Properties

Label 375.2.g.a.151.1
Level $375$
Weight $2$
Character 375.151
Analytic conductor $2.994$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(76,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 151.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 375.151
Dual form 375.2.g.a.226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(0.809017 - 0.587785i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-0.809017 - 0.587785i) q^{6} +4.47214 q^{7} +(-2.42705 - 1.76336i) q^{8} +(0.309017 - 0.951057i) q^{9} +(-0.381966 - 1.17557i) q^{11} +(0.309017 - 0.951057i) q^{12} +(-1.73607 + 5.34307i) q^{13} +(-1.38197 - 4.25325i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(3.11803 + 2.26538i) q^{17} -1.00000 q^{18} +(-1.00000 - 0.726543i) q^{19} +(3.61803 - 2.62866i) q^{21} +(-1.00000 + 0.726543i) q^{22} +(-1.38197 - 4.25325i) q^{23} -3.00000 q^{24} +5.61803 q^{26} +(-0.309017 - 0.951057i) q^{27} +(3.61803 - 2.62866i) q^{28} +(-5.35410 + 3.88998i) q^{29} +(-2.23607 - 1.62460i) q^{31} -5.00000 q^{32} +(-1.00000 - 0.726543i) q^{33} +(1.19098 - 3.66547i) q^{34} +(-0.309017 - 0.951057i) q^{36} +(0.954915 - 2.93893i) q^{37} +(-0.381966 + 1.17557i) q^{38} +(1.73607 + 5.34307i) q^{39} +(-1.11803 + 3.44095i) q^{41} +(-3.61803 - 2.62866i) q^{42} -7.70820 q^{43} +(-1.00000 - 0.726543i) q^{44} +(-3.61803 + 2.62866i) q^{46} +(-0.618034 + 0.449028i) q^{47} +(0.309017 + 0.951057i) q^{48} +13.0000 q^{49} +3.85410 q^{51} +(1.73607 + 5.34307i) q^{52} +(2.92705 - 2.12663i) q^{53} +(-0.809017 + 0.587785i) q^{54} +(-10.8541 - 7.88597i) q^{56} -1.23607 q^{57} +(5.35410 + 3.88998i) q^{58} +(-1.23607 + 3.80423i) q^{59} +(0.500000 + 1.53884i) q^{61} +(-0.854102 + 2.62866i) q^{62} +(1.38197 - 4.25325i) q^{63} +(2.16312 + 6.65740i) q^{64} +(-0.381966 + 1.17557i) q^{66} +(0.618034 + 0.449028i) q^{67} +3.85410 q^{68} +(-3.61803 - 2.62866i) q^{69} +(4.23607 - 3.07768i) q^{71} +(-2.42705 + 1.76336i) q^{72} +(2.50000 + 7.69421i) q^{73} -3.09017 q^{74} -1.23607 q^{76} +(-1.70820 - 5.25731i) q^{77} +(4.54508 - 3.30220i) q^{78} +(-0.809017 - 0.587785i) q^{81} +3.61803 q^{82} +(10.0902 + 7.33094i) q^{83} +(1.38197 - 4.25325i) q^{84} +(2.38197 + 7.33094i) q^{86} +(-2.04508 + 6.29412i) q^{87} +(-1.14590 + 3.52671i) q^{88} +(1.66312 + 5.11855i) q^{89} +(-7.76393 + 23.8949i) q^{91} +(-3.61803 - 2.62866i) q^{92} -2.76393 q^{93} +(0.618034 + 0.449028i) q^{94} +(-4.04508 + 2.93893i) q^{96} +(1.73607 - 1.26133i) q^{97} +(-4.01722 - 12.3637i) q^{98} -1.23607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{3} + q^{4} - q^{6} - 3 q^{8} - q^{9} - 6 q^{11} - q^{12} + 2 q^{13} - 10 q^{14} + q^{16} + 8 q^{17} - 4 q^{18} - 4 q^{19} + 10 q^{21} - 4 q^{22} - 10 q^{23} - 12 q^{24} + 18 q^{26}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i −0.998886 0.0471903i \(-0.984973\pi\)
0.780378 0.625308i \(-0.215027\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) 0 0
\(6\) −0.809017 0.587785i −0.330280 0.239962i
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) −2.42705 1.76336i −0.858092 0.623440i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) −0.381966 1.17557i −0.115167 0.354448i 0.876815 0.480828i \(-0.159664\pi\)
−0.991982 + 0.126380i \(0.959664\pi\)
\(12\) 0.309017 0.951057i 0.0892055 0.274546i
\(13\) −1.73607 + 5.34307i −0.481499 + 1.48190i 0.355490 + 0.934680i \(0.384314\pi\)
−0.836989 + 0.547220i \(0.815686\pi\)
\(14\) −1.38197 4.25325i −0.369346 1.13673i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 3.11803 + 2.26538i 0.756234 + 0.549436i 0.897753 0.440499i \(-0.145199\pi\)
−0.141519 + 0.989936i \(0.545199\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.00000 0.726543i −0.229416 0.166680i 0.467139 0.884184i \(-0.345285\pi\)
−0.696555 + 0.717504i \(0.745285\pi\)
\(20\) 0 0
\(21\) 3.61803 2.62866i 0.789520 0.573620i
\(22\) −1.00000 + 0.726543i −0.213201 + 0.154899i
\(23\) −1.38197 4.25325i −0.288160 0.886865i −0.985434 0.170060i \(-0.945604\pi\)
0.697274 0.716805i \(-0.254396\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) 5.61803 1.10179
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 3.61803 2.62866i 0.683744 0.496769i
\(29\) −5.35410 + 3.88998i −0.994232 + 0.722352i −0.960844 0.277091i \(-0.910630\pi\)
−0.0333880 + 0.999442i \(0.510630\pi\)
\(30\) 0 0
\(31\) −2.23607 1.62460i −0.401610 0.291787i 0.368587 0.929593i \(-0.379842\pi\)
−0.770196 + 0.637807i \(0.779842\pi\)
\(32\) −5.00000 −0.883883
\(33\) −1.00000 0.726543i −0.174078 0.126475i
\(34\) 1.19098 3.66547i 0.204252 0.628623i
\(35\) 0 0
\(36\) −0.309017 0.951057i −0.0515028 0.158509i
\(37\) 0.954915 2.93893i 0.156987 0.483157i −0.841370 0.540460i \(-0.818250\pi\)
0.998357 + 0.0573034i \(0.0182503\pi\)
\(38\) −0.381966 + 1.17557i −0.0619631 + 0.190703i
\(39\) 1.73607 + 5.34307i 0.277993 + 0.855576i
\(40\) 0 0
\(41\) −1.11803 + 3.44095i −0.174608 + 0.537387i −0.999615 0.0277346i \(-0.991171\pi\)
0.825008 + 0.565121i \(0.191171\pi\)
\(42\) −3.61803 2.62866i −0.558275 0.405610i
\(43\) −7.70820 −1.17549 −0.587745 0.809046i \(-0.699984\pi\)
−0.587745 + 0.809046i \(0.699984\pi\)
\(44\) −1.00000 0.726543i −0.150756 0.109530i
\(45\) 0 0
\(46\) −3.61803 + 2.62866i −0.533450 + 0.387574i
\(47\) −0.618034 + 0.449028i −0.0901495 + 0.0654975i −0.631947 0.775012i \(-0.717744\pi\)
0.541797 + 0.840509i \(0.317744\pi\)
\(48\) 0.309017 + 0.951057i 0.0446028 + 0.137273i
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) 3.85410 0.539682
\(52\) 1.73607 + 5.34307i 0.240749 + 0.740950i
\(53\) 2.92705 2.12663i 0.402061 0.292115i −0.368319 0.929700i \(-0.620066\pi\)
0.770380 + 0.637585i \(0.220066\pi\)
\(54\) −0.809017 + 0.587785i −0.110093 + 0.0799874i
\(55\) 0 0
\(56\) −10.8541 7.88597i −1.45044 1.05381i
\(57\) −1.23607 −0.163721
\(58\) 5.35410 + 3.88998i 0.703028 + 0.510780i
\(59\) −1.23607 + 3.80423i −0.160922 + 0.495268i −0.998713 0.0507240i \(-0.983847\pi\)
0.837790 + 0.545992i \(0.183847\pi\)
\(60\) 0 0
\(61\) 0.500000 + 1.53884i 0.0640184 + 0.197028i 0.977950 0.208840i \(-0.0669689\pi\)
−0.913931 + 0.405869i \(0.866969\pi\)
\(62\) −0.854102 + 2.62866i −0.108471 + 0.333840i
\(63\) 1.38197 4.25325i 0.174111 0.535860i
\(64\) 2.16312 + 6.65740i 0.270390 + 0.832174i
\(65\) 0 0
\(66\) −0.381966 + 1.17557i −0.0470168 + 0.144703i
\(67\) 0.618034 + 0.449028i 0.0755049 + 0.0548575i 0.624897 0.780707i \(-0.285141\pi\)
−0.549392 + 0.835564i \(0.685141\pi\)
\(68\) 3.85410 0.467379
\(69\) −3.61803 2.62866i −0.435560 0.316453i
\(70\) 0 0
\(71\) 4.23607 3.07768i 0.502729 0.365254i −0.307330 0.951603i \(-0.599435\pi\)
0.810058 + 0.586349i \(0.199435\pi\)
\(72\) −2.42705 + 1.76336i −0.286031 + 0.207813i
\(73\) 2.50000 + 7.69421i 0.292603 + 0.900539i 0.984016 + 0.178080i \(0.0569884\pi\)
−0.691413 + 0.722460i \(0.743012\pi\)
\(74\) −3.09017 −0.359225
\(75\) 0 0
\(76\) −1.23607 −0.141787
\(77\) −1.70820 5.25731i −0.194668 0.599126i
\(78\) 4.54508 3.30220i 0.514630 0.373900i
\(79\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 3.61803 0.399545
\(83\) 10.0902 + 7.33094i 1.10754 + 0.804675i 0.982274 0.187448i \(-0.0600217\pi\)
0.125266 + 0.992123i \(0.460022\pi\)
\(84\) 1.38197 4.25325i 0.150785 0.464068i
\(85\) 0 0
\(86\) 2.38197 + 7.33094i 0.256854 + 0.790515i
\(87\) −2.04508 + 6.29412i −0.219256 + 0.674801i
\(88\) −1.14590 + 3.52671i −0.122153 + 0.375949i
\(89\) 1.66312 + 5.11855i 0.176290 + 0.542566i 0.999690 0.0248961i \(-0.00792549\pi\)
−0.823400 + 0.567462i \(0.807925\pi\)
\(90\) 0 0
\(91\) −7.76393 + 23.8949i −0.813881 + 2.50487i
\(92\) −3.61803 2.62866i −0.377206 0.274056i
\(93\) −2.76393 −0.286606
\(94\) 0.618034 + 0.449028i 0.0637453 + 0.0463137i
\(95\) 0 0
\(96\) −4.04508 + 2.93893i −0.412850 + 0.299953i
\(97\) 1.73607 1.26133i 0.176271 0.128068i −0.496151 0.868236i \(-0.665254\pi\)
0.672422 + 0.740168i \(0.265254\pi\)
\(98\) −4.01722 12.3637i −0.405801 1.24893i
\(99\) −1.23607 −0.124230
\(100\) 0 0
\(101\) 3.56231 0.354463 0.177231 0.984169i \(-0.443286\pi\)
0.177231 + 0.984169i \(0.443286\pi\)
\(102\) −1.19098 3.66547i −0.117925 0.362935i
\(103\) 2.61803 1.90211i 0.257963 0.187421i −0.451286 0.892379i \(-0.649034\pi\)
0.709248 + 0.704959i \(0.249034\pi\)
\(104\) 13.6353 9.90659i 1.33705 0.971421i
\(105\) 0 0
\(106\) −2.92705 2.12663i −0.284300 0.206556i
\(107\) −7.52786 −0.727746 −0.363873 0.931449i \(-0.618546\pi\)
−0.363873 + 0.931449i \(0.618546\pi\)
\(108\) −0.809017 0.587785i −0.0778477 0.0565597i
\(109\) −2.44427 + 7.52270i −0.234119 + 0.720544i 0.763118 + 0.646259i \(0.223667\pi\)
−0.997237 + 0.0742847i \(0.976333\pi\)
\(110\) 0 0
\(111\) −0.954915 2.93893i −0.0906365 0.278951i
\(112\) −1.38197 + 4.25325i −0.130584 + 0.401895i
\(113\) −5.66312 + 17.4293i −0.532741 + 1.63961i 0.215738 + 0.976451i \(0.430784\pi\)
−0.748479 + 0.663158i \(0.769216\pi\)
\(114\) 0.381966 + 1.17557i 0.0357744 + 0.110102i
\(115\) 0 0
\(116\) −2.04508 + 6.29412i −0.189881 + 0.584395i
\(117\) 4.54508 + 3.30220i 0.420193 + 0.305288i
\(118\) 4.00000 0.368230
\(119\) 13.9443 + 10.1311i 1.27827 + 0.928717i
\(120\) 0 0
\(121\) 7.66312 5.56758i 0.696647 0.506144i
\(122\) 1.30902 0.951057i 0.118513 0.0861046i
\(123\) 1.11803 + 3.44095i 0.100810 + 0.310260i
\(124\) −2.76393 −0.248208
\(125\) 0 0
\(126\) −4.47214 −0.398410
\(127\) 1.14590 + 3.52671i 0.101682 + 0.312945i 0.988937 0.148333i \(-0.0473909\pi\)
−0.887255 + 0.461279i \(0.847391\pi\)
\(128\) −2.42705 + 1.76336i −0.214523 + 0.155860i
\(129\) −6.23607 + 4.53077i −0.549055 + 0.398912i
\(130\) 0 0
\(131\) 6.61803 + 4.80828i 0.578220 + 0.420102i 0.838082 0.545544i \(-0.183677\pi\)
−0.259862 + 0.965646i \(0.583677\pi\)
\(132\) −1.23607 −0.107586
\(133\) −4.47214 3.24920i −0.387783 0.281741i
\(134\) 0.236068 0.726543i 0.0203932 0.0627637i
\(135\) 0 0
\(136\) −3.57295 10.9964i −0.306378 0.942934i
\(137\) 2.35410 7.24518i 0.201125 0.618998i −0.798726 0.601695i \(-0.794492\pi\)
0.999850 0.0173024i \(-0.00550780\pi\)
\(138\) −1.38197 + 4.25325i −0.117641 + 0.362061i
\(139\) −7.09017 21.8213i −0.601380 1.85086i −0.519983 0.854177i \(-0.674062\pi\)
−0.0813976 0.996682i \(-0.525938\pi\)
\(140\) 0 0
\(141\) −0.236068 + 0.726543i −0.0198805 + 0.0611859i
\(142\) −4.23607 3.07768i −0.355483 0.258273i
\(143\) 6.94427 0.580709
\(144\) 0.809017 + 0.587785i 0.0674181 + 0.0489821i
\(145\) 0 0
\(146\) 6.54508 4.75528i 0.541675 0.393550i
\(147\) 10.5172 7.64121i 0.867446 0.630236i
\(148\) −0.954915 2.93893i −0.0784935 0.241578i
\(149\) −18.8541 −1.54459 −0.772294 0.635265i \(-0.780891\pi\)
−0.772294 + 0.635265i \(0.780891\pi\)
\(150\) 0 0
\(151\) 7.52786 0.612609 0.306304 0.951934i \(-0.400907\pi\)
0.306304 + 0.951934i \(0.400907\pi\)
\(152\) 1.14590 + 3.52671i 0.0929446 + 0.286054i
\(153\) 3.11803 2.26538i 0.252078 0.183145i
\(154\) −4.47214 + 3.24920i −0.360375 + 0.261828i
\(155\) 0 0
\(156\) 4.54508 + 3.30220i 0.363898 + 0.264387i
\(157\) −10.7984 −0.861804 −0.430902 0.902399i \(-0.641805\pi\)
−0.430902 + 0.902399i \(0.641805\pi\)
\(158\) 0 0
\(159\) 1.11803 3.44095i 0.0886659 0.272885i
\(160\) 0 0
\(161\) −6.18034 19.0211i −0.487079 1.49908i
\(162\) −0.309017 + 0.951057i −0.0242787 + 0.0747221i
\(163\) 4.61803 14.2128i 0.361712 1.11324i −0.590302 0.807183i \(-0.700991\pi\)
0.952014 0.306054i \(-0.0990087\pi\)
\(164\) 1.11803 + 3.44095i 0.0873038 + 0.268693i
\(165\) 0 0
\(166\) 3.85410 11.8617i 0.299136 0.920647i
\(167\) 2.76393 + 2.00811i 0.213879 + 0.155393i 0.689567 0.724222i \(-0.257801\pi\)
−0.475688 + 0.879614i \(0.657801\pi\)
\(168\) −13.4164 −1.03510
\(169\) −15.0172 10.9106i −1.15517 0.839281i
\(170\) 0 0
\(171\) −1.00000 + 0.726543i −0.0764719 + 0.0555601i
\(172\) −6.23607 + 4.53077i −0.475496 + 0.345468i
\(173\) −6.51722 20.0579i −0.495495 1.52498i −0.816184 0.577793i \(-0.803914\pi\)
0.320689 0.947185i \(-0.396086\pi\)
\(174\) 6.61803 0.501712
\(175\) 0 0
\(176\) 1.23607 0.0931721
\(177\) 1.23607 + 3.80423i 0.0929086 + 0.285943i
\(178\) 4.35410 3.16344i 0.326354 0.237110i
\(179\) 13.0902 9.51057i 0.978405 0.710853i 0.0210536 0.999778i \(-0.493298\pi\)
0.957352 + 0.288925i \(0.0932979\pi\)
\(180\) 0 0
\(181\) −11.9721 8.69827i −0.889882 0.646537i 0.0459654 0.998943i \(-0.485364\pi\)
−0.935847 + 0.352406i \(0.885364\pi\)
\(182\) 25.1246 1.86236
\(183\) 1.30902 + 0.951057i 0.0967653 + 0.0703041i
\(184\) −4.14590 + 12.7598i −0.305640 + 0.940662i
\(185\) 0 0
\(186\) 0.854102 + 2.62866i 0.0626258 + 0.192742i
\(187\) 1.47214 4.53077i 0.107653 0.331323i
\(188\) −0.236068 + 0.726543i −0.0172170 + 0.0529886i
\(189\) −1.38197 4.25325i −0.100523 0.309379i
\(190\) 0 0
\(191\) 2.05573 6.32688i 0.148747 0.457797i −0.848727 0.528832i \(-0.822630\pi\)
0.997474 + 0.0710349i \(0.0226302\pi\)
\(192\) 5.66312 + 4.11450i 0.408700 + 0.296938i
\(193\) −23.3262 −1.67906 −0.839530 0.543314i \(-0.817169\pi\)
−0.839530 + 0.543314i \(0.817169\pi\)
\(194\) −1.73607 1.26133i −0.124642 0.0905580i
\(195\) 0 0
\(196\) 10.5172 7.64121i 0.751230 0.545801i
\(197\) 6.16312 4.47777i 0.439104 0.319028i −0.346175 0.938170i \(-0.612520\pi\)
0.785279 + 0.619142i \(0.212520\pi\)
\(198\) 0.381966 + 1.17557i 0.0271451 + 0.0835442i
\(199\) 12.6525 0.896910 0.448455 0.893805i \(-0.351974\pi\)
0.448455 + 0.893805i \(0.351974\pi\)
\(200\) 0 0
\(201\) 0.763932 0.0538836
\(202\) −1.10081 3.38795i −0.0774529 0.238376i
\(203\) −23.9443 + 17.3965i −1.68056 + 1.22100i
\(204\) 3.11803 2.26538i 0.218306 0.158609i
\(205\) 0 0
\(206\) −2.61803 1.90211i −0.182407 0.132526i
\(207\) −4.47214 −0.310835
\(208\) −4.54508 3.30220i −0.315145 0.228966i
\(209\) −0.472136 + 1.45309i −0.0326583 + 0.100512i
\(210\) 0 0
\(211\) 5.52786 + 17.0130i 0.380554 + 1.17122i 0.939655 + 0.342125i \(0.111146\pi\)
−0.559101 + 0.829100i \(0.688854\pi\)
\(212\) 1.11803 3.44095i 0.0767869 0.236326i
\(213\) 1.61803 4.97980i 0.110866 0.341210i
\(214\) 2.32624 + 7.15942i 0.159018 + 0.489408i
\(215\) 0 0
\(216\) −0.927051 + 2.85317i −0.0630778 + 0.194134i
\(217\) −10.0000 7.26543i −0.678844 0.493209i
\(218\) 7.90983 0.535721
\(219\) 6.54508 + 4.75528i 0.442276 + 0.321332i
\(220\) 0 0
\(221\) −17.5172 + 12.7270i −1.17834 + 0.856111i
\(222\) −2.50000 + 1.81636i −0.167789 + 0.121906i
\(223\) −2.52786 7.77997i −0.169278 0.520985i 0.830048 0.557692i \(-0.188313\pi\)
−0.999326 + 0.0367073i \(0.988313\pi\)
\(224\) −22.3607 −1.49404
\(225\) 0 0
\(226\) 18.3262 1.21904
\(227\) 6.18034 + 19.0211i 0.410204 + 1.26248i 0.916471 + 0.400100i \(0.131025\pi\)
−0.506268 + 0.862376i \(0.668975\pi\)
\(228\) −1.00000 + 0.726543i −0.0662266 + 0.0481165i
\(229\) −17.7812 + 12.9188i −1.17501 + 0.853696i −0.991600 0.129340i \(-0.958714\pi\)
−0.183411 + 0.983036i \(0.558714\pi\)
\(230\) 0 0
\(231\) −4.47214 3.24920i −0.294245 0.213781i
\(232\) 19.8541 1.30349
\(233\) 10.0172 + 7.27794i 0.656250 + 0.476794i 0.865394 0.501091i \(-0.167068\pi\)
−0.209144 + 0.977885i \(0.567068\pi\)
\(234\) 1.73607 5.34307i 0.113490 0.349287i
\(235\) 0 0
\(236\) 1.23607 + 3.80423i 0.0804612 + 0.247634i
\(237\) 0 0
\(238\) 5.32624 16.3925i 0.345249 1.06257i
\(239\) −7.70820 23.7234i −0.498602 1.53454i −0.811267 0.584676i \(-0.801222\pi\)
0.312664 0.949864i \(-0.398778\pi\)
\(240\) 0 0
\(241\) 8.66312 26.6623i 0.558041 1.71747i −0.129735 0.991549i \(-0.541413\pi\)
0.687775 0.725923i \(-0.258587\pi\)
\(242\) −7.66312 5.56758i −0.492604 0.357898i
\(243\) −1.00000 −0.0641500
\(244\) 1.30902 + 0.951057i 0.0838012 + 0.0608852i
\(245\) 0 0
\(246\) 2.92705 2.12663i 0.186622 0.135589i
\(247\) 5.61803 4.08174i 0.357467 0.259715i
\(248\) 2.56231 + 7.88597i 0.162707 + 0.500759i
\(249\) 12.4721 0.790390
\(250\) 0 0
\(251\) −9.05573 −0.571592 −0.285796 0.958290i \(-0.592258\pi\)
−0.285796 + 0.958290i \(0.592258\pi\)
\(252\) −1.38197 4.25325i −0.0870557 0.267930i
\(253\) −4.47214 + 3.24920i −0.281161 + 0.204275i
\(254\) 3.00000 2.17963i 0.188237 0.136762i
\(255\) 0 0
\(256\) 13.7533 + 9.99235i 0.859581 + 0.624522i
\(257\) −11.7984 −0.735962 −0.367981 0.929833i \(-0.619951\pi\)
−0.367981 + 0.929833i \(0.619951\pi\)
\(258\) 6.23607 + 4.53077i 0.388241 + 0.282073i
\(259\) 4.27051 13.1433i 0.265357 0.816684i
\(260\) 0 0
\(261\) 2.04508 + 6.29412i 0.126588 + 0.389597i
\(262\) 2.52786 7.77997i 0.156172 0.480648i
\(263\) 7.38197 22.7194i 0.455192 1.40094i −0.415719 0.909493i \(-0.636470\pi\)
0.870910 0.491442i \(-0.163530\pi\)
\(264\) 1.14590 + 3.52671i 0.0705251 + 0.217054i
\(265\) 0 0
\(266\) −1.70820 + 5.25731i −0.104737 + 0.322346i
\(267\) 4.35410 + 3.16344i 0.266467 + 0.193599i
\(268\) 0.763932 0.0466646
\(269\) 5.54508 + 4.02874i 0.338090 + 0.245637i 0.743855 0.668341i \(-0.232995\pi\)
−0.405766 + 0.913977i \(0.632995\pi\)
\(270\) 0 0
\(271\) 0.145898 0.106001i 0.00886267 0.00643911i −0.583345 0.812224i \(-0.698256\pi\)
0.592208 + 0.805785i \(0.298256\pi\)
\(272\) −3.11803 + 2.26538i −0.189059 + 0.137359i
\(273\) 7.76393 + 23.8949i 0.469895 + 1.44619i
\(274\) −7.61803 −0.460222
\(275\) 0 0
\(276\) −4.47214 −0.269191
\(277\) −5.80902 17.8783i −0.349030 1.07420i −0.959391 0.282080i \(-0.908976\pi\)
0.610361 0.792124i \(-0.291024\pi\)
\(278\) −18.5623 + 13.4863i −1.11329 + 0.808855i
\(279\) −2.23607 + 1.62460i −0.133870 + 0.0972622i
\(280\) 0 0
\(281\) 15.8713 + 11.5312i 0.946804 + 0.687893i 0.950049 0.312102i \(-0.101033\pi\)
−0.00324500 + 0.999995i \(0.501033\pi\)
\(282\) 0.763932 0.0454915
\(283\) 11.0902 + 8.05748i 0.659242 + 0.478967i 0.866407 0.499339i \(-0.166424\pi\)
−0.207165 + 0.978306i \(0.566424\pi\)
\(284\) 1.61803 4.97980i 0.0960127 0.295497i
\(285\) 0 0
\(286\) −2.14590 6.60440i −0.126890 0.390526i
\(287\) −5.00000 + 15.3884i −0.295141 + 0.908350i
\(288\) −1.54508 + 4.75528i −0.0910450 + 0.280208i
\(289\) −0.663119 2.04087i −0.0390070 0.120051i
\(290\) 0 0
\(291\) 0.663119 2.04087i 0.0388727 0.119638i
\(292\) 6.54508 + 4.75528i 0.383022 + 0.278282i
\(293\) 20.7984 1.21505 0.607527 0.794299i \(-0.292162\pi\)
0.607527 + 0.794299i \(0.292162\pi\)
\(294\) −10.5172 7.64121i −0.613377 0.445644i
\(295\) 0 0
\(296\) −7.50000 + 5.44907i −0.435929 + 0.316721i
\(297\) −1.00000 + 0.726543i −0.0580259 + 0.0421583i
\(298\) 5.82624 + 17.9313i 0.337505 + 1.03873i
\(299\) 25.1246 1.45299
\(300\) 0 0
\(301\) −34.4721 −1.98694
\(302\) −2.32624 7.15942i −0.133860 0.411979i
\(303\) 2.88197 2.09387i 0.165565 0.120290i
\(304\) 1.00000 0.726543i 0.0573539 0.0416701i
\(305\) 0 0
\(306\) −3.11803 2.26538i −0.178246 0.129503i
\(307\) −32.6525 −1.86358 −0.931788 0.363004i \(-0.881751\pi\)
−0.931788 + 0.363004i \(0.881751\pi\)
\(308\) −4.47214 3.24920i −0.254824 0.185140i
\(309\) 1.00000 3.07768i 0.0568880 0.175083i
\(310\) 0 0
\(311\) 5.47214 + 16.8415i 0.310296 + 0.954994i 0.977647 + 0.210251i \(0.0674280\pi\)
−0.667351 + 0.744743i \(0.732572\pi\)
\(312\) 5.20820 16.0292i 0.294856 0.907475i
\(313\) 0.145898 0.449028i 0.00824664 0.0253806i −0.946849 0.321680i \(-0.895753\pi\)
0.955095 + 0.296299i \(0.0957526\pi\)
\(314\) 3.33688 + 10.2699i 0.188311 + 0.579562i
\(315\) 0 0
\(316\) 0 0
\(317\) 23.3262 + 16.9475i 1.31013 + 0.951867i 0.999999 + 0.00117338i \(0.000373499\pi\)
0.310133 + 0.950693i \(0.399627\pi\)
\(318\) −3.61803 −0.202889
\(319\) 6.61803 + 4.80828i 0.370539 + 0.269212i
\(320\) 0 0
\(321\) −6.09017 + 4.42477i −0.339920 + 0.246966i
\(322\) −16.1803 + 11.7557i −0.901695 + 0.655120i
\(323\) −1.47214 4.53077i −0.0819118 0.252099i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −14.9443 −0.827687
\(327\) 2.44427 + 7.52270i 0.135169 + 0.416006i
\(328\) 8.78115 6.37988i 0.484858 0.352270i
\(329\) −2.76393 + 2.00811i −0.152381 + 0.110711i
\(330\) 0 0
\(331\) 5.61803 + 4.08174i 0.308795 + 0.224353i 0.731379 0.681971i \(-0.238877\pi\)
−0.422584 + 0.906324i \(0.638877\pi\)
\(332\) 12.4721 0.684497
\(333\) −2.50000 1.81636i −0.136999 0.0995357i
\(334\) 1.05573 3.24920i 0.0577669 0.177788i
\(335\) 0 0
\(336\) 1.38197 + 4.25325i 0.0753924 + 0.232034i
\(337\) −0.909830 + 2.80017i −0.0495616 + 0.152535i −0.972774 0.231754i \(-0.925553\pi\)
0.923213 + 0.384289i \(0.125553\pi\)
\(338\) −5.73607 + 17.6538i −0.312001 + 0.960240i
\(339\) 5.66312 + 17.4293i 0.307578 + 0.946629i
\(340\) 0 0
\(341\) −1.05573 + 3.24920i −0.0571709 + 0.175954i
\(342\) 1.00000 + 0.726543i 0.0540738 + 0.0392869i
\(343\) 26.8328 1.44884
\(344\) 18.7082 + 13.5923i 1.00868 + 0.732848i
\(345\) 0 0
\(346\) −17.0623 + 12.3965i −0.917275 + 0.666439i
\(347\) −16.4164 + 11.9272i −0.881279 + 0.640287i −0.933590 0.358344i \(-0.883341\pi\)
0.0523106 + 0.998631i \(0.483341\pi\)
\(348\) 2.04508 + 6.29412i 0.109628 + 0.337400i
\(349\) −4.03444 −0.215959 −0.107979 0.994153i \(-0.534438\pi\)
−0.107979 + 0.994153i \(0.534438\pi\)
\(350\) 0 0
\(351\) 5.61803 0.299868
\(352\) 1.90983 + 5.87785i 0.101794 + 0.313291i
\(353\) 11.6180 8.44100i 0.618366 0.449269i −0.233985 0.972240i \(-0.575177\pi\)
0.852350 + 0.522971i \(0.175177\pi\)
\(354\) 3.23607 2.35114i 0.171995 0.124962i
\(355\) 0 0
\(356\) 4.35410 + 3.16344i 0.230767 + 0.167662i
\(357\) 17.2361 0.912229
\(358\) −13.0902 9.51057i −0.691837 0.502649i
\(359\) −11.5623 + 35.5851i −0.610235 + 1.87811i −0.154507 + 0.987992i \(0.549379\pi\)
−0.455728 + 0.890119i \(0.650621\pi\)
\(360\) 0 0
\(361\) −5.39919 16.6170i −0.284168 0.874578i
\(362\) −4.57295 + 14.0741i −0.240349 + 0.739718i
\(363\) 2.92705 9.00854i 0.153630 0.472826i
\(364\) 7.76393 + 23.8949i 0.406941 + 1.25243i
\(365\) 0 0
\(366\) 0.500000 1.53884i 0.0261354 0.0804365i
\(367\) −4.85410 3.52671i −0.253382 0.184093i 0.453842 0.891082i \(-0.350053\pi\)
−0.707224 + 0.706989i \(0.750053\pi\)
\(368\) 4.47214 0.233126
\(369\) 2.92705 + 2.12663i 0.152376 + 0.110708i
\(370\) 0 0
\(371\) 13.0902 9.51057i 0.679608 0.493764i
\(372\) −2.23607 + 1.62460i −0.115935 + 0.0842315i
\(373\) −0.798374 2.45714i −0.0413382 0.127226i 0.928258 0.371938i \(-0.121307\pi\)
−0.969596 + 0.244712i \(0.921307\pi\)
\(374\) −4.76393 −0.246337
\(375\) 0 0
\(376\) 2.29180 0.118190
\(377\) −11.4894 35.3606i −0.591732 1.82116i
\(378\) −3.61803 + 2.62866i −0.186092 + 0.135203i
\(379\) 2.76393 2.00811i 0.141974 0.103150i −0.514531 0.857472i \(-0.672034\pi\)
0.656505 + 0.754322i \(0.272034\pi\)
\(380\) 0 0
\(381\) 3.00000 + 2.17963i 0.153695 + 0.111666i
\(382\) −6.65248 −0.340370
\(383\) −26.5623 19.2986i −1.35727 0.986115i −0.998613 0.0526453i \(-0.983235\pi\)
−0.358657 0.933469i \(-0.616765\pi\)
\(384\) −0.927051 + 2.85317i −0.0473084 + 0.145600i
\(385\) 0 0
\(386\) 7.20820 + 22.1846i 0.366888 + 1.12916i
\(387\) −2.38197 + 7.33094i −0.121082 + 0.372652i
\(388\) 0.663119 2.04087i 0.0336648 0.103609i
\(389\) −8.00658 24.6417i −0.405950 1.24938i −0.920100 0.391684i \(-0.871893\pi\)
0.514150 0.857700i \(-0.328107\pi\)
\(390\) 0 0
\(391\) 5.32624 16.3925i 0.269359 0.829003i
\(392\) −31.5517 22.9236i −1.59360 1.15782i
\(393\) 8.18034 0.412644
\(394\) −6.16312 4.47777i −0.310493 0.225587i
\(395\) 0 0
\(396\) −1.00000 + 0.726543i −0.0502519 + 0.0365101i
\(397\) −5.61803 + 4.08174i −0.281961 + 0.204857i −0.719772 0.694210i \(-0.755754\pi\)
0.437811 + 0.899067i \(0.355754\pi\)
\(398\) −3.90983 12.0332i −0.195982 0.603171i
\(399\) −5.52786 −0.276739
\(400\) 0 0
\(401\) −22.4508 −1.12114 −0.560571 0.828106i \(-0.689418\pi\)
−0.560571 + 0.828106i \(0.689418\pi\)
\(402\) −0.236068 0.726543i −0.0117740 0.0362366i
\(403\) 12.5623 9.12705i 0.625773 0.454651i
\(404\) 2.88197 2.09387i 0.143383 0.104174i
\(405\) 0 0
\(406\) 23.9443 + 17.3965i 1.18833 + 0.863375i
\(407\) −3.81966 −0.189334
\(408\) −9.35410 6.79615i −0.463097 0.336460i
\(409\) 0.371323 1.14281i 0.0183607 0.0565085i −0.941456 0.337135i \(-0.890542\pi\)
0.959817 + 0.280626i \(0.0905422\pi\)
\(410\) 0 0
\(411\) −2.35410 7.24518i −0.116119 0.357378i
\(412\) 1.00000 3.07768i 0.0492665 0.151627i
\(413\) −5.52786 + 17.0130i −0.272008 + 0.837156i
\(414\) 1.38197 + 4.25325i 0.0679199 + 0.209036i
\(415\) 0 0
\(416\) 8.68034 26.7153i 0.425589 1.30983i
\(417\) −18.5623 13.4863i −0.909000 0.660427i
\(418\) 1.52786 0.0747303
\(419\) −12.1803 8.84953i −0.595049 0.432328i 0.249069 0.968486i \(-0.419875\pi\)
−0.844118 + 0.536158i \(0.819875\pi\)
\(420\) 0 0
\(421\) −24.1525 + 17.5478i −1.17712 + 0.855227i −0.991844 0.127459i \(-0.959318\pi\)
−0.185276 + 0.982687i \(0.559318\pi\)
\(422\) 14.4721 10.5146i 0.704493 0.511844i
\(423\) 0.236068 + 0.726543i 0.0114780 + 0.0353257i
\(424\) −10.8541 −0.527122
\(425\) 0 0
\(426\) −5.23607 −0.253688
\(427\) 2.23607 + 6.88191i 0.108211 + 0.333039i
\(428\) −6.09017 + 4.42477i −0.294379 + 0.213879i
\(429\) 5.61803 4.08174i 0.271241 0.197068i
\(430\) 0 0
\(431\) −16.7082 12.1392i −0.804806 0.584726i 0.107514 0.994204i \(-0.465711\pi\)
−0.912320 + 0.409478i \(0.865711\pi\)
\(432\) 1.00000 0.0481125
\(433\) −17.7812 12.9188i −0.854508 0.620836i 0.0718775 0.997413i \(-0.477101\pi\)
−0.926385 + 0.376577i \(0.877101\pi\)
\(434\) −3.81966 + 11.7557i −0.183350 + 0.564292i
\(435\) 0 0
\(436\) 2.44427 + 7.52270i 0.117059 + 0.360272i
\(437\) −1.70820 + 5.25731i −0.0817145 + 0.251491i
\(438\) 2.50000 7.69421i 0.119455 0.367644i
\(439\) 5.00000 + 15.3884i 0.238637 + 0.734449i 0.996618 + 0.0821726i \(0.0261859\pi\)
−0.757981 + 0.652276i \(0.773814\pi\)
\(440\) 0 0
\(441\) 4.01722 12.3637i 0.191296 0.588749i
\(442\) 17.5172 + 12.7270i 0.833209 + 0.605362i
\(443\) 35.2361 1.67412 0.837058 0.547114i \(-0.184274\pi\)
0.837058 + 0.547114i \(0.184274\pi\)
\(444\) −2.50000 1.81636i −0.118645 0.0862005i
\(445\) 0 0
\(446\) −6.61803 + 4.80828i −0.313373 + 0.227679i
\(447\) −15.2533 + 11.0822i −0.721456 + 0.524168i
\(448\) 9.67376 + 29.7728i 0.457042 + 1.40663i
\(449\) 16.7984 0.792764 0.396382 0.918086i \(-0.370266\pi\)
0.396382 + 0.918086i \(0.370266\pi\)
\(450\) 0 0
\(451\) 4.47214 0.210585
\(452\) 5.66312 + 17.4293i 0.266371 + 0.819805i
\(453\) 6.09017 4.42477i 0.286141 0.207894i
\(454\) 16.1803 11.7557i 0.759381 0.551723i
\(455\) 0 0
\(456\) 3.00000 + 2.17963i 0.140488 + 0.102070i
\(457\) 22.3607 1.04599 0.522994 0.852336i \(-0.324815\pi\)
0.522994 + 0.852336i \(0.324815\pi\)
\(458\) 17.7812 + 12.9188i 0.830859 + 0.603654i
\(459\) 1.19098 3.66547i 0.0555903 0.171089i
\(460\) 0 0
\(461\) −10.1353 31.1931i −0.472046 1.45281i −0.849901 0.526943i \(-0.823338\pi\)
0.377855 0.925865i \(-0.376662\pi\)
\(462\) −1.70820 + 5.25731i −0.0794728 + 0.244592i
\(463\) −5.79837 + 17.8456i −0.269473 + 0.829353i 0.721156 + 0.692773i \(0.243611\pi\)
−0.990629 + 0.136580i \(0.956389\pi\)
\(464\) −2.04508 6.29412i −0.0949407 0.292197i
\(465\) 0 0
\(466\) 3.82624 11.7759i 0.177247 0.545510i
\(467\) 22.7984 + 16.5640i 1.05498 + 0.766490i 0.973154 0.230156i \(-0.0739238\pi\)
0.0818293 + 0.996646i \(0.473924\pi\)
\(468\) 5.61803 0.259694
\(469\) 2.76393 + 2.00811i 0.127627 + 0.0927261i
\(470\) 0 0
\(471\) −8.73607 + 6.34712i −0.402537 + 0.292460i
\(472\) 9.70820 7.05342i 0.446856 0.324660i
\(473\) 2.94427 + 9.06154i 0.135378 + 0.416650i
\(474\) 0 0
\(475\) 0 0
\(476\) 17.2361 0.790014
\(477\) −1.11803 3.44095i −0.0511913 0.157550i
\(478\) −20.1803 + 14.6619i −0.923027 + 0.670619i
\(479\) −15.3262 + 11.1352i −0.700274 + 0.508779i −0.880021 0.474934i \(-0.842472\pi\)
0.179748 + 0.983713i \(0.442472\pi\)
\(480\) 0 0
\(481\) 14.0451 + 10.2044i 0.640401 + 0.465278i
\(482\) −28.0344 −1.27693
\(483\) −16.1803 11.7557i −0.736231 0.534903i
\(484\) 2.92705 9.00854i 0.133048 0.409479i
\(485\) 0 0
\(486\) 0.309017 + 0.951057i 0.0140173 + 0.0431408i
\(487\) −3.00000 + 9.23305i −0.135943 + 0.418389i −0.995736 0.0922541i \(-0.970593\pi\)
0.859793 + 0.510644i \(0.170593\pi\)
\(488\) 1.50000 4.61653i 0.0679018 0.208980i
\(489\) −4.61803 14.2128i −0.208835 0.642727i
\(490\) 0 0
\(491\) 1.81966 5.60034i 0.0821201 0.252740i −0.901563 0.432647i \(-0.857580\pi\)
0.983684 + 0.179907i \(0.0575797\pi\)
\(492\) 2.92705 + 2.12663i 0.131962 + 0.0958758i
\(493\) −25.5066 −1.14876
\(494\) −5.61803 4.08174i −0.252767 0.183646i
\(495\) 0 0
\(496\) 2.23607 1.62460i 0.100402 0.0729466i
\(497\) 18.9443 13.7638i 0.849767 0.617392i
\(498\) −3.85410 11.8617i −0.172706 0.531536i
\(499\) −6.00000 −0.268597 −0.134298 0.990941i \(-0.542878\pi\)
−0.134298 + 0.990941i \(0.542878\pi\)
\(500\) 0 0
\(501\) 3.41641 0.152634
\(502\) 2.79837 + 8.61251i 0.124898 + 0.384395i
\(503\) 6.94427 5.04531i 0.309630 0.224959i −0.422108 0.906546i \(-0.638710\pi\)
0.731738 + 0.681586i \(0.238710\pi\)
\(504\) −10.8541 + 7.88597i −0.483480 + 0.351269i
\(505\) 0 0
\(506\) 4.47214 + 3.24920i 0.198811 + 0.144444i
\(507\) −18.5623 −0.824381
\(508\) 3.00000 + 2.17963i 0.133103 + 0.0967053i
\(509\) 6.22542 19.1599i 0.275937 0.849247i −0.713033 0.701131i \(-0.752679\pi\)
0.988970 0.148116i \(-0.0473210\pi\)
\(510\) 0 0
\(511\) 11.1803 + 34.4095i 0.494589 + 1.52219i
\(512\) 3.39919 10.4616i 0.150224 0.462343i
\(513\) −0.381966 + 1.17557i −0.0168642 + 0.0519027i
\(514\) 3.64590 + 11.2209i 0.160814 + 0.494934i
\(515\) 0 0
\(516\) −2.38197 + 7.33094i −0.104860 + 0.322727i
\(517\) 0.763932 + 0.555029i 0.0335977 + 0.0244102i
\(518\) −13.8197 −0.607201
\(519\) −17.0623 12.3965i −0.748952 0.544146i
\(520\) 0 0
\(521\) 21.8713 15.8904i 0.958200 0.696173i 0.00546804 0.999985i \(-0.498259\pi\)
0.952732 + 0.303812i \(0.0982595\pi\)
\(522\) 5.35410 3.88998i 0.234343 0.170260i
\(523\) 7.94427 + 24.4500i 0.347379 + 1.06912i 0.960298 + 0.278976i \(0.0899951\pi\)
−0.612919 + 0.790146i \(0.710005\pi\)
\(524\) 8.18034 0.357360
\(525\) 0 0
\(526\) −23.8885 −1.04159
\(527\) −3.29180 10.1311i −0.143393 0.441318i
\(528\) 1.00000 0.726543i 0.0435194 0.0316187i
\(529\) 2.42705 1.76336i 0.105524 0.0766676i
\(530\) 0 0
\(531\) 3.23607 + 2.35114i 0.140433 + 0.102031i
\(532\) −5.52786 −0.239663
\(533\) −16.4443 11.9475i −0.712280 0.517502i
\(534\) 1.66312 5.11855i 0.0719702 0.221501i
\(535\) 0 0
\(536\) −0.708204 2.17963i −0.0305898 0.0941456i
\(537\) 5.00000 15.3884i 0.215766 0.664059i
\(538\) 2.11803 6.51864i 0.0913149 0.281038i
\(539\) −4.96556 15.2824i −0.213882 0.658260i
\(540\) 0 0
\(541\) −6.07953 + 18.7109i −0.261379 + 0.804443i 0.731126 + 0.682242i \(0.238995\pi\)
−0.992505 + 0.122200i \(0.961005\pi\)
\(542\) −0.145898 0.106001i −0.00626686 0.00455314i
\(543\) −14.7984 −0.635059
\(544\) −15.5902 11.3269i −0.668423 0.485638i
\(545\) 0 0
\(546\) 20.3262 14.7679i 0.869883 0.632007i
\(547\) 34.2705 24.8990i 1.46530 1.06460i 0.483359 0.875422i \(-0.339417\pi\)
0.981942 0.189181i \(-0.0605834\pi\)
\(548\) −2.35410 7.24518i −0.100562 0.309499i
\(549\) 1.61803 0.0690560
\(550\) 0 0
\(551\) 8.18034 0.348494
\(552\) 4.14590 + 12.7598i 0.176461 + 0.543092i
\(553\) 0 0
\(554\) −15.2082 + 11.0494i −0.646135 + 0.469444i
\(555\) 0 0
\(556\) −18.5623 13.4863i −0.787217 0.571947i
\(557\) 11.2705 0.477547 0.238773 0.971075i \(-0.423255\pi\)
0.238773 + 0.971075i \(0.423255\pi\)
\(558\) 2.23607 + 1.62460i 0.0946603 + 0.0687747i
\(559\) 13.3820 41.1855i 0.565997 1.74196i
\(560\) 0 0
\(561\) −1.47214 4.53077i −0.0621536 0.191289i
\(562\) 6.06231 18.6579i 0.255723 0.787034i
\(563\) 8.18034 25.1765i 0.344760 1.06106i −0.616952 0.787001i \(-0.711633\pi\)
0.961712 0.274062i \(-0.0883673\pi\)
\(564\) 0.236068 + 0.726543i 0.00994026 + 0.0305930i
\(565\) 0 0
\(566\) 4.23607 13.0373i 0.178055 0.547998i
\(567\) −3.61803 2.62866i −0.151943 0.110393i
\(568\) −15.7082 −0.659102
\(569\) −2.64590 1.92236i −0.110922 0.0805894i 0.530942 0.847408i \(-0.321838\pi\)
−0.641863 + 0.766819i \(0.721838\pi\)
\(570\) 0 0
\(571\) 13.5623 9.85359i 0.567565 0.412360i −0.266655 0.963792i \(-0.585918\pi\)
0.834220 + 0.551432i \(0.185918\pi\)
\(572\) 5.61803 4.08174i 0.234902 0.170666i
\(573\) −2.05573 6.32688i −0.0858793 0.264309i
\(574\) 16.1803 0.675354
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) 4.03444 + 12.4167i 0.167956 + 0.516915i 0.999242 0.0389296i \(-0.0123948\pi\)
−0.831286 + 0.555845i \(0.812395\pi\)
\(578\) −1.73607 + 1.26133i −0.0722109 + 0.0524643i
\(579\) −18.8713 + 13.7108i −0.784265 + 0.569802i
\(580\) 0 0
\(581\) 45.1246 + 32.7849i 1.87208 + 1.36015i
\(582\) −2.14590 −0.0889503
\(583\) −3.61803 2.62866i −0.149844 0.108868i
\(584\) 7.50000 23.0826i 0.310352 0.955166i
\(585\) 0 0
\(586\) −6.42705 19.7804i −0.265499 0.817122i
\(587\) 12.7984 39.3893i 0.528245 1.62577i −0.229562 0.973294i \(-0.573729\pi\)
0.757807 0.652478i \(-0.226271\pi\)
\(588\) 4.01722 12.3637i 0.165667 0.509872i
\(589\) 1.05573 + 3.24920i 0.0435005 + 0.133881i
\(590\) 0 0
\(591\) 2.35410 7.24518i 0.0968348 0.298027i
\(592\) 2.50000 + 1.81636i 0.102749 + 0.0746518i
\(593\) −9.74265 −0.400083 −0.200041 0.979787i \(-0.564108\pi\)
−0.200041 + 0.979787i \(0.564108\pi\)
\(594\) 1.00000 + 0.726543i 0.0410305 + 0.0298104i
\(595\) 0 0
\(596\) −15.2533 + 11.0822i −0.624799 + 0.453943i
\(597\) 10.2361 7.43694i 0.418934 0.304374i
\(598\) −7.76393 23.8949i −0.317491 0.977136i
\(599\) −3.52786 −0.144145 −0.0720723 0.997399i \(-0.522961\pi\)
−0.0720723 + 0.997399i \(0.522961\pi\)
\(600\) 0 0
\(601\) −8.67376 −0.353810 −0.176905 0.984228i \(-0.556609\pi\)
−0.176905 + 0.984228i \(0.556609\pi\)
\(602\) 10.6525 + 32.7849i 0.434163 + 1.33621i
\(603\) 0.618034 0.449028i 0.0251683 0.0182858i
\(604\) 6.09017 4.42477i 0.247806 0.180041i
\(605\) 0 0
\(606\) −2.88197 2.09387i −0.117072 0.0850577i
\(607\) 34.7639 1.41102 0.705512 0.708698i \(-0.250717\pi\)
0.705512 + 0.708698i \(0.250717\pi\)
\(608\) 5.00000 + 3.63271i 0.202777 + 0.147326i
\(609\) −9.14590 + 28.1482i −0.370610 + 1.14062i
\(610\) 0 0
\(611\) −1.32624 4.08174i −0.0536538 0.165130i
\(612\) 1.19098 3.66547i 0.0481426 0.148168i
\(613\) −0.461493 + 1.42033i −0.0186395 + 0.0573665i −0.959944 0.280193i \(-0.909601\pi\)
0.941304 + 0.337560i \(0.109601\pi\)
\(614\) 10.0902 + 31.0543i 0.407206 + 1.25325i
\(615\) 0 0
\(616\) −5.12461 + 15.7719i −0.206476 + 0.635469i
\(617\) −16.1631 11.7432i −0.650703 0.472763i 0.212808 0.977094i \(-0.431739\pi\)
−0.863510 + 0.504331i \(0.831739\pi\)
\(618\) −3.23607 −0.130174
\(619\) 13.2361 + 9.61657i 0.532002 + 0.386522i 0.821106 0.570775i \(-0.193357\pi\)
−0.289104 + 0.957298i \(0.593357\pi\)
\(620\) 0 0
\(621\) −3.61803 + 2.62866i −0.145187 + 0.105484i
\(622\) 14.3262 10.4086i 0.574430 0.417348i
\(623\) 7.43769 + 22.8909i 0.297985 + 0.917103i
\(624\) −5.61803 −0.224901
\(625\) 0 0
\(626\) −0.472136 −0.0188703
\(627\) 0.472136 + 1.45309i 0.0188553 + 0.0580306i
\(628\) −8.73607 + 6.34712i −0.348607 + 0.253278i
\(629\) 9.63525 7.00042i 0.384183 0.279125i
\(630\) 0 0
\(631\) −19.1803 13.9353i −0.763557 0.554757i 0.136442 0.990648i \(-0.456433\pi\)
−0.899999 + 0.435891i \(0.856433\pi\)
\(632\) 0 0
\(633\) 14.4721 + 10.5146i 0.575216 + 0.417919i
\(634\) 8.90983 27.4216i 0.353855 1.08905i
\(635\) 0 0
\(636\) −1.11803 3.44095i −0.0443329 0.136443i
\(637\) −22.5689 + 69.4599i −0.894212 + 2.75210i
\(638\) 2.52786 7.77997i 0.100079 0.308012i
\(639\) −1.61803 4.97980i −0.0640084 0.196998i
\(640\) 0 0
\(641\) 6.50658 20.0252i 0.256994 0.790947i −0.736436 0.676507i \(-0.763493\pi\)
0.993430 0.114440i \(-0.0365073\pi\)
\(642\) 6.09017 + 4.42477i 0.240360 + 0.174632i
\(643\) 21.8885 0.863200 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(644\) −16.1803 11.7557i −0.637595 0.463240i
\(645\) 0 0
\(646\) −3.85410 + 2.80017i −0.151638 + 0.110171i
\(647\) −27.7984 + 20.1967i −1.09287 + 0.794014i −0.979881 0.199582i \(-0.936041\pi\)
−0.112986 + 0.993597i \(0.536041\pi\)
\(648\) 0.927051 + 2.85317i 0.0364180 + 0.112083i
\(649\) 4.94427 0.194080
\(650\) 0 0
\(651\) −12.3607 −0.484453
\(652\) −4.61803 14.2128i −0.180856 0.556618i
\(653\) −34.0623 + 24.7477i −1.33296 + 0.968453i −0.333289 + 0.942825i \(0.608159\pi\)
−0.999672 + 0.0256283i \(0.991841\pi\)
\(654\) 6.39919 4.64928i 0.250228 0.181801i
\(655\) 0 0
\(656\) −2.92705 2.12663i −0.114282 0.0830308i
\(657\) 8.09017 0.315628
\(658\) 2.76393 + 2.00811i 0.107749 + 0.0782844i
\(659\) −10.3262 + 31.7809i −0.402253 + 1.23801i 0.520914 + 0.853609i \(0.325591\pi\)
−0.923167 + 0.384399i \(0.874409\pi\)
\(660\) 0 0
\(661\) −0.437694 1.34708i −0.0170243 0.0523955i 0.942183 0.335097i \(-0.108769\pi\)
−0.959208 + 0.282702i \(0.908769\pi\)
\(662\) 2.14590 6.60440i 0.0834027 0.256687i
\(663\) −6.69098 + 20.5927i −0.259856 + 0.799755i
\(664\) −11.5623 35.5851i −0.448704 1.38097i
\(665\) 0 0
\(666\) −0.954915 + 2.93893i −0.0370022 + 0.113881i
\(667\) 23.9443 + 17.3965i 0.927126 + 0.673596i
\(668\) 3.41641 0.132185
\(669\) −6.61803 4.80828i −0.255868 0.185899i
\(670\) 0 0
\(671\) 1.61803 1.17557i 0.0624635 0.0453824i
\(672\) −18.0902 + 13.1433i −0.697843 + 0.507013i
\(673\) −1.60739 4.94704i −0.0619604 0.190694i 0.915285 0.402807i \(-0.131966\pi\)
−0.977245 + 0.212113i \(0.931966\pi\)
\(674\) 2.94427 0.113409
\(675\) 0 0
\(676\) −18.5623 −0.713935
\(677\) −3.27051 10.0656i −0.125696 0.386852i 0.868331 0.495985i \(-0.165193\pi\)
−0.994027 + 0.109132i \(0.965193\pi\)
\(678\) 14.8262 10.7719i 0.569398 0.413692i
\(679\) 7.76393 5.64083i 0.297952 0.216475i
\(680\) 0 0
\(681\) 16.1803 + 11.7557i 0.620032 + 0.450480i
\(682\) 3.41641 0.130821
\(683\) −15.7082 11.4127i −0.601058 0.436694i 0.245196 0.969473i \(-0.421148\pi\)
−0.846254 + 0.532779i \(0.821148\pi\)
\(684\) −0.381966 + 1.17557i −0.0146048 + 0.0449491i
\(685\) 0 0
\(686\) −8.29180 25.5195i −0.316582 0.974340i
\(687\) −6.79180 + 20.9030i −0.259123 + 0.797499i
\(688\) 2.38197 7.33094i 0.0908116 0.279489i
\(689\) 6.28115 + 19.3314i 0.239293 + 0.736468i
\(690\) 0 0
\(691\) −5.18034 + 15.9434i −0.197069 + 0.606517i 0.802877 + 0.596145i \(0.203302\pi\)
−0.999946 + 0.0103723i \(0.996698\pi\)
\(692\) −17.0623 12.3965i −0.648612 0.471244i
\(693\) −5.52786 −0.209986
\(694\) 16.4164 + 11.9272i 0.623158 + 0.452751i
\(695\) 0 0
\(696\) 16.0623 11.6699i 0.608840 0.442348i
\(697\) −11.2812 + 8.19624i −0.427304 + 0.310455i
\(698\) 1.24671 + 3.83698i 0.0471887 + 0.145232i
\(699\) 12.3820 0.468329
\(700\) 0 0
\(701\) 20.5623 0.776628 0.388314 0.921527i \(-0.373058\pi\)
0.388314 + 0.921527i \(0.373058\pi\)
\(702\) −1.73607 5.34307i −0.0655237 0.201661i
\(703\) −3.09017 + 2.24514i −0.116548 + 0.0846771i
\(704\) 7.00000 5.08580i 0.263822 0.191678i
\(705\) 0 0
\(706\) −11.6180 8.44100i −0.437250 0.317681i
\(707\) 15.9311 0.599151
\(708\) 3.23607 + 2.35114i 0.121619 + 0.0883613i
\(709\) −12.4443 + 38.2995i −0.467354 + 1.43837i 0.388643 + 0.921389i \(0.372944\pi\)
−0.855997 + 0.516981i \(0.827056\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.98936 15.3557i 0.186984 0.575478i
\(713\) −3.81966 + 11.7557i −0.143047 + 0.440255i
\(714\) −5.32624 16.3925i −0.199329 0.613473i
\(715\) 0 0
\(716\) 5.00000 15.3884i 0.186859 0.575092i
\(717\) −20.1803 14.6619i −0.753649 0.547558i
\(718\) 37.4164 1.39637
\(719\) 0.0901699 + 0.0655123i 0.00336277 + 0.00244320i 0.589465 0.807794i \(-0.299338\pi\)
−0.586103 + 0.810237i \(0.699338\pi\)
\(720\) 0 0
\(721\) 11.7082 8.50651i 0.436036 0.316799i
\(722\) −14.1353 + 10.2699i −0.526060 + 0.382205i
\(723\) −8.66312 26.6623i −0.322185 0.991583i
\(724\) −14.7984 −0.549977
\(725\) 0 0
\(726\) −9.47214 −0.351544
\(727\) −14.4164 44.3691i −0.534675 1.64556i −0.744350 0.667789i \(-0.767241\pi\)
0.209675 0.977771i \(-0.432759\pi\)
\(728\) 60.9787 44.3036i 2.26002 1.64200i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −24.0344 17.4620i −0.888946 0.645857i
\(732\) 1.61803 0.0598043
\(733\) 23.7984 + 17.2905i 0.879013 + 0.638640i 0.932990 0.359902i \(-0.117190\pi\)
−0.0539772 + 0.998542i \(0.517190\pi\)
\(734\) −1.85410 + 5.70634i −0.0684362 + 0.210625i
\(735\) 0 0
\(736\) 6.90983 + 21.2663i 0.254700 + 0.783885i
\(737\) 0.291796 0.898056i 0.0107484 0.0330803i
\(738\) 1.11803 3.44095i 0.0411554 0.126663i
\(739\) 1.32624 + 4.08174i 0.0487865 + 0.150149i 0.972482 0.232978i \(-0.0748470\pi\)
−0.923696 + 0.383127i \(0.874847\pi\)
\(740\) 0 0
\(741\) 2.14590 6.60440i 0.0788315 0.242619i
\(742\) −13.0902 9.51057i −0.480555 0.349144i
\(743\) −41.1246 −1.50872 −0.754358 0.656463i \(-0.772052\pi\)
−0.754358 + 0.656463i \(0.772052\pi\)
\(744\) 6.70820 + 4.87380i 0.245935 + 0.178682i
\(745\) 0 0
\(746\) −2.09017 + 1.51860i −0.0765266 + 0.0555998i
\(747\) 10.0902 7.33094i 0.369180 0.268225i
\(748\) −1.47214 4.53077i −0.0538266 0.165661i
\(749\) −33.6656 −1.23012
\(750\) 0 0
\(751\) 36.6525 1.33747 0.668734 0.743502i \(-0.266837\pi\)
0.668734 + 0.743502i \(0.266837\pi\)
\(752\) −0.236068 0.726543i −0.00860851 0.0264943i
\(753\) −7.32624 + 5.32282i −0.266983 + 0.193974i
\(754\) −30.0795 + 21.8541i −1.09543 + 0.795878i
\(755\) 0 0
\(756\) −3.61803 2.62866i −0.131587 0.0956033i
\(757\) −29.6180 −1.07649 −0.538243 0.842790i \(-0.680912\pi\)
−0.538243 + 0.842790i \(0.680912\pi\)
\(758\) −2.76393 2.00811i −0.100391 0.0729380i
\(759\) −1.70820 + 5.25731i −0.0620039 + 0.190828i
\(760\) 0 0
\(761\) 10.1180 + 31.1401i 0.366778 + 1.12883i 0.948860 + 0.315697i \(0.102238\pi\)
−0.582081 + 0.813130i \(0.697762\pi\)
\(762\) 1.14590 3.52671i 0.0415115 0.127759i
\(763\) −10.9311 + 33.6425i −0.395733 + 1.21794i
\(764\) −2.05573 6.32688i −0.0743736 0.228899i
\(765\) 0 0
\(766\) −10.1459 + 31.2259i −0.366586 + 1.12824i
\(767\) −18.1803 13.2088i −0.656454 0.476942i
\(768\) 17.0000 0.613435
\(769\) 40.7426 + 29.6013i 1.46922 + 1.06745i 0.980840 + 0.194817i \(0.0624112\pi\)
0.488378 + 0.872632i \(0.337589\pi\)
\(770\) 0 0
\(771\) −9.54508 + 6.93491i −0.343758 + 0.249755i
\(772\) −18.8713 + 13.7108i −0.679194 + 0.493463i
\(773\) −8.93769 27.5074i −0.321467 0.989372i −0.973010 0.230761i \(-0.925878\pi\)
0.651544 0.758611i \(-0.274122\pi\)
\(774\) 7.70820 0.277066
\(775\) 0 0
\(776\) −6.43769 −0.231100
\(777\) −4.27051 13.1433i −0.153204 0.471512i
\(778\) −20.9615 + 15.2294i −0.751506 + 0.546001i
\(779\) 3.61803 2.62866i 0.129630 0.0941814i
\(780\) 0 0
\(781\) −5.23607 3.80423i −0.187361 0.136126i
\(782\) −17.2361 −0.616361
\(783\) 5.35410 + 3.88998i 0.191340 + 0.139017i
\(784\) −4.01722 + 12.3637i −0.143472 + 0.441562i
\(785\) 0 0
\(786\) −2.52786 7.77997i −0.0901659 0.277502i
\(787\) 4.38197 13.4863i 0.156200 0.480735i −0.842080 0.539352i \(-0.818669\pi\)
0.998281 + 0.0586173i \(0.0186692\pi\)
\(788\) 2.35410 7.24518i 0.0838614 0.258099i
\(789\) −7.38197 22.7194i −0.262805 0.808830i
\(790\) 0 0
\(791\) −25.3262 + 77.9461i −0.900497 + 2.77145i
\(792\) 3.00000 + 2.17963i 0.106600 + 0.0774497i
\(793\) −9.09017 −0.322801
\(794\) 5.61803 + 4.08174i 0.199377 + 0.144856i
\(795\) 0 0
\(796\) 10.2361 7.43694i 0.362808 0.263595i
\(797\) −39.7254 + 28.8622i −1.40715 + 1.02235i −0.413417 + 0.910542i \(0.635665\pi\)
−0.993730 + 0.111810i \(0.964335\pi\)
\(798\) 1.70820 + 5.25731i 0.0604698 + 0.186107i
\(799\) −2.94427 −0.104161
\(800\) 0 0
\(801\) 5.38197 0.190162
\(802\) 6.93769 + 21.3520i 0.244978 + 0.753966i
\(803\) 8.09017 5.87785i 0.285496 0.207425i
\(804\) 0.618034 0.449028i 0.0217964 0.0158360i
\(805\) 0 0
\(806\) −12.5623 9.12705i −0.442488 0.321487i
\(807\) 6.85410 0.241276
\(808\) −8.64590 6.28161i −0.304162 0.220986i
\(809\) 8.71885 26.8339i 0.306538 0.943428i −0.672560 0.740042i \(-0.734805\pi\)
0.979099 0.203386i \(-0.0651945\pi\)
\(810\) 0 0
\(811\) 1.47214 + 4.53077i 0.0516937 + 0.159097i 0.973571 0.228386i \(-0.0733447\pi\)
−0.921877 + 0.387483i \(0.873345\pi\)
\(812\) −9.14590 + 28.1482i −0.320958 + 0.987807i
\(813\) 0.0557281 0.171513i 0.00195447 0.00601524i
\(814\) 1.18034 + 3.63271i 0.0413709 + 0.127327i
\(815\) 0 0
\(816\) −1.19098 + 3.66547i −0.0416927 + 0.128317i
\(817\) 7.70820 + 5.60034i 0.269676 + 0.195931i
\(818\) −1.20163 −0.0420139
\(819\) 20.3262 + 14.7679i 0.710256 + 0.516031i
\(820\) 0 0
\(821\) −18.5623 + 13.4863i −0.647829 + 0.470675i −0.862531 0.506004i \(-0.831122\pi\)
0.214702 + 0.976680i \(0.431122\pi\)
\(822\) −6.16312 + 4.47777i −0.214963 + 0.156180i
\(823\) 5.94427 + 18.2946i 0.207204 + 0.637709i 0.999616 + 0.0277222i \(0.00882537\pi\)
−0.792411 + 0.609987i \(0.791175\pi\)
\(824\) −9.70820 −0.338201
\(825\) 0 0
\(826\) 17.8885 0.622422
\(827\) 11.1459 + 34.3035i 0.387581 + 1.19285i 0.934591 + 0.355725i \(0.115766\pi\)
−0.547010 + 0.837126i \(0.684234\pi\)
\(828\) −3.61803 + 2.62866i −0.125735 + 0.0913521i
\(829\) −9.30902 + 6.76340i −0.323316 + 0.234902i −0.737589 0.675250i \(-0.764036\pi\)
0.414273 + 0.910152i \(0.364036\pi\)
\(830\) 0 0
\(831\) −15.2082 11.0494i −0.527567 0.383300i
\(832\) −39.3262 −1.36339
\(833\) 40.5344 + 29.4500i 1.40444 + 1.02038i
\(834\) −7.09017 + 21.8213i −0.245513 + 0.755610i
\(835\) 0 0
\(836\) 0.472136 + 1.45309i 0.0163292 + 0.0502560i
\(837\) −0.854102 + 2.62866i −0.0295221 + 0.0908596i
\(838\) −4.65248 + 14.3188i −0.160717 + 0.494636i
\(839\) 4.34752 + 13.3803i 0.150093 + 0.461939i 0.997631 0.0687961i \(-0.0219158\pi\)
−0.847538 + 0.530735i \(0.821916\pi\)
\(840\) 0 0
\(841\) 4.57295 14.0741i 0.157688 0.485313i
\(842\) 24.1525 + 17.5478i 0.832349 + 0.604737i
\(843\) 19.6180 0.675681
\(844\) 14.4721 + 10.5146i 0.498151 + 0.361928i
\(845\) 0 0
\(846\) 0.618034 0.449028i 0.0212484 0.0154379i
\(847\) 34.2705 24.8990i 1.17755 0.855539i
\(848\) 1.11803 + 3.44095i 0.0383934 + 0.118163i
\(849\) 13.7082 0.470464
\(850\) 0 0
\(851\) −13.8197 −0.473732
\(852\) −1.61803 4.97980i −0.0554329 0.170605i
\(853\) 18.7254 13.6048i 0.641146 0.465820i −0.219097 0.975703i \(-0.570311\pi\)
0.860244 + 0.509883i \(0.170311\pi\)
\(854\) 5.85410 4.25325i 0.200323 0.145543i
\(855\) 0 0
\(856\) 18.2705 + 13.2743i 0.624473 + 0.453706i
\(857\) 12.4721 0.426040 0.213020 0.977048i \(-0.431670\pi\)
0.213020 + 0.977048i \(0.431670\pi\)
\(858\) −5.61803 4.08174i −0.191797 0.139348i
\(859\) −7.23607 + 22.2703i −0.246891 + 0.759854i 0.748428 + 0.663216i \(0.230809\pi\)
−0.995320 + 0.0966379i \(0.969191\pi\)
\(860\) 0 0
\(861\) 5.00000 + 15.3884i 0.170400 + 0.524436i
\(862\) −6.38197 + 19.6417i −0.217371 + 0.668998i
\(863\) −3.36068 + 10.3431i −0.114399 + 0.352084i −0.991821 0.127635i \(-0.959261\pi\)
0.877422 + 0.479719i \(0.159261\pi\)
\(864\) 1.54508 + 4.75528i 0.0525649 + 0.161778i
\(865\) 0 0
\(866\) −6.79180 + 20.9030i −0.230795 + 0.710313i
\(867\) −1.73607 1.26133i −0.0589600 0.0428369i
\(868\) −12.3607 −0.419549
\(869\) 0 0
\(870\) 0 0
\(871\) −3.47214 + 2.52265i −0.117649 + 0.0854769i
\(872\) 19.1976 13.9478i 0.650111 0.472334i
\(873\) −0.663119 2.04087i −0.0224432 0.0690730i
\(874\) 5.52786 0.186983
\(875\) 0 0
\(876\) 8.09017 0.273342
\(877\) 10.2639 + 31.5891i 0.346588 + 1.06669i 0.960728 + 0.277492i \(0.0895032\pi\)
−0.614140 + 0.789197i \(0.710497\pi\)
\(878\) 13.0902 9.51057i 0.441772 0.320966i
\(879\) 16.8262 12.2250i 0.567535 0.412338i
\(880\) 0 0
\(881\) −34.7426 25.2420i −1.17051 0.850425i −0.179440 0.983769i \(-0.557428\pi\)
−0.991070 + 0.133344i \(0.957428\pi\)
\(882\) −13.0000 −0.437733
\(883\) 17.9443 + 13.0373i 0.603873 + 0.438739i 0.847251 0.531192i \(-0.178256\pi\)
−0.243379 + 0.969931i \(0.578256\pi\)
\(884\) −6.69098 + 20.5927i −0.225042 + 0.692608i
\(885\) 0 0
\(886\) −10.8885 33.5115i −0.365808 1.12584i
\(887\) 7.14590 21.9928i 0.239936 0.738446i −0.756492 0.654002i \(-0.773089\pi\)
0.996428 0.0844440i \(-0.0269114\pi\)
\(888\) −2.86475 + 8.81678i −0.0961346 + 0.295872i
\(889\) 5.12461 + 15.7719i 0.171874 + 0.528974i
\(890\) 0 0
\(891\) −0.381966 + 1.17557i −0.0127963 + 0.0393831i
\(892\) −6.61803 4.80828i −0.221588 0.160993i
\(893\) 0.944272 0.0315989
\(894\) 15.2533 + 11.0822i 0.510146 + 0.370643i
\(895\) 0 0
\(896\) −10.8541 + 7.88597i −0.362610 + 0.263452i
\(897\) 20.3262 14.7679i 0.678673 0.493085i
\(898\) −5.19098 15.9762i −0.173225 0.533133i
\(899\) 18.2918 0.610066
\(900\) 0 0
\(901\) 13.9443 0.464551
\(902\) −1.38197 4.25325i −0.0460144 0.141618i
\(903\) −27.8885 + 20.2622i −0.928073 + 0.674284i
\(904\) 44.4787 32.3157i 1.47934 1.07480i
\(905\) 0 0
\(906\) −6.09017 4.42477i −0.202332 0.147003i
\(907\) −7.12461 −0.236569 −0.118284 0.992980i \(-0.537739\pi\)
−0.118284 + 0.992980i \(0.537739\pi\)
\(908\) 16.1803 + 11.7557i 0.536963 + 0.390127i
\(909\) 1.10081 3.38795i 0.0365117 0.112371i
\(910\) 0 0
\(911\) 5.61803 + 17.2905i 0.186134 + 0.572861i 0.999966 0.00823898i \(-0.00262258\pi\)
−0.813832 + 0.581100i \(0.802623\pi\)
\(912\) 0.381966 1.17557i 0.0126482 0.0389270i
\(913\) 4.76393 14.6619i 0.157663 0.485237i
\(914\) −6.90983 21.2663i −0.228557 0.703426i
\(915\) 0 0
\(916\) −6.79180 + 20.9030i −0.224407 + 0.690655i
\(917\) 29.5967 + 21.5033i 0.977371 + 0.710101i
\(918\) −3.85410 −0.127204
\(919\) −39.7984 28.9152i −1.31283 0.953825i −0.999992 0.00401741i \(-0.998721\pi\)
−0.312835 0.949807i \(-0.601279\pi\)
\(920\) 0 0
\(921\) −26.4164 + 19.1926i −0.870450 + 0.632419i
\(922\) −26.5344 + 19.2784i −0.873865 + 0.634900i
\(923\) 9.09017 + 27.9767i 0.299207 + 0.920863i
\(924\) −5.52786 −0.181853
\(925\) 0 0
\(926\) 18.7639 0.616621
\(927\) −1.00000 3.07768i −0.0328443 0.101084i
\(928\) 26.7705 19.4499i 0.878785 0.638475i
\(929\) 7.35410 5.34307i 0.241280 0.175300i −0.460573 0.887622i \(-0.652356\pi\)
0.701853 + 0.712321i \(0.252356\pi\)
\(930\) 0 0
\(931\) −13.0000 9.44505i −0.426058 0.309549i
\(932\) 12.3820 0.405585
\(933\) 14.3262 + 10.4086i 0.469020 + 0.340763i
\(934\) 8.70820 26.8011i 0.284941 0.876959i
\(935\) 0 0
\(936\) −5.20820 16.0292i −0.170235 0.523931i
\(937\) 15.0451 46.3040i 0.491502 1.51269i −0.330837 0.943688i \(-0.607331\pi\)
0.822339 0.568998i \(-0.192669\pi\)
\(938\) 1.05573 3.24920i 0.0344707 0.106090i
\(939\) −0.145898 0.449028i −0.00476120 0.0146535i
\(940\) 0 0
\(941\) −3.19098 + 9.82084i −0.104023 + 0.320150i −0.989500 0.144533i \(-0.953832\pi\)
0.885477 + 0.464683i \(0.153832\pi\)
\(942\) 8.73607 + 6.34712i 0.284636 + 0.206801i
\(943\) 16.1803 0.526904
\(944\) −3.23607 2.35114i −0.105325 0.0765231i
\(945\) 0 0
\(946\) 7.70820 5.60034i 0.250615 0.182083i
\(947\) 2.09017 1.51860i 0.0679214 0.0493478i −0.553306 0.832978i \(-0.686634\pi\)
0.621228 + 0.783630i \(0.286634\pi\)
\(948\) 0 0
\(949\) −45.4508 −1.47540
\(950\) 0 0
\(951\) 28.8328 0.934968
\(952\) −15.9787 49.1774i −0.517873 1.59385i
\(953\) −0.881966 + 0.640786i −0.0285697 + 0.0207571i −0.601978 0.798512i \(-0.705621\pi\)
0.573409 + 0.819269i \(0.305621\pi\)
\(954\) −2.92705 + 2.12663i −0.0947668 + 0.0688521i
\(955\) 0 0
\(956\) −20.1803 14.6619i −0.652679 0.474199i
\(957\) 8.18034 0.264433
\(958\) 15.3262 + 11.1352i 0.495168 + 0.359761i
\(959\) 10.5279 32.4014i 0.339962 1.04630i
\(960\) 0 0
\(961\) −7.21885 22.2173i −0.232866 0.716688i
\(962\) 5.36475 16.5110i 0.172966 0.532336i
\(963\) −2.32624 + 7.15942i −0.0749620 + 0.230709i
\(964\) −8.66312 26.6623i −0.279020 0.858736i
\(965\) 0 0
\(966\) −6.18034 + 19.0211i −0.198849 + 0.611995i
\(967\) −15.2361 11.0697i −0.489959 0.355976i 0.315210 0.949022i \(-0.397925\pi\)
−0.805169 + 0.593046i \(0.797925\pi\)
\(968\) −28.4164 −0.913338
\(969\) −3.85410 2.80017i −0.123812 0.0899544i
\(970\) 0 0
\(971\) 27.0344 19.6417i 0.867577 0.630331i −0.0623590 0.998054i \(-0.519862\pi\)
0.929936 + 0.367723i \(0.119862\pi\)
\(972\) −0.809017 + 0.587785i −0.0259492 + 0.0188532i
\(973\) −31.7082 97.5878i −1.01652 3.12852i
\(974\) 9.70820 0.311071
\(975\) 0 0
\(976\) −1.61803 −0.0517920
\(977\) 1.00658 + 3.09793i 0.0322033 + 0.0991115i 0.965866 0.259041i \(-0.0834066\pi\)
−0.933663 + 0.358153i \(0.883407\pi\)
\(978\) −12.0902 + 8.78402i −0.386601 + 0.280882i
\(979\) 5.38197 3.91023i 0.172008 0.124971i
\(980\) 0 0
\(981\) 6.39919 + 4.64928i 0.204310 + 0.148440i
\(982\) −5.88854 −0.187911
\(983\) 6.70820 + 4.87380i 0.213958 + 0.155450i 0.689603 0.724188i \(-0.257785\pi\)
−0.475644 + 0.879638i \(0.657785\pi\)
\(984\) 3.35410 10.3229i 0.106925 0.329081i
\(985\) 0 0
\(986\) 7.88197 + 24.2582i 0.251013 + 0.772538i
\(987\) −1.05573 + 3.24920i −0.0336042 + 0.103423i
\(988\) 2.14590 6.60440i 0.0682701 0.210114i
\(989\) 10.6525 + 32.7849i 0.338729 + 1.04250i
\(990\) 0 0
\(991\) 11.4721 35.3076i 0.364424 1.12158i −0.585916 0.810372i \(-0.699265\pi\)
0.950341 0.311211i \(-0.100735\pi\)
\(992\) 11.1803 + 8.12299i 0.354976 + 0.257905i
\(993\) 6.94427 0.220370
\(994\) −18.9443 13.7638i −0.600876 0.436562i
\(995\) 0 0
\(996\) 10.0902 7.33094i 0.319719 0.232290i
\(997\) −14.0902 + 10.2371i −0.446240 + 0.324212i −0.788110 0.615535i \(-0.788940\pi\)
0.341869 + 0.939747i \(0.388940\pi\)
\(998\) 1.85410 + 5.70634i 0.0586906 + 0.180631i
\(999\) −3.09017 −0.0977687
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.g.a.151.1 4
5.2 odd 4 375.2.i.a.349.2 8
5.3 odd 4 375.2.i.a.349.1 8
5.4 even 2 75.2.g.a.31.1 4
15.14 odd 2 225.2.h.a.181.1 4
25.2 odd 20 1875.2.b.b.1249.2 4
25.3 odd 20 375.2.i.a.274.2 8
25.4 even 10 75.2.g.a.46.1 yes 4
25.11 even 5 1875.2.a.a.1.2 2
25.14 even 10 1875.2.a.d.1.1 2
25.21 even 5 inner 375.2.g.a.226.1 4
25.22 odd 20 375.2.i.a.274.1 8
25.23 odd 20 1875.2.b.b.1249.3 4
75.11 odd 10 5625.2.a.h.1.2 2
75.14 odd 10 5625.2.a.a.1.1 2
75.29 odd 10 225.2.h.a.46.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.g.a.31.1 4 5.4 even 2
75.2.g.a.46.1 yes 4 25.4 even 10
225.2.h.a.46.1 4 75.29 odd 10
225.2.h.a.181.1 4 15.14 odd 2
375.2.g.a.151.1 4 1.1 even 1 trivial
375.2.g.a.226.1 4 25.21 even 5 inner
375.2.i.a.274.1 8 25.22 odd 20
375.2.i.a.274.2 8 25.3 odd 20
375.2.i.a.349.1 8 5.3 odd 4
375.2.i.a.349.2 8 5.2 odd 4
1875.2.a.a.1.2 2 25.11 even 5
1875.2.a.d.1.1 2 25.14 even 10
1875.2.b.b.1249.2 4 25.2 odd 20
1875.2.b.b.1249.3 4 25.23 odd 20
5625.2.a.a.1.1 2 75.14 odd 10
5625.2.a.h.1.2 2 75.11 odd 10