Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.g (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{5})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 3x^{10} - 2x^{9} + 34x^{8} - 22x^{7} + 236x^{6} - 179x^{5} + 877x^{4} - 409x^{3} + 96x^{2} - 11x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 5 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 3x^{10} - 2x^{9} + 34x^{8} - 22x^{7} + 236x^{6} - 179x^{5} + 877x^{4} - 409x^{3} + 96x^{2} - 11x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 78219134 \nu^{11} - 275969449 \nu^{10} - 322545241 \nu^{9} - 688323383 \nu^{8} - 2382459144 \nu^{7} - 7518729011 \nu^{6} + \cdots - 1397761481 ) / 30308822750 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 444010163 \nu^{11} - 328887363 \nu^{10} - 1432734827 \nu^{9} - 101573726 \nu^{8} - 14512620193 \nu^{7} - 1187789257 \nu^{6} + \cdots - 6770591262 ) / 30308822750 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 1397761481 \nu^{11} + 78219134 \nu^{10} - 3917314994 \nu^{9} + 3118068203 \nu^{8} - 46835566971 \nu^{7} + 33133211726 \nu^{6} + \cdots - 20040639729 ) / 30308822750 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 1818269283 \nu^{11} + 240671723 \nu^{10} + 5444121987 \nu^{9} - 2938441244 \nu^{8} + 61232986233 \nu^{7} - 31823778603 \nu^{6} + \cdots - 3685345568 ) / 30308822750 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 1905700356 \nu^{11} - 2131145819 \nu^{10} + 4372551549 \nu^{9} - 10545703663 \nu^{8} + 64978959816 \nu^{7} - 112688230641 \nu^{6} + \cdots + 25111873119 ) / 30308822750 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 3685345568 \nu^{11} - 1818269283 \nu^{10} - 11296708427 \nu^{9} + 1926569149 \nu^{8} - 122363308068 \nu^{7} + 19844616263 \nu^{6} + \cdots - 24741863047 ) / 30308822750 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 6770591262 \nu^{11} - 444010163 \nu^{10} + 19982886423 \nu^{9} - 14973917351 \nu^{8} + 230098529182 \nu^{7} - 163465627957 \nu^{6} + \cdots - 51950796787 ) / 30308822750 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 3594254357 \nu^{11} + 648267081 \nu^{10} - 10484886687 \nu^{9} + 9161303434 \nu^{8} - 122610276713 \nu^{7} + 100643733429 \nu^{6} + \cdots + 13852270880 ) / 6061764550 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 21468863544 \nu^{11} - 1399563761 \nu^{10} + 63167876941 \nu^{9} - 47451650867 \nu^{8} + 728953008894 \nu^{7} - 518817498679 \nu^{6} + \cdots - 164302304099 ) / 30308822750 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 29133222771 \nu^{11} - 6153218841 \nu^{10} - 88476638949 \nu^{9} + 39572030488 \nu^{8} - 981450539091 \nu^{7} + \cdots + 45677018676 ) / 30308822750 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{7} + \beta_{6} + 4\beta_{4} + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} + \beta_{5} - \beta_{4} - 6\beta_{2} + \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 6\beta_{11} - \beta_{10} - 6\beta_{9} + 3\beta_{8} - 25\beta_{7} - 5\beta_{6} - \beta_{5} + 9\beta_{4} + \beta_{2} - 6 \)
|
\(\nu^{5}\) | \(=\) |
\( -\beta_{11} + \beta_{10} + \beta_{9} - 9\beta_{8} + 10\beta_{7} + \beta_{6} + 37\beta_{5} + 11\beta_{3} - 11\beta_{2} + 3 \)
|
\(\nu^{6}\) | \(=\) |
\( -37\beta_{10} - 11\beta_{9} + 79\beta_{8} - 11\beta_{6} - 12\beta_{5} - 71\beta_{4} - 12\beta_{3} + 2\beta _1 - 82 \)
|
\(\nu^{7}\) | \(=\) |
\( 12\beta_{11} + 12\beta_{10} - 87\beta_{7} + 2\beta_{6} + 116\beta_{4} + 142\beta_{3} + 93\beta_{2} - 93\beta _1 + 87 \)
|
\(\nu^{8}\) | \(=\) |
\( - 235 \beta_{11} + 93 \beta_{9} - 438 \beta_{8} + 1059 \beta_{7} + 111 \beta_{5} - 1059 \beta_{4} - 144 \beta_{2} + 111 \beta _1 - 438 \)
|
\(\nu^{9}\) | \(=\) |
\( 144 \beta_{11} - 111 \beta_{10} - 144 \beta_{9} + 568 \beta_{8} - 1015 \beta_{7} - 33 \beta_{6} - 1529 \beta_{5} + 712 \beta_{4} - 815 \beta_{3} + 1529 \beta_{2} - 815 \beta _1 - 144 \)
|
\(\nu^{10}\) | \(=\) |
\( - 714 \beta_{11} + 1529 \beta_{10} + 1529 \beta_{9} - 2286 \beta_{8} + 3815 \beta_{7} + 714 \beta_{6} + 1303 \beta_{5} + 934 \beta_{3} - 934 \beta_{2} + 4799 \)
|
\(\nu^{11}\) | \(=\) |
\( - 1303 \beta_{10} - 934 \beta_{9} + 1821 \beta_{8} - 934 \beta_{6} - 5243 \beta_{5} - 5634 \beta_{4} - 5243 \beta_{3} + 4900 \beta _1 - 6568 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(\beta_{8}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 |
|
−1.63330 | − | 1.18666i | 0.309017 | + | 0.951057i | 0.641469 | + | 1.97424i | 0 | 0.623865 | − | 1.92006i | −1.01887 | 0.0473123 | − | 0.145612i | −0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||||||||||||||
76.2 | −0.114629 | − | 0.0832830i | 0.309017 | + | 0.951057i | −0.611830 | − | 1.88302i | 0 | 0.0437845 | − | 0.134755i | 0.858311 | −0.174259 | + | 0.536314i | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||
76.3 | 1.74793 | + | 1.26995i | 0.309017 | + | 0.951057i | 0.824463 | + | 2.53744i | 0 | −0.667650 | + | 2.05481i | 3.16056 | −0.446002 | + | 1.37265i | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||
151.1 | −0.754089 | − | 2.32085i | −0.809017 | + | 0.587785i | −3.19965 | + | 2.32468i | 0 | 1.97423 | + | 1.43436i | 3.44028 | 3.85959 | + | 2.80415i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
151.2 | −0.0762527 | − | 0.234682i | −0.809017 | + | 0.587785i | 1.56877 | − | 1.13978i | 0 | 0.199632 | + | 0.145041i | 1.24676 | −0.786373 | − | 0.571334i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
151.3 | 0.830342 | + | 2.55553i | −0.809017 | + | 0.587785i | −4.22323 | + | 3.06835i | 0 | −2.17386 | − | 1.57940i | −1.68704 | −7.00026 | − | 5.08599i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
226.1 | −0.754089 | + | 2.32085i | −0.809017 | − | 0.587785i | −3.19965 | − | 2.32468i | 0 | 1.97423 | − | 1.43436i | 3.44028 | 3.85959 | − | 2.80415i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
226.2 | −0.0762527 | + | 0.234682i | −0.809017 | − | 0.587785i | 1.56877 | + | 1.13978i | 0 | 0.199632 | − | 0.145041i | 1.24676 | −0.786373 | + | 0.571334i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
226.3 | 0.830342 | − | 2.55553i | −0.809017 | − | 0.587785i | −4.22323 | − | 3.06835i | 0 | −2.17386 | + | 1.57940i | −1.68704 | −7.00026 | + | 5.08599i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||||||||||
301.1 | −1.63330 | + | 1.18666i | 0.309017 | − | 0.951057i | 0.641469 | − | 1.97424i | 0 | 0.623865 | + | 1.92006i | −1.01887 | 0.0473123 | + | 0.145612i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||
301.2 | −0.114629 | + | 0.0832830i | 0.309017 | − | 0.951057i | −0.611830 | + | 1.88302i | 0 | 0.0437845 | + | 0.134755i | 0.858311 | −0.174259 | − | 0.536314i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||
301.3 | 1.74793 | − | 1.26995i | 0.309017 | − | 0.951057i | 0.824463 | − | 2.53744i | 0 | −0.667650 | − | 2.05481i | 3.16056 | −0.446002 | − | 1.37265i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.g.c | 12 | |
5.b | even | 2 | 1 | 75.2.g.c | ✓ | 12 | |
5.c | odd | 4 | 2 | 375.2.i.d | 24 | ||
15.d | odd | 2 | 1 | 225.2.h.d | 12 | ||
25.d | even | 5 | 1 | inner | 375.2.g.c | 12 | |
25.d | even | 5 | 1 | 1875.2.a.k | 6 | ||
25.e | even | 10 | 1 | 75.2.g.c | ✓ | 12 | |
25.e | even | 10 | 1 | 1875.2.a.j | 6 | ||
25.f | odd | 20 | 2 | 375.2.i.d | 24 | ||
25.f | odd | 20 | 2 | 1875.2.b.f | 12 | ||
75.h | odd | 10 | 1 | 225.2.h.d | 12 | ||
75.h | odd | 10 | 1 | 5625.2.a.p | 6 | ||
75.j | odd | 10 | 1 | 5625.2.a.q | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.c | ✓ | 12 | 5.b | even | 2 | 1 | |
75.2.g.c | ✓ | 12 | 25.e | even | 10 | 1 | |
225.2.h.d | 12 | 15.d | odd | 2 | 1 | ||
225.2.h.d | 12 | 75.h | odd | 10 | 1 | ||
375.2.g.c | 12 | 1.a | even | 1 | 1 | trivial | |
375.2.g.c | 12 | 25.d | even | 5 | 1 | inner | |
375.2.i.d | 24 | 5.c | odd | 4 | 2 | ||
375.2.i.d | 24 | 25.f | odd | 20 | 2 | ||
1875.2.a.j | 6 | 25.e | even | 10 | 1 | ||
1875.2.a.k | 6 | 25.d | even | 5 | 1 | ||
1875.2.b.f | 12 | 25.f | odd | 20 | 2 | ||
5625.2.a.p | 6 | 75.h | odd | 10 | 1 | ||
5625.2.a.q | 6 | 75.j | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 8 T_{2}^{10} + 3 T_{2}^{9} + 34 T_{2}^{8} + 8 T_{2}^{7} + 91 T_{2}^{6} + 96 T_{2}^{5} + 852 T_{2}^{4} + 321 T_{2}^{3} + 96 T_{2}^{2} + 14 T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 8 T^{10} + 3 T^{9} + 34 T^{8} + \cdots + 1 \)
$3$
\( (T^{4} + T^{3} + T^{2} + T + 1)^{3} \)
$5$
\( T^{12} \)
$7$
\( (T^{6} - 6 T^{5} + 4 T^{4} + 25 T^{3} + \cdots + 20)^{2} \)
$11$
\( T^{12} + 4 T^{11} + 11 T^{10} + \cdots + 59536 \)
$13$
\( T^{12} - 2 T^{11} + 19 T^{10} + \cdots + 10201 \)
$17$
\( T^{12} - T^{11} + 29 T^{10} + \cdots + 21520321 \)
$19$
\( T^{12} - 7 T^{11} + 73 T^{10} + \cdots + 144400 \)
$23$
\( T^{12} + 19 T^{11} + 156 T^{10} + \cdots + 4080400 \)
$29$
\( T^{12} + T^{11} + 12 T^{10} + \cdots + 4431025 \)
$31$
\( T^{12} - 13 T^{11} + 44 T^{10} + \cdots + 8410000 \)
$37$
\( T^{12} + 8 T^{11} + 44 T^{10} + \cdots + 36300625 \)
$41$
\( T^{12} - 8 T^{11} + \cdots + 6831849025 \)
$43$
\( (T^{6} - 2 T^{5} - 91 T^{4} + 174 T^{3} + \cdots - 6284)^{2} \)
$47$
\( T^{12} - 13 T^{11} + 178 T^{10} + \cdots + 5216656 \)
$53$
\( T^{12} + 44 T^{11} + \cdots + 1189905025 \)
$59$
\( T^{12} + 22 T^{11} + 213 T^{10} + \cdots + 15366400 \)
$61$
\( T^{12} + 8 T^{11} + \cdots + 28314456361 \)
$67$
\( T^{12} - 6 T^{11} + 29 T^{10} + \cdots + 215619856 \)
$71$
\( T^{12} + 21 T^{11} + 259 T^{10} + \cdots + 38416 \)
$73$
\( T^{12} - 16 T^{11} + \cdots + 493062025 \)
$79$
\( T^{12} - 10 T^{11} - 35 T^{10} + \cdots + 64000000 \)
$83$
\( T^{12} - 10 T^{11} + \cdots + 1683953296 \)
$89$
\( T^{12} - 57 T^{11} + \cdots + 142170473025 \)
$97$
\( T^{12} + 4 T^{11} + 139 T^{10} + \cdots + 5755201 \)
show more
show less