Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.1632160000.5 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 12x^{6} + 46x^{4} + 65x^{2} + 25 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 12x^{6} + 46x^{4} + 65x^{2} + 25 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} + 7\nu^{4} + 6\nu^{2} - 5 ) / 5 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{7} + 17\nu^{5} + 81\nu^{3} + 95\nu ) / 25 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -3\nu^{7} - 26\nu^{5} - 43\nu^{3} + 15\nu ) / 25 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -2\nu^{6} - 19\nu^{4} - 42\nu^{2} - 15 ) / 5 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -2\nu^{6} - 19\nu^{4} - 47\nu^{2} - 30 ) / 5 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 2\nu^{7} + 19\nu^{5} + 47\nu^{3} + 30\nu ) / 5 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{6} + \beta_{5} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} + 3\beta_{4} - \beta_{3} - 4\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 6\beta_{6} - 7\beta_{5} - 2\beta_{2} + 13 \)
|
\(\nu^{5}\) | \(=\) |
\( -8\beta_{7} - 23\beta_{4} + 11\beta_{3} + 20\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -36\beta_{6} + 43\beta_{5} + 19\beta_{2} - 68 \)
|
\(\nu^{7}\) | \(=\) |
\( 55\beta_{7} + 148\beta_{4} - 81\beta_{3} - 111\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
124.1 |
|
− | 2.52452i | 1.00000i | −4.37322 | 0 | 2.52452 | 4.93346i | 5.99126i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
124.2 | − | 2.25800i | 1.00000i | −3.09855 | 0 | 2.25800 | − | 1.55497i | 2.48051i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
124.3 | − | 1.87603i | − | 1.00000i | −1.51949 | 0 | −1.87603 | − | 3.55497i | − | 0.901454i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||
124.4 | − | 0.0935099i | 1.00000i | 1.99126 | 0 | 0.0935099 | − | 2.93346i | − | 0.373222i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
124.5 | 0.0935099i | − | 1.00000i | 1.99126 | 0 | 0.0935099 | 2.93346i | 0.373222i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
124.6 | 1.87603i | 1.00000i | −1.51949 | 0 | −1.87603 | 3.55497i | 0.901454i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
124.7 | 2.25800i | − | 1.00000i | −3.09855 | 0 | 2.25800 | 1.55497i | − | 2.48051i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
124.8 | 2.52452i | − | 1.00000i | −4.37322 | 0 | 2.52452 | − | 4.93346i | − | 5.99126i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.b.c | 8 | |
3.b | odd | 2 | 1 | 1125.2.b.g | 8 | ||
4.b | odd | 2 | 1 | 6000.2.f.o | 8 | ||
5.b | even | 2 | 1 | inner | 375.2.b.c | 8 | |
5.c | odd | 4 | 1 | 375.2.a.e | ✓ | 4 | |
5.c | odd | 4 | 1 | 375.2.a.f | yes | 4 | |
15.d | odd | 2 | 1 | 1125.2.b.g | 8 | ||
15.e | even | 4 | 1 | 1125.2.a.h | 4 | ||
15.e | even | 4 | 1 | 1125.2.a.l | 4 | ||
20.d | odd | 2 | 1 | 6000.2.f.o | 8 | ||
20.e | even | 4 | 1 | 6000.2.a.bg | 4 | ||
20.e | even | 4 | 1 | 6000.2.a.bh | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
375.2.a.e | ✓ | 4 | 5.c | odd | 4 | 1 | |
375.2.a.f | yes | 4 | 5.c | odd | 4 | 1 | |
375.2.b.c | 8 | 1.a | even | 1 | 1 | trivial | |
375.2.b.c | 8 | 5.b | even | 2 | 1 | inner | |
1125.2.a.h | 4 | 15.e | even | 4 | 1 | ||
1125.2.a.l | 4 | 15.e | even | 4 | 1 | ||
1125.2.b.g | 8 | 3.b | odd | 2 | 1 | ||
1125.2.b.g | 8 | 15.d | odd | 2 | 1 | ||
6000.2.a.bg | 4 | 20.e | even | 4 | 1 | ||
6000.2.a.bh | 4 | 20.e | even | 4 | 1 | ||
6000.2.f.o | 8 | 4.b | odd | 2 | 1 | ||
6000.2.f.o | 8 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 15T_{2}^{6} + 73T_{2}^{4} + 115T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 15 T^{6} + 73 T^{4} + 115 T^{2} + \cdots + 1 \)
$3$
\( (T^{2} + 1)^{4} \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 48 T^{6} + 736 T^{4} + \cdots + 6400 \)
$11$
\( (T^{4} - 6 T^{3} - 12 T^{2} + 88 T - 16)^{2} \)
$13$
\( T^{8} + 80 T^{6} + 1888 T^{4} + \cdots + 30976 \)
$17$
\( (T^{4} + 23 T^{2} + 121)^{2} \)
$19$
\( (T^{4} + 8 T^{3} + T^{2} - 60 T + 25)^{2} \)
$23$
\( T^{8} + 102 T^{6} + 2491 T^{4} + \cdots + 3025 \)
$29$
\( (T^{4} + 6 T^{3} - 36 T^{2} - 40 T + 80)^{2} \)
$31$
\( (T^{4} - 4 T^{3} - 51 T^{2} - 80 T + 25)^{2} \)
$37$
\( T^{8} + 188 T^{6} + 12816 T^{4} + \cdots + 4000000 \)
$41$
\( (T^{4} - 24 T^{3} + 184 T^{2} - 440 T - 80)^{2} \)
$43$
\( T^{8} + 244 T^{6} + 19936 T^{4} + \cdots + 4946176 \)
$47$
\( (T^{4} + 23 T^{2} + 101)^{2} \)
$53$
\( T^{8} + 182 T^{6} + 11491 T^{4} + \cdots + 2088025 \)
$59$
\( (T^{4} + 2 T^{3} - 144 T^{2} - 320 T + 2320)^{2} \)
$61$
\( (T^{4} - 10 T^{3} - 53 T^{2} + 470 T + 781)^{2} \)
$67$
\( T^{8} + 256 T^{6} + 21856 T^{4} + \cdots + 1290496 \)
$71$
\( (T^{4} + 12 T^{3} - 96 T^{2} - 392 T + 656)^{2} \)
$73$
\( T^{8} + 52 T^{6} + 736 T^{4} + \cdots + 6400 \)
$79$
\( (T^{4} - 20 T^{3} + 25 T^{2} + 500 T + 725)^{2} \)
$83$
\( T^{8} + 270 T^{6} + 19963 T^{4} + \cdots + 2343961 \)
$89$
\( (T^{4} + 28 T^{3} + 196 T^{2} - 160 T - 2320)^{2} \)
$97$
\( T^{8} + 556 T^{6} + \cdots + 82882816 \)
show more
show less