Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3744,2,Mod(1873,3744)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3744.1873");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3744.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(29.8959905168\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 936) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1873.1 | 0 | 0 | 0 | − | 1.61588i | 0 | 1.38556 | 0 | 0 | 0 | |||||||||||||||||
1873.2 | 0 | 0 | 0 | 1.61588i | 0 | 1.38556 | 0 | 0 | 0 | ||||||||||||||||||
1873.3 | 0 | 0 | 0 | − | 2.32782i | 0 | 4.85152 | 0 | 0 | 0 | |||||||||||||||||
1873.4 | 0 | 0 | 0 | 2.32782i | 0 | 4.85152 | 0 | 0 | 0 | ||||||||||||||||||
1873.5 | 0 | 0 | 0 | − | 0.839709i | 0 | 0.482293 | 0 | 0 | 0 | |||||||||||||||||
1873.6 | 0 | 0 | 0 | 0.839709i | 0 | 0.482293 | 0 | 0 | 0 | ||||||||||||||||||
1873.7 | 0 | 0 | 0 | − | 2.32782i | 0 | 4.85152 | 0 | 0 | 0 | |||||||||||||||||
1873.8 | 0 | 0 | 0 | 2.32782i | 0 | 4.85152 | 0 | 0 | 0 | ||||||||||||||||||
1873.9 | 0 | 0 | 0 | − | 3.06504i | 0 | 1.53955 | 0 | 0 | 0 | |||||||||||||||||
1873.10 | 0 | 0 | 0 | 3.06504i | 0 | 1.53955 | 0 | 0 | 0 | ||||||||||||||||||
1873.11 | 0 | 0 | 0 | − | 4.18566i | 0 | −2.70923 | 0 | 0 | 0 | |||||||||||||||||
1873.12 | 0 | 0 | 0 | 4.18566i | 0 | −2.70923 | 0 | 0 | 0 | ||||||||||||||||||
1873.13 | 0 | 0 | 0 | − | 3.06504i | 0 | 1.53955 | 0 | 0 | 0 | |||||||||||||||||
1873.14 | 0 | 0 | 0 | 3.06504i | 0 | 1.53955 | 0 | 0 | 0 | ||||||||||||||||||
1873.15 | 0 | 0 | 0 | − | 0.592273i | 0 | −3.54968 | 0 | 0 | 0 | |||||||||||||||||
1873.16 | 0 | 0 | 0 | 0.592273i | 0 | −3.54968 | 0 | 0 | 0 | ||||||||||||||||||
1873.17 | 0 | 0 | 0 | − | 0.592273i | 0 | −3.54968 | 0 | 0 | 0 | |||||||||||||||||
1873.18 | 0 | 0 | 0 | 0.592273i | 0 | −3.54968 | 0 | 0 | 0 | ||||||||||||||||||
1873.19 | 0 | 0 | 0 | − | 0.839709i | 0 | 0.482293 | 0 | 0 | 0 | |||||||||||||||||
1873.20 | 0 | 0 | 0 | 0.839709i | 0 | 0.482293 | 0 | 0 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
24.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3744.2.g.f | 24 | |
3.b | odd | 2 | 1 | inner | 3744.2.g.f | 24 | |
4.b | odd | 2 | 1 | 936.2.g.f | ✓ | 24 | |
8.b | even | 2 | 1 | inner | 3744.2.g.f | 24 | |
8.d | odd | 2 | 1 | 936.2.g.f | ✓ | 24 | |
12.b | even | 2 | 1 | 936.2.g.f | ✓ | 24 | |
24.f | even | 2 | 1 | 936.2.g.f | ✓ | 24 | |
24.h | odd | 2 | 1 | inner | 3744.2.g.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.g.f | ✓ | 24 | 4.b | odd | 2 | 1 | |
936.2.g.f | ✓ | 24 | 8.d | odd | 2 | 1 | |
936.2.g.f | ✓ | 24 | 12.b | even | 2 | 1 | |
936.2.g.f | ✓ | 24 | 24.f | even | 2 | 1 | |
3744.2.g.f | 24 | 1.a | even | 1 | 1 | trivial | |
3744.2.g.f | 24 | 3.b | odd | 2 | 1 | inner | |
3744.2.g.f | 24 | 8.b | even | 2 | 1 | inner | |
3744.2.g.f | 24 | 24.h | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 36T_{5}^{10} + 432T_{5}^{8} + 2128T_{5}^{6} + 4224T_{5}^{4} + 2880T_{5}^{2} + 576 \) acting on \(S_{2}^{\mathrm{new}}(3744, [\chi])\).