Properties

Label 375.2.g
Level $375$
Weight $2$
Character orbit 375.g
Rep. character $\chi_{375}(76,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $56$
Newform subspaces $5$
Sturm bound $100$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 5 \)
Sturm bound: \(100\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(375, [\chi])\).

Total New Old
Modular forms 240 56 184
Cusp forms 160 56 104
Eisenstein series 80 0 80

Trace form

\( 56 q + 2 q^{2} - 12 q^{4} + 2 q^{6} + 8 q^{7} - 12 q^{8} - 14 q^{9} - 6 q^{11} + 8 q^{12} + 12 q^{13} + 12 q^{14} - 20 q^{16} + 10 q^{17} - 8 q^{18} + 2 q^{19} + 4 q^{21} - 30 q^{22} - 36 q^{23} - 24 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(375, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
375.2.g.a 375.g 25.d $4$ $2.994$ \(\Q(\zeta_{10})\) None 75.2.g.a \(1\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\)
375.2.g.b 375.g 25.d $8$ $2.994$ 8.0.26265625.1 None 75.2.g.b \(1\) \(2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{3}+\beta _{7})q^{2}+(1-\beta _{1}-\beta _{3}-\beta _{6}+\cdots)q^{3}+\cdots\)
375.2.g.c 375.g 25.d $12$ $2.994$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 75.2.g.c \(0\) \(-3\) \(0\) \(12\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{2}q^{2}+\beta _{8}q^{3}+(-1-\beta _{4}+\beta _{8}+\cdots)q^{4}+\cdots\)
375.2.g.d 375.g 25.d $16$ $2.994$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 75.2.i.a \(-2\) \(4\) \(0\) \(16\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{5}q^{2}+\beta _{3}q^{3}+(\beta _{8}-\beta _{11})q^{4}+(1+\cdots)q^{6}+\cdots\)
375.2.g.e 375.g 25.d $16$ $2.994$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 75.2.i.a \(2\) \(-4\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{5}q^{2}-\beta _{3}q^{3}+(\beta _{8}-\beta _{11})q^{4}+(1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(375, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(375, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 2}\)