Properties

Label 3744.2.m.f.1585.6
Level $3744$
Weight $2$
Character 3744.1585
Analytic conductor $29.896$
Analytic rank $0$
Dimension $8$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1585,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1585");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.151613669376.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1585.6
Root \(-1.19709 + 0.752986i\) of defining polynomial
Character \(\chi\) \(=\) 3744.1585
Dual form 3744.2.m.f.1585.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75265 q^{5} +O(q^{10})\) \(q+1.75265 q^{5} -6.54099 q^{11} +3.60555i q^{13} -1.92820 q^{25} -10.1383i q^{41} -12.4900i q^{43} -9.33123i q^{47} +7.00000 q^{49} -11.4641 q^{55} +0.469622 q^{59} -7.21110i q^{61} +6.31928i q^{65} -4.92144i q^{71} -10.3923 q^{79} -12.6124 q^{83} -18.3671i q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 40 q^{25} + 56 q^{49} - 64 q^{55}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.75265 0.783811 0.391905 0.920006i \(-0.371816\pi\)
0.391905 + 0.920006i \(0.371816\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.54099 −1.97218 −0.986092 0.166200i \(-0.946850\pi\)
−0.986092 + 0.166200i \(0.946850\pi\)
\(12\) 0 0
\(13\) 3.60555i 1.00000i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.92820 −0.385641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 10.1383i − 1.58333i −0.610954 0.791666i \(-0.709214\pi\)
0.610954 0.791666i \(-0.290786\pi\)
\(42\) 0 0
\(43\) − 12.4900i − 1.90471i −0.304997 0.952353i \(-0.598656\pi\)
0.304997 0.952353i \(-0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.33123i − 1.36110i −0.732702 0.680550i \(-0.761741\pi\)
0.732702 0.680550i \(-0.238259\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −11.4641 −1.54582
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.469622 0.0611396 0.0305698 0.999533i \(-0.490268\pi\)
0.0305698 + 0.999533i \(0.490268\pi\)
\(60\) 0 0
\(61\) − 7.21110i − 0.923287i −0.887066 0.461644i \(-0.847260\pi\)
0.887066 0.461644i \(-0.152740\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.31928i 0.783811i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 4.92144i − 0.584067i −0.956408 0.292034i \(-0.905668\pi\)
0.956408 0.292034i \(-0.0943319\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.6124 −1.38439 −0.692194 0.721712i \(-0.743356\pi\)
−0.692194 + 0.721712i \(0.743356\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 18.3671i − 1.94690i −0.228892 0.973452i \(-0.573510\pi\)
0.228892 0.973452i \(-0.426490\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 31.7846 2.88951
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1427 −1.08608
\(126\) 0 0
\(127\) 17.3205 1.53695 0.768473 0.639882i \(-0.221017\pi\)
0.768473 + 0.639882i \(0.221017\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 14.5481i − 1.24293i −0.783444 0.621463i \(-0.786539\pi\)
0.783444 0.621463i \(-0.213461\pi\)
\(138\) 0 0
\(139\) 12.4900i 1.05939i 0.848189 + 0.529694i \(0.177693\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 23.5839i − 1.97218i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −24.4113 −1.99985 −0.999927 0.0121001i \(-0.996148\pi\)
−0.999927 + 0.0121001i \(0.996148\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 24.9800i 1.99362i 0.0798087 + 0.996810i \(0.474569\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.5361i 0.892692i 0.894860 + 0.446346i \(0.147275\pi\)
−0.894860 + 0.446346i \(0.852725\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 24.9800i 1.85675i 0.371647 + 0.928374i \(0.378793\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.8954 −0.990006 −0.495003 0.868891i \(-0.664833\pi\)
−0.495003 + 0.868891i \(0.664833\pi\)
\(198\) 0 0
\(199\) 24.2487 1.71895 0.859473 0.511182i \(-0.170792\pi\)
0.859473 + 0.511182i \(0.170792\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 17.7689i − 1.24103i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.8444i 1.98573i 0.119239 + 0.992866i \(0.461954\pi\)
−0.119239 + 0.992866i \(0.538046\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 21.8906i − 1.49293i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.60175 −0.371801 −0.185901 0.982569i \(-0.559520\pi\)
−0.185901 + 0.982569i \(0.559520\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) − 16.3544i − 1.06684i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 25.7888i − 1.66814i −0.551660 0.834069i \(-0.686005\pi\)
0.551660 0.834069i \(-0.313995\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.2686 0.783811
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.6124 0.760554
\(276\) 0 0
\(277\) − 24.9800i − 1.50090i −0.660926 0.750451i \(-0.729836\pi\)
0.660926 0.750451i \(-0.270164\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 13.9573i − 0.832621i −0.909223 0.416310i \(-0.863323\pi\)
0.909223 0.416310i \(-0.136677\pi\)
\(282\) 0 0
\(283\) − 28.8444i − 1.71462i −0.514799 0.857311i \(-0.672133\pi\)
0.514799 0.857311i \(-0.327867\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.3901 0.606996 0.303498 0.952832i \(-0.401846\pi\)
0.303498 + 0.952832i \(0.401846\pi\)
\(294\) 0 0
\(295\) 0.823085 0.0479219
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 12.6386i − 0.723682i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −34.6410 −1.95803 −0.979013 0.203798i \(-0.934671\pi\)
−0.979013 + 0.203798i \(0.934671\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.4219 −1.76483 −0.882416 0.470470i \(-0.844084\pi\)
−0.882416 + 0.470470i \(0.844084\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 6.95224i − 0.385641i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.92820 −0.377403 −0.188702 0.982034i \(-0.560428\pi\)
−0.188702 + 0.982034i \(0.560428\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.50029i 0.133077i 0.997784 + 0.0665386i \(0.0211956\pi\)
−0.997784 + 0.0665386i \(0.978804\pi\)
\(354\) 0 0
\(355\) − 8.62558i − 0.457798i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 37.8366i 1.99694i 0.0553230 + 0.998469i \(0.482381\pi\)
−0.0553230 + 0.998469i \(0.517619\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 36.0555i − 1.86688i −0.358729 0.933442i \(-0.616790\pi\)
0.358729 0.933442i \(-0.383210\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.9692i 0.867086i 0.901133 + 0.433543i \(0.142737\pi\)
−0.901133 + 0.433543i \(0.857263\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.2141 −0.916452
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 31.0056i − 1.54835i −0.632973 0.774173i \(-0.718166\pi\)
0.632973 0.774173i \(-0.281834\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −22.1051 −1.08510
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 40.0415i − 1.92873i −0.264578 0.964364i \(-0.585233\pi\)
0.264578 0.964364i \(-0.414767\pi\)
\(432\) 0 0
\(433\) 20.7846 0.998845 0.499422 0.866359i \(-0.333546\pi\)
0.499422 + 0.866359i \(0.333546\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) − 32.1911i − 1.52600i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.7291i 0.506336i 0.967422 + 0.253168i \(0.0814726\pi\)
−0.967422 + 0.253168i \(0.918527\pi\)
\(450\) 0 0
\(451\) 66.3144i 3.12262i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 34.9272 1.62672 0.813362 0.581758i \(-0.197635\pi\)
0.813362 + 0.581758i \(0.197635\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 81.6970i 3.75643i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 33.4268i 1.52731i 0.645626 + 0.763654i \(0.276597\pi\)
−0.645626 + 0.763654i \(0.723403\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 43.5647 1.93097 0.965485 0.260457i \(-0.0838733\pi\)
0.965485 + 0.260457i \(0.0838733\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28.0425 −1.23570
\(516\) 0 0
\(517\) 61.0355i 2.68434i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) − 12.4900i − 0.546149i −0.961993 0.273075i \(-0.911959\pi\)
0.961993 0.273075i \(-0.0880406\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 36.5541 1.58333
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −45.7870 −1.97218
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 37.4700i 1.60210i 0.598597 + 0.801050i \(0.295725\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −47.0700 −1.99442 −0.997210 0.0746496i \(-0.976216\pi\)
−0.997210 + 0.0746496i \(0.976216\pi\)
\(558\) 0 0
\(559\) 45.0333 1.90471
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) − 28.8444i − 1.20710i −0.797325 0.603550i \(-0.793752\pi\)
0.797325 0.603550i \(-0.206248\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.7551 1.02175 0.510876 0.859654i \(-0.329321\pi\)
0.510876 + 0.859654i \(0.329321\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 39.2344i − 1.61116i −0.592484 0.805582i \(-0.701853\pi\)
0.592484 0.805582i \(-0.298147\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 48.4974 1.97825 0.989126 0.147074i \(-0.0469854\pi\)
0.989126 + 0.147074i \(0.0469854\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 55.7074 2.26483
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33.6442 1.36110
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 46.8724i 1.88701i 0.331357 + 0.943506i \(0.392494\pi\)
−0.331357 + 0.943506i \(0.607506\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −11.6410 −0.465641
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 30.3569 1.20468
\(636\) 0 0
\(637\) 25.2389i 1.00000i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −3.07180 −0.120579
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 47.1678i 1.82089i
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 51.8583 1.98430 0.992152 0.125038i \(-0.0399051\pi\)
0.992152 + 0.125038i \(0.0399051\pi\)
\(684\) 0 0
\(685\) − 25.4977i − 0.974218i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.8906i 0.830359i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) − 41.3344i − 1.54582i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 51.9615 1.92715 0.963573 0.267445i \(-0.0861794\pi\)
0.963573 + 0.267445i \(0.0861794\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.2941i 1.99186i 0.0901418 + 0.995929i \(0.471268\pi\)
−0.0901418 + 0.995929i \(0.528732\pi\)
\(744\) 0 0
\(745\) −42.7846 −1.56751
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 36.0555i − 1.31046i −0.755429 0.655230i \(-0.772572\pi\)
0.755429 0.655230i \(-0.227428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.1866i 0.985515i 0.870167 + 0.492757i \(0.164011\pi\)
−0.870167 + 0.492757i \(0.835989\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.69325i 0.0611396i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −54.0806 −1.94514 −0.972572 0.232601i \(-0.925276\pi\)
−0.972572 + 0.232601i \(0.925276\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.1911i 1.15189i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.7813i 1.56262i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.125835 −0.00439167 −0.00219583 0.999998i \(-0.500699\pi\)
−0.00219583 + 0.999998i \(0.500699\pi\)
\(822\) 0 0
\(823\) −56.0000 −1.95204 −0.976019 0.217687i \(-0.930149\pi\)
−0.976019 + 0.217687i \(0.930149\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.5728 0.958802 0.479401 0.877596i \(-0.340854\pi\)
0.479401 + 0.877596i \(0.340854\pi\)
\(828\) 0 0
\(829\) 50.4777i 1.75316i 0.481253 + 0.876582i \(0.340182\pi\)
−0.481253 + 0.876582i \(0.659818\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.2188i 0.699702i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 44.4512i − 1.53463i −0.641272 0.767314i \(-0.721593\pi\)
0.641272 0.767314i \(-0.278407\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.7845 −0.783811
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) − 57.6888i − 1.96832i −0.177290 0.984159i \(-0.556733\pi\)
0.177290 0.984159i \(-0.443267\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.6794i 1.62303i 0.584334 + 0.811513i \(0.301356\pi\)
−0.584334 + 0.811513i \(0.698644\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 67.9760 2.30593
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 28.8444i 0.970692i 0.874322 + 0.485346i \(0.161306\pi\)
−0.874322 + 0.485346i \(0.838694\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 43.7813i 1.45534i
\(906\) 0 0
\(907\) − 57.6888i − 1.91553i −0.287559 0.957763i \(-0.592844\pi\)
0.287559 0.957763i \(-0.407156\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 82.4974 2.73027
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −58.8897 −1.94259 −0.971296 0.237872i \(-0.923550\pi\)
−0.971296 + 0.237872i \(0.923550\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.7445 0.584067
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 59.5110i 1.95249i 0.216667 + 0.976245i \(0.430481\pi\)
−0.216667 + 0.976245i \(0.569519\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.6410 1.13167 0.565836 0.824518i \(-0.308553\pi\)
0.565836 + 0.824518i \(0.308553\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −57.5859 −1.87725 −0.938624 0.344943i \(-0.887898\pi\)
−0.938624 + 0.344943i \(0.887898\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 57.9297 1.88246 0.941231 0.337763i \(-0.109670\pi\)
0.941231 + 0.337763i \(0.109670\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 35.4154i − 1.13304i −0.824048 0.566520i \(-0.808289\pi\)
0.824048 0.566520i \(-0.191711\pi\)
\(978\) 0 0
\(979\) 120.139i 3.83965i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.5594i 0.400583i 0.979736 + 0.200292i \(0.0641890\pi\)
−0.979736 + 0.200292i \(0.935811\pi\)
\(984\) 0 0
\(985\) −24.3538 −0.775978
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 42.4996 1.34733
\(996\) 0 0
\(997\) 24.9800i 0.791124i 0.918439 + 0.395562i \(0.129450\pi\)
−0.918439 + 0.395562i \(0.870550\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.m.f.1585.6 8
3.2 odd 2 inner 3744.2.m.f.1585.4 8
4.3 odd 2 936.2.m.g.181.1 8
8.3 odd 2 936.2.m.g.181.7 yes 8
8.5 even 2 inner 3744.2.m.f.1585.3 8
12.11 even 2 936.2.m.g.181.8 yes 8
13.12 even 2 inner 3744.2.m.f.1585.4 8
24.5 odd 2 inner 3744.2.m.f.1585.5 8
24.11 even 2 936.2.m.g.181.2 yes 8
39.38 odd 2 CM 3744.2.m.f.1585.6 8
52.51 odd 2 936.2.m.g.181.8 yes 8
104.51 odd 2 936.2.m.g.181.2 yes 8
104.77 even 2 inner 3744.2.m.f.1585.5 8
156.155 even 2 936.2.m.g.181.1 8
312.77 odd 2 inner 3744.2.m.f.1585.3 8
312.155 even 2 936.2.m.g.181.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.m.g.181.1 8 4.3 odd 2
936.2.m.g.181.1 8 156.155 even 2
936.2.m.g.181.2 yes 8 24.11 even 2
936.2.m.g.181.2 yes 8 104.51 odd 2
936.2.m.g.181.7 yes 8 8.3 odd 2
936.2.m.g.181.7 yes 8 312.155 even 2
936.2.m.g.181.8 yes 8 12.11 even 2
936.2.m.g.181.8 yes 8 52.51 odd 2
3744.2.m.f.1585.3 8 8.5 even 2 inner
3744.2.m.f.1585.3 8 312.77 odd 2 inner
3744.2.m.f.1585.4 8 3.2 odd 2 inner
3744.2.m.f.1585.4 8 13.12 even 2 inner
3744.2.m.f.1585.5 8 24.5 odd 2 inner
3744.2.m.f.1585.5 8 104.77 even 2 inner
3744.2.m.f.1585.6 8 1.1 even 1 trivial
3744.2.m.f.1585.6 8 39.38 odd 2 CM