − | 1.17071i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.3 | 0.474819 | + | 1.46134i | 0.809017 | − | 0.587785i | −0.292036 | + | 0.212177i | 0 | 1.24309 | + | 0.903160i | 1.49550 | 2.03746 | + | 1.48030i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.4 | 0.726446 | + | 2.23577i | 0.809017 | − | 0.587785i | −2.85292 | + | 2.07277i | 0 | 1.90186 | + | 1.38178i | 3.48189 | −2.90300 | − | 2.10915i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.1 | −0.417429 | + | 1.28472i | 0.809017 | + | 0.587785i | 0.141788 | + | 0.103015i | 0 | −1.09284 | + | 0.793998i | 1.59580 | −2.37722 | + | 1.72715i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.2 | −0.165802 | + | 0.510286i | 0.809017 | + | 0.587785i | 1.38513 | + | 1.00636i | 0 | −0.434076 | + | 0.315374i | −2.57318 | −1.61134 | + | 1.17071i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.3 | 0.474819 | − | 1.46134i | 0.809017 | + | 0.587785i | −0.292036 | − | 0.212177i | 0 | 1.24309 | − | 0.903160i | 1.49550 | 2.03746 | − | 1.48030i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.4 | 0.726446 | − | 2.23577i | 0.809017 | + | 0.587785i | −2.85292 | − | 2.07277i | 0 | 1.90186 | − | 1.38178i | 3.48189 | −2.90300 | + | 2.10915i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.1 | −2.05302 | + | 1.49161i | −0.309017 | + | 0.951057i | 1.37197 | − | 4.22249i | 0 | −0.784184 | − | 2.41347i | 1.04054 | 1.91324 | + | 5.88835i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.2 | −0.881682 | + | 0.640580i | −0.309017 | + | 0.951057i | −0.251013 | + | 0.772537i | 0 | −0.336773 | − | 1.03648i | −3.08724 | −0.947104 | − | 2.91489i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.3 | 0.0726655 | − | 0.0527945i | −0.309017 | + | 0.951057i | −0.615541 | + | 1.89444i | 0 | 0.0277557 | + | 0.0854234i | 4.36070 | 0.110799 | + | 0.341004i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.4 | 1.24400 | − | 0.903822i | −0.309017 | + | 0.951057i | 0.112618 | − | 0.346603i | 0 | 0.475167 | + | 1.46241i | 1.68601 | 0.777165 | + | 2.39187i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.g.d | 16 | |
5.b | even | 2 | 1 | 375.2.g.e | 16 | ||
5.c | odd | 4 | 1 | 75.2.i.a | ✓ | 16 | |
5.c | odd | 4 | 1 | 375.2.i.c | 16 | ||
15.e | even | 4 | 1 | 225.2.m.b | 16 | ||
25.d | even | 5 | 1 | inner | 375.2.g.d | 16 | |
25.d | even | 5 | 1 | 1875.2.a.p | 8 | ||
25.e | even | 10 | 1 | 375.2.g.e | 16 | ||
25.e | even | 10 | 1 | 1875.2.a.m | 8 | ||
25.f | odd | 20 | 1 | 75.2.i.a | ✓ | 16 | |
25.f | odd | 20 | 1 | 375.2.i.c | 16 | ||
25.f | odd | 20 | 2 | 1875.2.b.h | 16 | ||
75.h | odd | 10 | 1 | 5625.2.a.bd | 8 | ||
75.j | odd | 10 | 1 | 5625.2.a.t | 8 | ||
75.l | even | 20 | 1 | 225.2.m.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.i.a | ✓ | 16 | 5.c | odd | 4 | 1 | |
75.2.i.a | ✓ | 16 | 25.f | odd | 20 | 1 | |
225.2.m.b | 16 | 15.e | even | 4 | 1 | ||
225.2.m.b | 16 | 75.l | even | 20 | 1 | ||
375.2.g.d | 16 | 1.a | even | 1 | 1 | trivial | |
375.2.g.d | 16 | 25.d | even | 5 | 1 | inner | |
375.2.g.e | 16 | 5.b | even | 2 | 1 | ||
375.2.g.e | 16 | 25.e | even | 10 | 1 | ||
375.2.i.c | 16 | 5.c | odd | 4 | 1 | ||
375.2.i.c | 16 | 25.f | odd | 20 | 1 | ||
1875.2.a.m | 8 | 25.e | even | 10 | 1 | ||
1875.2.a.p | 8 | 25.d | even | 5 | 1 | ||
1875.2.b.h | 16 | 25.f | odd | 20 | 2 | ||
5625.2.a.t | 8 | 75.j | odd | 10 | 1 | ||
5625.2.a.bd | 8 | 75.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 2 T_{2}^{15} + 7 T_{2}^{14} + 16 T_{2}^{13} + 46 T_{2}^{12} + 22 T_{2}^{11} + 125 T_{2}^{10} + 68 T_{2}^{9} + 249 T_{2}^{8} + 214 T_{2}^{7} + 455 T_{2}^{6} + 474 T_{2}^{5} + 586 T_{2}^{4} + 158 T_{2}^{3} + 93 T_{2}^{2} - 16 T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 2 T^{15} + 7 T^{14} + 16 T^{13} + \cdots + 1 \)
$3$
\( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \)
$5$
\( T^{16} \)
$7$
\( (T^{8} - 8 T^{7} + 4 T^{6} + 108 T^{5} + \cdots + 505)^{2} \)
$11$
\( T^{16} + 6 T^{15} + 48 T^{14} + \cdots + 27888961 \)
$13$
\( T^{16} + 8 T^{15} + 62 T^{14} + \cdots + 78961 \)
$17$
\( T^{16} + 8 T^{15} + 95 T^{14} + \cdots + 53860921 \)
$19$
\( T^{16} - 2 T^{15} + 23 T^{14} + \cdots + 6375625 \)
$23$
\( T^{16} + 2 T^{15} + 113 T^{14} + \cdots + 4389025 \)
$29$
\( T^{16} + 16 T^{15} + 217 T^{14} + \cdots + 156025 \)
$31$
\( T^{16} - 6 T^{15} + 97 T^{14} + \cdots + 15625 \)
$37$
\( T^{16} + 24 T^{15} + \cdots + 8653650625 \)
$41$
\( T^{16} + 14 T^{15} + 82 T^{14} + \cdots + 22137025 \)
$43$
\( (T^{8} - 20 T^{7} + 6 T^{6} + 1760 T^{5} + \cdots + 22961)^{2} \)
$47$
\( T^{16} - 10 T^{15} + \cdots + 36687479166361 \)
$53$
\( T^{16} + 12 T^{15} + \cdots + 40398990025 \)
$59$
\( T^{16} + 12 T^{15} + 188 T^{14} + \cdots + 12924025 \)
$61$
\( T^{16} + \cdots + 275701483356121 \)
$67$
\( T^{16} - 12 T^{15} + 110 T^{14} + \cdots + 13980121 \)
$71$
\( T^{16} + 8 T^{15} + \cdots + 25529328841 \)
$73$
\( T^{16} - 8 T^{15} + \cdots + 757413387025 \)
$79$
\( T^{16} - 20 T^{15} + \cdots + 3940125750625 \)
$83$
\( T^{16} + 6 T^{15} + \cdots + 2356228681 \)
$89$
\( T^{16} + 18 T^{15} + 68 T^{14} - 1034 T^{13} + \cdots + 25 \)
$97$
\( T^{16} + 8 T^{15} + 50 T^{14} + \cdots + 216648961 \)
show more
show less