Properties

Label 3744.2.g.b.1873.1
Level $3744$
Weight $2$
Character 3744.1873
Analytic conductor $29.896$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1873,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1873");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1873.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3744.1873
Dual form 3744.2.g.b.1873.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46410i q^{5} +1.26795 q^{7} +O(q^{10})\) \(q-3.46410i q^{5} +1.26795 q^{7} -4.73205i q^{11} +1.00000i q^{13} -5.46410 q^{17} -0.732051i q^{19} +4.00000 q^{23} -7.00000 q^{25} -2.00000i q^{29} +6.73205 q^{31} -4.39230i q^{35} -8.92820i q^{37} -8.92820 q^{41} +0.535898i q^{43} +6.73205 q^{47} -5.39230 q^{49} +2.92820i q^{53} -16.3923 q^{55} -10.1962i q^{59} +2.92820i q^{61} +3.46410 q^{65} -0.732051i q^{67} -8.19615 q^{71} -7.46410 q^{73} -6.00000i q^{77} -5.46410 q^{79} +3.26795i q^{83} +18.9282i q^{85} +17.3205 q^{89} +1.26795i q^{91} -2.53590 q^{95} +6.39230 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{7} - 8 q^{17} + 16 q^{23} - 28 q^{25} + 20 q^{31} - 8 q^{41} + 20 q^{47} + 20 q^{49} - 24 q^{55} - 12 q^{71} - 16 q^{73} - 8 q^{79} - 24 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.46410i − 1.54919i −0.632456 0.774597i \(-0.717953\pi\)
0.632456 0.774597i \(-0.282047\pi\)
\(6\) 0 0
\(7\) 1.26795 0.479240 0.239620 0.970867i \(-0.422977\pi\)
0.239620 + 0.970867i \(0.422977\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.73205i − 1.42677i −0.700774 0.713384i \(-0.747162\pi\)
0.700774 0.713384i \(-0.252838\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.46410 −1.32524 −0.662620 0.748956i \(-0.730555\pi\)
−0.662620 + 0.748956i \(0.730555\pi\)
\(18\) 0 0
\(19\) − 0.732051i − 0.167944i −0.996468 0.0839720i \(-0.973239\pi\)
0.996468 0.0839720i \(-0.0267606\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) 6.73205 1.20911 0.604556 0.796563i \(-0.293351\pi\)
0.604556 + 0.796563i \(0.293351\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 4.39230i − 0.742435i
\(36\) 0 0
\(37\) − 8.92820i − 1.46779i −0.679264 0.733894i \(-0.737701\pi\)
0.679264 0.733894i \(-0.262299\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.92820 −1.39435 −0.697176 0.716900i \(-0.745560\pi\)
−0.697176 + 0.716900i \(0.745560\pi\)
\(42\) 0 0
\(43\) 0.535898i 0.0817237i 0.999165 + 0.0408619i \(0.0130104\pi\)
−0.999165 + 0.0408619i \(0.986990\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.73205 0.981971 0.490985 0.871168i \(-0.336637\pi\)
0.490985 + 0.871168i \(0.336637\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.92820i 0.402220i 0.979569 + 0.201110i \(0.0644548\pi\)
−0.979569 + 0.201110i \(0.935545\pi\)
\(54\) 0 0
\(55\) −16.3923 −2.21034
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.1962i − 1.32743i −0.747987 0.663713i \(-0.768980\pi\)
0.747987 0.663713i \(-0.231020\pi\)
\(60\) 0 0
\(61\) 2.92820i 0.374918i 0.982272 + 0.187459i \(0.0600252\pi\)
−0.982272 + 0.187459i \(0.939975\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) − 0.732051i − 0.0894342i −0.999000 0.0447171i \(-0.985761\pi\)
0.999000 0.0447171i \(-0.0142386\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.19615 −0.972704 −0.486352 0.873763i \(-0.661673\pi\)
−0.486352 + 0.873763i \(0.661673\pi\)
\(72\) 0 0
\(73\) −7.46410 −0.873607 −0.436804 0.899557i \(-0.643889\pi\)
−0.436804 + 0.899557i \(0.643889\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) −5.46410 −0.614759 −0.307380 0.951587i \(-0.599452\pi\)
−0.307380 + 0.951587i \(0.599452\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.26795i 0.358704i 0.983785 + 0.179352i \(0.0574001\pi\)
−0.983785 + 0.179352i \(0.942600\pi\)
\(84\) 0 0
\(85\) 18.9282i 2.05305i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.3205 1.83597 0.917985 0.396615i \(-0.129815\pi\)
0.917985 + 0.396615i \(0.129815\pi\)
\(90\) 0 0
\(91\) 1.26795i 0.132917i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.53590 −0.260178
\(96\) 0 0
\(97\) 6.39230 0.649040 0.324520 0.945879i \(-0.394797\pi\)
0.324520 + 0.945879i \(0.394797\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.92820i 0.476427i 0.971213 + 0.238214i \(0.0765619\pi\)
−0.971213 + 0.238214i \(0.923438\pi\)
\(108\) 0 0
\(109\) − 2.00000i − 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.53590 −0.238557 −0.119279 0.992861i \(-0.538058\pi\)
−0.119279 + 0.992861i \(0.538058\pi\)
\(114\) 0 0
\(115\) − 13.8564i − 1.29212i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.92820 −0.635107
\(120\) 0 0
\(121\) −11.3923 −1.03566
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.8564i 1.73486i 0.497557 + 0.867431i \(0.334230\pi\)
−0.497557 + 0.867431i \(0.665770\pi\)
\(132\) 0 0
\(133\) − 0.928203i − 0.0804854i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.9282 −1.10453 −0.552265 0.833668i \(-0.686237\pi\)
−0.552265 + 0.833668i \(0.686237\pi\)
\(138\) 0 0
\(139\) 10.0000i 0.848189i 0.905618 + 0.424094i \(0.139408\pi\)
−0.905618 + 0.424094i \(0.860592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.73205 0.395714
\(144\) 0 0
\(145\) −6.92820 −0.575356
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.9282i 1.05912i 0.848273 + 0.529560i \(0.177643\pi\)
−0.848273 + 0.529560i \(0.822357\pi\)
\(150\) 0 0
\(151\) 7.12436 0.579772 0.289886 0.957061i \(-0.406383\pi\)
0.289886 + 0.957061i \(0.406383\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 23.3205i − 1.87315i
\(156\) 0 0
\(157\) − 16.9282i − 1.35102i −0.737352 0.675509i \(-0.763924\pi\)
0.737352 0.675509i \(-0.236076\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.07180 0.399714
\(162\) 0 0
\(163\) − 16.7321i − 1.31056i −0.755388 0.655278i \(-0.772552\pi\)
0.755388 0.655278i \(-0.227448\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.66025 −0.438004 −0.219002 0.975724i \(-0.570280\pi\)
−0.219002 + 0.975724i \(0.570280\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 6.92820i − 0.526742i −0.964695 0.263371i \(-0.915166\pi\)
0.964695 0.263371i \(-0.0848343\pi\)
\(174\) 0 0
\(175\) −8.87564 −0.670936
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 10.3923i − 0.776757i −0.921500 0.388379i \(-0.873035\pi\)
0.921500 0.388379i \(-0.126965\pi\)
\(180\) 0 0
\(181\) − 8.92820i − 0.663628i −0.943345 0.331814i \(-0.892339\pi\)
0.943345 0.331814i \(-0.107661\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −30.9282 −2.27389
\(186\) 0 0
\(187\) 25.8564i 1.89081i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.5359 −1.05178 −0.525890 0.850552i \(-0.676268\pi\)
−0.525890 + 0.850552i \(0.676268\pi\)
\(192\) 0 0
\(193\) −1.60770 −0.115724 −0.0578622 0.998325i \(-0.518428\pi\)
−0.0578622 + 0.998325i \(0.518428\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.07180i 0.218856i 0.993995 + 0.109428i \(0.0349020\pi\)
−0.993995 + 0.109428i \(0.965098\pi\)
\(198\) 0 0
\(199\) −16.7846 −1.18983 −0.594915 0.803789i \(-0.702814\pi\)
−0.594915 + 0.803789i \(0.702814\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 2.53590i − 0.177985i
\(204\) 0 0
\(205\) 30.9282i 2.16012i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) 7.85641i 0.540857i 0.962740 + 0.270429i \(0.0871654\pi\)
−0.962740 + 0.270429i \(0.912835\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.85641 0.126606
\(216\) 0 0
\(217\) 8.53590 0.579455
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 5.46410i − 0.367555i
\(222\) 0 0
\(223\) 0.196152 0.0131353 0.00656767 0.999978i \(-0.497909\pi\)
0.00656767 + 0.999978i \(0.497909\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.87564i 0.190863i 0.995436 + 0.0954316i \(0.0304231\pi\)
−0.995436 + 0.0954316i \(0.969577\pi\)
\(228\) 0 0
\(229\) − 5.32051i − 0.351589i −0.984427 0.175795i \(-0.943751\pi\)
0.984427 0.175795i \(-0.0562494\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.9282 −1.10900 −0.554502 0.832183i \(-0.687091\pi\)
−0.554502 + 0.832183i \(0.687091\pi\)
\(234\) 0 0
\(235\) − 23.3205i − 1.52126i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.7321 1.21168 0.605838 0.795588i \(-0.292838\pi\)
0.605838 + 0.795588i \(0.292838\pi\)
\(240\) 0 0
\(241\) −30.3923 −1.95774 −0.978870 0.204482i \(-0.934449\pi\)
−0.978870 + 0.204482i \(0.934449\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.6795i 1.19339i
\(246\) 0 0
\(247\) 0.732051 0.0465793
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.39230i 0.403479i 0.979439 + 0.201739i \(0.0646594\pi\)
−0.979439 + 0.201739i \(0.935341\pi\)
\(252\) 0 0
\(253\) − 18.9282i − 1.19001i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.8564 1.48812 0.744061 0.668112i \(-0.232897\pi\)
0.744061 + 0.668112i \(0.232897\pi\)
\(258\) 0 0
\(259\) − 11.3205i − 0.703422i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.3205 −1.68465 −0.842327 0.538966i \(-0.818815\pi\)
−0.842327 + 0.538966i \(0.818815\pi\)
\(264\) 0 0
\(265\) 10.1436 0.623116
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.85641i 0.479014i 0.970895 + 0.239507i \(0.0769857\pi\)
−0.970895 + 0.239507i \(0.923014\pi\)
\(270\) 0 0
\(271\) 20.1962 1.22683 0.613414 0.789761i \(-0.289796\pi\)
0.613414 + 0.789761i \(0.289796\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33.1244i 1.99747i
\(276\) 0 0
\(277\) 1.85641i 0.111541i 0.998444 + 0.0557703i \(0.0177615\pi\)
−0.998444 + 0.0557703i \(0.982239\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.32051 −0.556015 −0.278007 0.960579i \(-0.589674\pi\)
−0.278007 + 0.960579i \(0.589674\pi\)
\(282\) 0 0
\(283\) − 19.4641i − 1.15702i −0.815675 0.578510i \(-0.803634\pi\)
0.815675 0.578510i \(-0.196366\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.3205 −0.668228
\(288\) 0 0
\(289\) 12.8564 0.756259
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 32.9282i − 1.92369i −0.273602 0.961843i \(-0.588215\pi\)
0.273602 0.961843i \(-0.411785\pi\)
\(294\) 0 0
\(295\) −35.3205 −2.05644
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000i 0.231326i
\(300\) 0 0
\(301\) 0.679492i 0.0391653i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.1436 0.580820
\(306\) 0 0
\(307\) − 0.732051i − 0.0417803i −0.999782 0.0208902i \(-0.993350\pi\)
0.999782 0.0208902i \(-0.00665003\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.07180 0.0607760 0.0303880 0.999538i \(-0.490326\pi\)
0.0303880 + 0.999538i \(0.490326\pi\)
\(312\) 0 0
\(313\) 0.392305 0.0221744 0.0110872 0.999939i \(-0.496471\pi\)
0.0110872 + 0.999939i \(0.496471\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 3.46410i − 0.194563i −0.995257 0.0972817i \(-0.968985\pi\)
0.995257 0.0972817i \(-0.0310148\pi\)
\(318\) 0 0
\(319\) −9.46410 −0.529888
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) − 7.00000i − 0.388290i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.53590 0.470599
\(330\) 0 0
\(331\) − 17.5167i − 0.962803i −0.876500 0.481401i \(-0.840128\pi\)
0.876500 0.481401i \(-0.159872\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.53590 −0.138551
\(336\) 0 0
\(337\) 1.46410 0.0797547 0.0398773 0.999205i \(-0.487303\pi\)
0.0398773 + 0.999205i \(0.487303\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 31.8564i − 1.72512i
\(342\) 0 0
\(343\) −15.7128 −0.848412
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.07180i − 0.379634i −0.981819 0.189817i \(-0.939211\pi\)
0.981819 0.189817i \(-0.0607895\pi\)
\(348\) 0 0
\(349\) 9.60770i 0.514288i 0.966373 + 0.257144i \(0.0827815\pi\)
−0.966373 + 0.257144i \(0.917219\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.0718 0.589292 0.294646 0.955606i \(-0.404798\pi\)
0.294646 + 0.955606i \(0.404798\pi\)
\(354\) 0 0
\(355\) 28.3923i 1.50691i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.5167 1.66339 0.831693 0.555236i \(-0.187372\pi\)
0.831693 + 0.555236i \(0.187372\pi\)
\(360\) 0 0
\(361\) 18.4641 0.971795
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.8564i 1.35339i
\(366\) 0 0
\(367\) 22.2487 1.16137 0.580687 0.814127i \(-0.302784\pi\)
0.580687 + 0.814127i \(0.302784\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.71281i 0.192760i
\(372\) 0 0
\(373\) − 14.7846i − 0.765518i −0.923848 0.382759i \(-0.874974\pi\)
0.923848 0.382759i \(-0.125026\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) − 14.5885i − 0.749359i −0.927154 0.374679i \(-0.877753\pi\)
0.927154 0.374679i \(-0.122247\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.3397 −0.528336 −0.264168 0.964477i \(-0.585097\pi\)
−0.264168 + 0.964477i \(0.585097\pi\)
\(384\) 0 0
\(385\) −20.7846 −1.05928
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 2.00000i − 0.101404i −0.998714 0.0507020i \(-0.983854\pi\)
0.998714 0.0507020i \(-0.0161459\pi\)
\(390\) 0 0
\(391\) −21.8564 −1.10533
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.9282i 0.952381i
\(396\) 0 0
\(397\) − 4.53590i − 0.227650i −0.993501 0.113825i \(-0.963690\pi\)
0.993501 0.113825i \(-0.0363104\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.53590 −0.226512 −0.113256 0.993566i \(-0.536128\pi\)
−0.113256 + 0.993566i \(0.536128\pi\)
\(402\) 0 0
\(403\) 6.73205i 0.335347i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −42.2487 −2.09419
\(408\) 0 0
\(409\) 12.9282 0.639259 0.319629 0.947543i \(-0.396442\pi\)
0.319629 + 0.947543i \(0.396442\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 12.9282i − 0.636155i
\(414\) 0 0
\(415\) 11.3205 0.555702
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 30.7846i − 1.50393i −0.659205 0.751963i \(-0.729107\pi\)
0.659205 0.751963i \(-0.270893\pi\)
\(420\) 0 0
\(421\) 24.2487i 1.18181i 0.806741 + 0.590905i \(0.201229\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 38.2487 1.85534
\(426\) 0 0
\(427\) 3.71281i 0.179676i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.1244 1.88455 0.942277 0.334835i \(-0.108680\pi\)
0.942277 + 0.334835i \(0.108680\pi\)
\(432\) 0 0
\(433\) −6.78461 −0.326048 −0.163024 0.986622i \(-0.552125\pi\)
−0.163024 + 0.986622i \(0.552125\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.92820i − 0.140075i
\(438\) 0 0
\(439\) −2.92820 −0.139756 −0.0698778 0.997556i \(-0.522261\pi\)
−0.0698778 + 0.997556i \(0.522261\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 30.0000i − 1.42534i −0.701498 0.712672i \(-0.747485\pi\)
0.701498 0.712672i \(-0.252515\pi\)
\(444\) 0 0
\(445\) − 60.0000i − 2.84427i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.6077 −0.830959 −0.415479 0.909603i \(-0.636386\pi\)
−0.415479 + 0.909603i \(0.636386\pi\)
\(450\) 0 0
\(451\) 42.2487i 1.98941i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.39230 0.205914
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 20.9282i − 0.974724i −0.873200 0.487362i \(-0.837959\pi\)
0.873200 0.487362i \(-0.162041\pi\)
\(462\) 0 0
\(463\) −1.66025 −0.0771585 −0.0385793 0.999256i \(-0.512283\pi\)
−0.0385793 + 0.999256i \(0.512283\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.2487i 1.67739i 0.544601 + 0.838695i \(0.316681\pi\)
−0.544601 + 0.838695i \(0.683319\pi\)
\(468\) 0 0
\(469\) − 0.928203i − 0.0428604i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.53590 0.116601
\(474\) 0 0
\(475\) 5.12436i 0.235122i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.2679 0.971757 0.485879 0.874026i \(-0.338500\pi\)
0.485879 + 0.874026i \(0.338500\pi\)
\(480\) 0 0
\(481\) 8.92820 0.407091
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 22.1436i − 1.00549i
\(486\) 0 0
\(487\) 42.4449 1.92336 0.961680 0.274174i \(-0.0884043\pi\)
0.961680 + 0.274174i \(0.0884043\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 24.2487i − 1.09433i −0.837025 0.547165i \(-0.815707\pi\)
0.837025 0.547165i \(-0.184293\pi\)
\(492\) 0 0
\(493\) 10.9282i 0.492182i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.3923 −0.466159
\(498\) 0 0
\(499\) 7.26795i 0.325358i 0.986679 + 0.162679i \(0.0520135\pi\)
−0.986679 + 0.162679i \(0.947986\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.5359 1.36153 0.680764 0.732503i \(-0.261648\pi\)
0.680764 + 0.732503i \(0.261648\pi\)
\(504\) 0 0
\(505\) 41.5692 1.84981
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 14.3923i − 0.637928i −0.947767 0.318964i \(-0.896665\pi\)
0.947767 0.318964i \(-0.103335\pi\)
\(510\) 0 0
\(511\) −9.46410 −0.418667
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.0000i 1.05757i
\(516\) 0 0
\(517\) − 31.8564i − 1.40104i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.1769 1.10302 0.551510 0.834168i \(-0.314052\pi\)
0.551510 + 0.834168i \(0.314052\pi\)
\(522\) 0 0
\(523\) − 14.0000i − 0.612177i −0.952003 0.306089i \(-0.900980\pi\)
0.952003 0.306089i \(-0.0990204\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −36.7846 −1.60236
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 8.92820i − 0.386723i
\(534\) 0 0
\(535\) 17.0718 0.738078
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.5167i 1.09908i
\(540\) 0 0
\(541\) − 3.07180i − 0.132067i −0.997817 0.0660334i \(-0.978966\pi\)
0.997817 0.0660334i \(-0.0210344\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.92820 −0.296772
\(546\) 0 0
\(547\) 11.8564i 0.506943i 0.967343 + 0.253472i \(0.0815725\pi\)
−0.967343 + 0.253472i \(0.918428\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.46410 −0.0623728
\(552\) 0 0
\(553\) −6.92820 −0.294617
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 34.7846i − 1.47387i −0.675963 0.736936i \(-0.736272\pi\)
0.675963 0.736936i \(-0.263728\pi\)
\(558\) 0 0
\(559\) −0.535898 −0.0226661
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 7.46410i − 0.314574i −0.987553 0.157287i \(-0.949725\pi\)
0.987553 0.157287i \(-0.0502748\pi\)
\(564\) 0 0
\(565\) 8.78461i 0.369571i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) − 2.67949i − 0.112133i −0.998427 0.0560666i \(-0.982144\pi\)
0.998427 0.0560666i \(-0.0178559\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −28.0000 −1.16768
\(576\) 0 0
\(577\) −7.07180 −0.294403 −0.147201 0.989107i \(-0.547027\pi\)
−0.147201 + 0.989107i \(0.547027\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.14359i 0.171905i
\(582\) 0 0
\(583\) 13.8564 0.573874
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4.33975i − 0.179120i −0.995981 0.0895602i \(-0.971454\pi\)
0.995981 0.0895602i \(-0.0285462\pi\)
\(588\) 0 0
\(589\) − 4.92820i − 0.203063i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.85641 0.322624 0.161312 0.986903i \(-0.448427\pi\)
0.161312 + 0.986903i \(0.448427\pi\)
\(594\) 0 0
\(595\) 24.0000i 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.1769 −1.84588 −0.922939 0.384945i \(-0.874220\pi\)
−0.922939 + 0.384945i \(0.874220\pi\)
\(600\) 0 0
\(601\) −4.39230 −0.179166 −0.0895829 0.995979i \(-0.528553\pi\)
−0.0895829 + 0.995979i \(0.528553\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 39.4641i 1.60444i
\(606\) 0 0
\(607\) −7.32051 −0.297130 −0.148565 0.988903i \(-0.547465\pi\)
−0.148565 + 0.988903i \(0.547465\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.73205i 0.272350i
\(612\) 0 0
\(613\) 24.6410i 0.995241i 0.867395 + 0.497621i \(0.165793\pi\)
−0.867395 + 0.497621i \(0.834207\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −41.3205 −1.66350 −0.831751 0.555150i \(-0.812661\pi\)
−0.831751 + 0.555150i \(0.812661\pi\)
\(618\) 0 0
\(619\) 18.5885i 0.747133i 0.927603 + 0.373567i \(0.121865\pi\)
−0.927603 + 0.373567i \(0.878135\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.9615 0.879870
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 48.7846i 1.94517i
\(630\) 0 0
\(631\) 42.0526 1.67409 0.837043 0.547137i \(-0.184282\pi\)
0.837043 + 0.547137i \(0.184282\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 13.8564i − 0.549875i
\(636\) 0 0
\(637\) − 5.39230i − 0.213651i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.2487 0.878771 0.439386 0.898299i \(-0.355196\pi\)
0.439386 + 0.898299i \(0.355196\pi\)
\(642\) 0 0
\(643\) 12.7321i 0.502103i 0.967974 + 0.251052i \(0.0807764\pi\)
−0.967974 + 0.251052i \(0.919224\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.8564 1.48829 0.744144 0.668019i \(-0.232857\pi\)
0.744144 + 0.668019i \(0.232857\pi\)
\(648\) 0 0
\(649\) −48.2487 −1.89393
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.07180i 0.120209i 0.998192 + 0.0601043i \(0.0191433\pi\)
−0.998192 + 0.0601043i \(0.980857\pi\)
\(654\) 0 0
\(655\) 68.7846 2.68764
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 0 0
\(661\) 17.3205i 0.673690i 0.941560 + 0.336845i \(0.109360\pi\)
−0.941560 + 0.336845i \(0.890640\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.21539 −0.124687
\(666\) 0 0
\(667\) − 8.00000i − 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.8564 0.534921
\(672\) 0 0
\(673\) 33.1769 1.27888 0.639438 0.768843i \(-0.279167\pi\)
0.639438 + 0.768843i \(0.279167\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 21.0718i − 0.809855i −0.914349 0.404927i \(-0.867297\pi\)
0.914349 0.404927i \(-0.132703\pi\)
\(678\) 0 0
\(679\) 8.10512 0.311046
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 17.8038i − 0.681245i −0.940200 0.340623i \(-0.889362\pi\)
0.940200 0.340623i \(-0.110638\pi\)
\(684\) 0 0
\(685\) 44.7846i 1.71113i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.92820 −0.111556
\(690\) 0 0
\(691\) 32.8372i 1.24918i 0.780951 + 0.624592i \(0.214735\pi\)
−0.780951 + 0.624592i \(0.785265\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34.6410 1.31401
\(696\) 0 0
\(697\) 48.7846 1.84785
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.6410i 1.53499i 0.641055 + 0.767495i \(0.278497\pi\)
−0.641055 + 0.767495i \(0.721503\pi\)
\(702\) 0 0
\(703\) −6.53590 −0.246506
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.2154i 0.572234i
\(708\) 0 0
\(709\) 29.3205i 1.10115i 0.834784 + 0.550577i \(0.185592\pi\)
−0.834784 + 0.550577i \(0.814408\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 26.9282 1.00847
\(714\) 0 0
\(715\) − 16.3923i − 0.613037i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.9282 1.15343 0.576714 0.816946i \(-0.304335\pi\)
0.576714 + 0.816946i \(0.304335\pi\)
\(720\) 0 0
\(721\) −8.78461 −0.327156
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.0000i 0.519947i
\(726\) 0 0
\(727\) 22.9282 0.850360 0.425180 0.905109i \(-0.360211\pi\)
0.425180 + 0.905109i \(0.360211\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 2.92820i − 0.108304i
\(732\) 0 0
\(733\) 37.3205i 1.37846i 0.724541 + 0.689232i \(0.242052\pi\)
−0.724541 + 0.689232i \(0.757948\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.46410 −0.127602
\(738\) 0 0
\(739\) − 39.7654i − 1.46279i −0.681953 0.731396i \(-0.738869\pi\)
0.681953 0.731396i \(-0.261131\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −32.1962 −1.18116 −0.590581 0.806978i \(-0.701101\pi\)
−0.590581 + 0.806978i \(0.701101\pi\)
\(744\) 0 0
\(745\) 44.7846 1.64078
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.24871i 0.228323i
\(750\) 0 0
\(751\) −1.07180 −0.0391104 −0.0195552 0.999809i \(-0.506225\pi\)
−0.0195552 + 0.999809i \(0.506225\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 24.6795i − 0.898179i
\(756\) 0 0
\(757\) 40.7846i 1.48234i 0.671316 + 0.741171i \(0.265729\pi\)
−0.671316 + 0.741171i \(0.734271\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.7846 −0.680942 −0.340471 0.940255i \(-0.610586\pi\)
−0.340471 + 0.940255i \(0.610586\pi\)
\(762\) 0 0
\(763\) − 2.53590i − 0.0918057i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.1962 0.368162
\(768\) 0 0
\(769\) 31.4641 1.13462 0.567312 0.823503i \(-0.307983\pi\)
0.567312 + 0.823503i \(0.307983\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 27.4641i − 0.987815i −0.869514 0.493908i \(-0.835568\pi\)
0.869514 0.493908i \(-0.164432\pi\)
\(774\) 0 0
\(775\) −47.1244 −1.69276
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.53590i 0.234173i
\(780\) 0 0
\(781\) 38.7846i 1.38782i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −58.6410 −2.09299
\(786\) 0 0
\(787\) 29.1244i 1.03817i 0.854722 + 0.519086i \(0.173727\pi\)
−0.854722 + 0.519086i \(0.826273\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.21539 −0.114326
\(792\) 0 0
\(793\) −2.92820 −0.103984
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) −36.7846 −1.30135
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 35.3205i 1.24643i
\(804\) 0 0
\(805\) − 17.5692i − 0.619234i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.46410 0.192108 0.0960538 0.995376i \(-0.469378\pi\)
0.0960538 + 0.995376i \(0.469378\pi\)
\(810\) 0 0
\(811\) − 21.4115i − 0.751861i −0.926648 0.375930i \(-0.877323\pi\)
0.926648 0.375930i \(-0.122677\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −57.9615 −2.03030
\(816\) 0 0
\(817\) 0.392305 0.0137250
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.2487i 1.68389i 0.539562 + 0.841946i \(0.318590\pi\)
−0.539562 + 0.841946i \(0.681410\pi\)
\(822\) 0 0
\(823\) −20.0000 −0.697156 −0.348578 0.937280i \(-0.613335\pi\)
−0.348578 + 0.937280i \(0.613335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.73205i 0.303643i 0.988408 + 0.151822i \(0.0485139\pi\)
−0.988408 + 0.151822i \(0.951486\pi\)
\(828\) 0 0
\(829\) − 28.7846i − 0.999731i −0.866103 0.499865i \(-0.833383\pi\)
0.866103 0.499865i \(-0.166617\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 29.4641 1.02087
\(834\) 0 0
\(835\) 19.6077i 0.678552i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.9808 −0.724336 −0.362168 0.932113i \(-0.617963\pi\)
−0.362168 + 0.932113i \(0.617963\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.46410i 0.119169i
\(846\) 0 0
\(847\) −14.4449 −0.496331
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 35.7128i − 1.22422i
\(852\) 0 0
\(853\) − 55.1769i − 1.88922i −0.328193 0.944611i \(-0.606440\pi\)
0.328193 0.944611i \(-0.393560\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.85641 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(858\) 0 0
\(859\) − 18.0000i − 0.614152i −0.951685 0.307076i \(-0.900649\pi\)
0.951685 0.307076i \(-0.0993506\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.26795 0.0431615 0.0215807 0.999767i \(-0.493130\pi\)
0.0215807 + 0.999767i \(0.493130\pi\)
\(864\) 0 0
\(865\) −24.0000 −0.816024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 25.8564i 0.877119i
\(870\) 0 0
\(871\) 0.732051 0.0248046
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.78461i 0.296974i
\(876\) 0 0
\(877\) − 23.4641i − 0.792326i −0.918180 0.396163i \(-0.870341\pi\)
0.918180 0.396163i \(-0.129659\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 33.7128 1.13581 0.567907 0.823093i \(-0.307753\pi\)
0.567907 + 0.823093i \(0.307753\pi\)
\(882\) 0 0
\(883\) − 31.4641i − 1.05885i −0.848356 0.529426i \(-0.822407\pi\)
0.848356 0.529426i \(-0.177593\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.2487 1.01565 0.507826 0.861460i \(-0.330449\pi\)
0.507826 + 0.861460i \(0.330449\pi\)
\(888\) 0 0
\(889\) 5.07180 0.170103
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 4.92820i − 0.164916i
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 13.4641i − 0.449053i
\(900\) 0 0
\(901\) − 16.0000i − 0.533037i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −30.9282 −1.02809
\(906\) 0 0
\(907\) − 22.1051i − 0.733988i −0.930223 0.366994i \(-0.880387\pi\)
0.930223 0.366994i \(-0.119613\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.32051 0.110013 0.0550067 0.998486i \(-0.482482\pi\)
0.0550067 + 0.998486i \(0.482482\pi\)
\(912\) 0 0
\(913\) 15.4641 0.511787
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25.1769i 0.831415i
\(918\) 0 0
\(919\) 35.3205 1.16512 0.582558 0.812789i \(-0.302052\pi\)
0.582558 + 0.812789i \(0.302052\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 8.19615i − 0.269780i
\(924\) 0 0
\(925\) 62.4974i 2.05490i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20.5359 −0.673761 −0.336880 0.941547i \(-0.609372\pi\)
−0.336880 + 0.941547i \(0.609372\pi\)
\(930\) 0 0
\(931\) 3.94744i 0.129372i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 89.5692 2.92923
\(936\) 0 0
\(937\) −13.7128 −0.447978 −0.223989 0.974592i \(-0.571908\pi\)
−0.223989 + 0.974592i \(0.571908\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 32.2487i − 1.05128i −0.850708 0.525639i \(-0.823826\pi\)
0.850708 0.525639i \(-0.176174\pi\)
\(942\) 0 0
\(943\) −35.7128 −1.16297
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 48.4449i − 1.57425i −0.616796 0.787123i \(-0.711570\pi\)
0.616796 0.787123i \(-0.288430\pi\)
\(948\) 0 0
\(949\) − 7.46410i − 0.242295i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31.8564 1.03193 0.515965 0.856610i \(-0.327433\pi\)
0.515965 + 0.856610i \(0.327433\pi\)
\(954\) 0 0
\(955\) 50.3538i 1.62941i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.3923 −0.529335
\(960\) 0 0
\(961\) 14.3205 0.461952
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.56922i 0.179280i
\(966\) 0 0
\(967\) 8.98076 0.288802 0.144401 0.989519i \(-0.453875\pi\)
0.144401 + 0.989519i \(0.453875\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 16.1436i − 0.518073i −0.965868 0.259036i \(-0.916595\pi\)
0.965868 0.259036i \(-0.0834049\pi\)
\(972\) 0 0
\(973\) 12.6795i 0.406486i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.3923 1.86814 0.934068 0.357096i \(-0.116233\pi\)
0.934068 + 0.357096i \(0.116233\pi\)
\(978\) 0 0
\(979\) − 81.9615i − 2.61950i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.1962 0.516577 0.258289 0.966068i \(-0.416841\pi\)
0.258289 + 0.966068i \(0.416841\pi\)
\(984\) 0 0
\(985\) 10.6410 0.339051
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.14359i 0.0681623i
\(990\) 0 0
\(991\) 8.67949 0.275713 0.137857 0.990452i \(-0.455979\pi\)
0.137857 + 0.990452i \(0.455979\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 58.1436i 1.84328i
\(996\) 0 0
\(997\) 33.5692i 1.06315i 0.847012 + 0.531574i \(0.178399\pi\)
−0.847012 + 0.531574i \(0.821601\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.g.b.1873.1 4
3.2 odd 2 416.2.b.b.209.2 4
4.3 odd 2 936.2.g.b.469.4 4
8.3 odd 2 936.2.g.b.469.3 4
8.5 even 2 inner 3744.2.g.b.1873.3 4
12.11 even 2 104.2.b.b.53.1 4
24.5 odd 2 416.2.b.b.209.3 4
24.11 even 2 104.2.b.b.53.2 yes 4
48.5 odd 4 3328.2.a.m.1.1 2
48.11 even 4 3328.2.a.bd.1.1 2
48.29 odd 4 3328.2.a.bc.1.2 2
48.35 even 4 3328.2.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.b.53.1 4 12.11 even 2
104.2.b.b.53.2 yes 4 24.11 even 2
416.2.b.b.209.2 4 3.2 odd 2
416.2.b.b.209.3 4 24.5 odd 2
936.2.g.b.469.3 4 8.3 odd 2
936.2.g.b.469.4 4 4.3 odd 2
3328.2.a.m.1.1 2 48.5 odd 4
3328.2.a.n.1.2 2 48.35 even 4
3328.2.a.bc.1.2 2 48.29 odd 4
3328.2.a.bd.1.1 2 48.11 even 4
3744.2.g.b.1873.1 4 1.1 even 1 trivial
3744.2.g.b.1873.3 4 8.5 even 2 inner