Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.g (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{10})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(-\zeta_{10}^{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 |
|
0.809017 | + | 0.587785i | −0.309017 | − | 0.951057i | −0.309017 | − | 0.951057i | 0 | 0.309017 | − | 0.951057i | −4.47214 | 0.927051 | − | 2.85317i | −0.809017 | + | 0.587785i | 0 | ||||||||||||||||||
151.1 | −0.309017 | − | 0.951057i | 0.809017 | − | 0.587785i | 0.809017 | − | 0.587785i | 0 | −0.809017 | − | 0.587785i | 4.47214 | −2.42705 | − | 1.76336i | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||
226.1 | −0.309017 | + | 0.951057i | 0.809017 | + | 0.587785i | 0.809017 | + | 0.587785i | 0 | −0.809017 | + | 0.587785i | 4.47214 | −2.42705 | + | 1.76336i | 0.309017 | + | 0.951057i | 0 | |||||||||||||||||||
301.1 | 0.809017 | − | 0.587785i | −0.309017 | + | 0.951057i | −0.309017 | + | 0.951057i | 0 | 0.309017 | + | 0.951057i | −4.47214 | 0.927051 | + | 2.85317i | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.g.a | 4 | |
5.b | even | 2 | 1 | 75.2.g.a | ✓ | 4 | |
5.c | odd | 4 | 2 | 375.2.i.a | 8 | ||
15.d | odd | 2 | 1 | 225.2.h.a | 4 | ||
25.d | even | 5 | 1 | inner | 375.2.g.a | 4 | |
25.d | even | 5 | 1 | 1875.2.a.a | 2 | ||
25.e | even | 10 | 1 | 75.2.g.a | ✓ | 4 | |
25.e | even | 10 | 1 | 1875.2.a.d | 2 | ||
25.f | odd | 20 | 2 | 375.2.i.a | 8 | ||
25.f | odd | 20 | 2 | 1875.2.b.b | 4 | ||
75.h | odd | 10 | 1 | 225.2.h.a | 4 | ||
75.h | odd | 10 | 1 | 5625.2.a.a | 2 | ||
75.j | odd | 10 | 1 | 5625.2.a.h | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.a | ✓ | 4 | 5.b | even | 2 | 1 | |
75.2.g.a | ✓ | 4 | 25.e | even | 10 | 1 | |
225.2.h.a | 4 | 15.d | odd | 2 | 1 | ||
225.2.h.a | 4 | 75.h | odd | 10 | 1 | ||
375.2.g.a | 4 | 1.a | even | 1 | 1 | trivial | |
375.2.g.a | 4 | 25.d | even | 5 | 1 | inner | |
375.2.i.a | 8 | 5.c | odd | 4 | 2 | ||
375.2.i.a | 8 | 25.f | odd | 20 | 2 | ||
1875.2.a.a | 2 | 25.d | even | 5 | 1 | ||
1875.2.a.d | 2 | 25.e | even | 10 | 1 | ||
1875.2.b.b | 4 | 25.f | odd | 20 | 2 | ||
5625.2.a.a | 2 | 75.h | odd | 10 | 1 | ||
5625.2.a.h | 2 | 75.j | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - T_{2}^{3} + T_{2}^{2} - T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - T^{3} + T^{2} - T + 1 \)
$3$
\( T^{4} - T^{3} + T^{2} - T + 1 \)
$5$
\( T^{4} \)
$7$
\( (T^{2} - 20)^{2} \)
$11$
\( T^{4} + 6 T^{3} + 16 T^{2} + 16 T + 16 \)
$13$
\( T^{4} - 2 T^{3} + 24 T^{2} - 133 T + 361 \)
$17$
\( T^{4} - 8 T^{3} + 34 T^{2} - 77 T + 121 \)
$19$
\( T^{4} + 4 T^{3} + 16 T^{2} + 24 T + 16 \)
$23$
\( T^{4} + 10 T^{3} + 60 T^{2} + \cdots + 400 \)
$29$
\( T^{4} + 8 T^{3} + 34 T^{2} + 87 T + 841 \)
$31$
\( T^{4} + 40 T^{2} + 200 T + 400 \)
$37$
\( T^{4} - 15 T^{3} + 100 T^{2} + \cdots + 625 \)
$41$
\( T^{4} + 10 T^{2} - 25 T + 25 \)
$43$
\( (T^{2} + 2 T - 44)^{2} \)
$47$
\( T^{4} - 2 T^{3} + 24 T^{2} + 32 T + 16 \)
$53$
\( T^{4} - 5 T^{3} + 10 T^{2} + 25 \)
$59$
\( T^{4} - 4 T^{3} + 16 T^{2} - 64 T + 256 \)
$61$
\( T^{4} - 2 T^{3} + 4 T^{2} - 3 T + 1 \)
$67$
\( T^{4} + 2 T^{3} + 24 T^{2} - 32 T + 16 \)
$71$
\( T^{4} - 8 T^{3} + 24 T^{2} + 8 T + 16 \)
$73$
\( T^{4} - 10 T^{3} + 100 T^{2} + \cdots + 625 \)
$79$
\( T^{4} \)
$83$
\( T^{4} - 18 T^{3} + 124 T^{2} + \cdots + 1936 \)
$89$
\( T^{4} + 9 T^{3} + 46 T^{2} + \cdots + 1681 \)
$97$
\( T^{4} + 2 T^{3} + 64 T^{2} - 247 T + 361 \)
show more
show less