Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3744,2,Mod(1873,3744)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3744.1873");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3744.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(29.8959905168\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 104) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1873.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3744.1873 |
Dual form | 3744.2.g.a.1873.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).
\(n\) | \(703\) | \(2017\) | \(2081\) | \(2341\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.00000i | 1.34164i | 0.741620 | + | 0.670820i | \(0.234058\pi\) | ||||
−0.741620 | + | 0.670820i | \(0.765942\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −3.00000 | −1.13389 | −0.566947 | − | 0.823754i | \(-0.691875\pi\) | ||||
−0.566947 | + | 0.823754i | \(0.691875\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 1.00000i | − 0.277350i | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 7.00000 | 1.69775 | 0.848875 | − | 0.528594i | \(-0.177281\pi\) | ||||
0.848875 | + | 0.528594i | \(0.177281\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 4.00000i | − 0.917663i | −0.888523 | − | 0.458831i | \(-0.848268\pi\) | ||||
0.888523 | − | 0.458831i | \(-0.151732\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.00000 | −0.800000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 4.00000i | − 0.742781i | −0.928477 | − | 0.371391i | \(-0.878881\pi\) | ||||
0.928477 | − | 0.371391i | \(-0.121119\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 9.00000i | − 1.52128i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 7.00000i | − 1.15079i | −0.817875 | − | 0.575396i | \(-0.804848\pi\) | ||||
0.817875 | − | 0.575396i | \(-0.195152\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −2.00000 | −0.312348 | −0.156174 | − | 0.987730i | \(-0.549916\pi\) | ||||
−0.156174 | + | 0.987730i | \(0.549916\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 1.00000i | − 0.152499i | −0.997089 | − | 0.0762493i | \(-0.975706\pi\) | ||||
0.997089 | − | 0.0762493i | \(-0.0242945\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −7.00000 | −1.02105 | −0.510527 | − | 0.859861i | \(-0.670550\pi\) | ||||
−0.510527 | + | 0.859861i | \(0.670550\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 2.00000 | 0.285714 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 4.00000i | 0.549442i | 0.961524 | + | 0.274721i | \(0.0885855\pi\) | ||||
−0.961524 | + | 0.274721i | \(0.911414\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 14.0000i | 1.82264i | 0.411693 | + | 0.911322i | \(0.364937\pi\) | ||||
−0.411693 | + | 0.911322i | \(0.635063\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000i | 1.28037i | 0.768221 | + | 0.640184i | \(0.221142\pi\) | ||||
−0.768221 | + | 0.640184i | \(0.778858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 3.00000 | 0.372104 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 2.00000i | 0.244339i | 0.992509 | + | 0.122169i | \(0.0389851\pi\) | ||||
−0.992509 | + | 0.122169i | \(0.961015\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −3.00000 | −0.356034 | −0.178017 | − | 0.984027i | \(-0.556968\pi\) | ||||
−0.178017 | + | 0.984027i | \(0.556968\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000 | 1.63858 | 0.819288 | − | 0.573382i | \(-0.194369\pi\) | ||||
0.819288 | + | 0.573382i | \(0.194369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 10.0000 | 1.12509 | 0.562544 | − | 0.826767i | \(-0.309823\pi\) | ||||
0.562544 | + | 0.826767i | \(0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 14.0000i | − 1.53670i | −0.640030 | − | 0.768350i | \(-0.721078\pi\) | ||||
0.640030 | − | 0.768350i | \(-0.278922\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 21.0000i | 2.27777i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 3.00000i | 0.314485i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 12.0000 | 1.23117 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 8.00000 | 0.812277 | 0.406138 | − | 0.913812i | \(-0.366875\pi\) | ||||
0.406138 | + | 0.913812i | \(0.366875\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 6.00000 | 0.591198 | 0.295599 | − | 0.955312i | \(-0.404481\pi\) | ||||
0.295599 | + | 0.955312i | \(0.404481\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 8.00000i | 0.773389i | 0.922208 | + | 0.386695i | \(0.126383\pi\) | ||||
−0.922208 | + | 0.386695i | \(0.873617\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 1.00000i | − 0.0957826i | −0.998853 | − | 0.0478913i | \(-0.984750\pi\) | ||||
0.998853 | − | 0.0478913i | \(-0.0152501\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 12.0000i | 1.11901i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −21.0000 | −1.92507 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 3.00000i | 0.268328i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −8.00000 | −0.709885 | −0.354943 | − | 0.934888i | \(-0.615500\pi\) | ||||
−0.354943 | + | 0.934888i | \(0.615500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 15.0000i | 1.31056i | 0.755388 | + | 0.655278i | \(0.227449\pi\) | ||||
−0.755388 | + | 0.655278i | \(0.772551\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 12.0000i | 1.04053i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000 | 1.02523 | 0.512615 | − | 0.858619i | \(-0.328677\pi\) | ||||
0.512615 | + | 0.858619i | \(0.328677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 11.0000i | 0.933008i | 0.884519 | + | 0.466504i | \(0.154487\pi\) | ||||
−0.884519 | + | 0.466504i | \(0.845513\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 12.0000 | 0.996546 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000i | 0.491539i | 0.969328 | + | 0.245770i | \(0.0790407\pi\) | ||||
−0.969328 | + | 0.245770i | \(0.920959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −17.0000 | −1.38344 | −0.691720 | − | 0.722166i | \(-0.743147\pi\) | ||||
−0.691720 | + | 0.722166i | \(0.743147\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 24.0000i | 1.92773i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 2.00000i | − 0.159617i | −0.996810 | − | 0.0798087i | \(-0.974569\pi\) | ||||
0.996810 | − | 0.0798087i | \(-0.0254309\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −12.0000 | −0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 24.0000i | 1.87983i | 0.341415 | + | 0.939913i | \(0.389094\pi\) | ||||
−0.341415 | + | 0.939913i | \(0.610906\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −1.00000 | −0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 6.00000i | − 0.456172i | −0.973641 | − | 0.228086i | \(-0.926753\pi\) | ||||
0.973641 | − | 0.228086i | \(-0.0732467\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 12.0000 | 0.907115 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 21.0000i | − 1.56961i | −0.619740 | − | 0.784807i | \(-0.712762\pi\) | ||||
0.619740 | − | 0.784807i | \(-0.287238\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − 10.0000i | − 0.743294i | −0.928374 | − | 0.371647i | \(-0.878793\pi\) | ||||
0.928374 | − | 0.371647i | \(-0.121207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 21.0000 | 1.54395 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 12.0000 | 0.868290 | 0.434145 | − | 0.900843i | \(-0.357051\pi\) | ||||
0.434145 | + | 0.900843i | \(0.357051\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −6.00000 | −0.431889 | −0.215945 | − | 0.976406i | \(-0.569283\pi\) | ||||
−0.215945 | + | 0.976406i | \(0.569283\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 17.0000i | 1.21120i | 0.795769 | + | 0.605600i | \(0.207067\pi\) | ||||
−0.795769 | + | 0.605600i | \(0.792933\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 10.0000 | 0.708881 | 0.354441 | − | 0.935079i | \(-0.384671\pi\) | ||||
0.354441 | + | 0.935079i | \(0.384671\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 12.0000i | 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | − 6.00000i | − 0.419058i | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − 15.0000i | − 1.03264i | −0.856395 | − | 0.516321i | \(-0.827301\pi\) | ||||
0.856395 | − | 0.516321i | \(-0.172699\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 3.00000 | 0.204598 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −24.0000 | −1.62923 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | − 7.00000i | − 0.470871i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 1.00000 | 0.0669650 | 0.0334825 | − | 0.999439i | \(-0.489340\pi\) | ||||
0.0334825 | + | 0.999439i | \(0.489340\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 18.0000i | 1.19470i | 0.801980 | + | 0.597351i | \(0.203780\pi\) | ||||
−0.801980 | + | 0.597351i | \(0.796220\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − 21.0000i | − 1.38772i | −0.720110 | − | 0.693860i | \(-0.755909\pi\) | ||||
0.720110 | − | 0.693860i | \(-0.244091\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −19.0000 | −1.24473 | −0.622366 | − | 0.782727i | \(-0.713828\pi\) | ||||
−0.622366 | + | 0.782727i | \(0.713828\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | − 21.0000i | − 1.36989i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 5.00000 | 0.323423 | 0.161712 | − | 0.986838i | \(-0.448299\pi\) | ||||
0.161712 | + | 0.986838i | \(0.448299\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −8.00000 | −0.515325 | −0.257663 | − | 0.966235i | \(-0.582952\pi\) | ||||
−0.257663 | + | 0.966235i | \(0.582952\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 6.00000i | 0.383326i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.00000 | −0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | − 20.0000i | − 1.26239i | −0.775625 | − | 0.631194i | \(-0.782565\pi\) | ||||
0.775625 | − | 0.631194i | \(-0.217435\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 7.00000 | 0.436648 | 0.218324 | − | 0.975876i | \(-0.429941\pi\) | ||||
0.218324 | + | 0.975876i | \(0.429941\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 21.0000i | 1.30488i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 14.0000 | 0.863277 | 0.431638 | − | 0.902047i | \(-0.357936\pi\) | ||||
0.431638 | + | 0.902047i | \(0.357936\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −12.0000 | −0.737154 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6.00000i | 0.365826i | 0.983129 | + | 0.182913i | \(0.0585527\pi\) | ||||
−0.983129 | + | 0.182913i | \(0.941447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 3.00000 | 0.182237 | 0.0911185 | − | 0.995840i | \(-0.470956\pi\) | ||||
0.0911185 | + | 0.995840i | \(0.470956\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 18.0000i | 1.08152i | 0.841178 | + | 0.540758i | \(0.181862\pi\) | ||||
−0.841178 | + | 0.540758i | \(0.818138\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 8.00000 | 0.477240 | 0.238620 | − | 0.971113i | \(-0.423305\pi\) | ||||
0.238620 | + | 0.971113i | \(0.423305\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000i | 0.237775i | 0.992908 | + | 0.118888i | \(0.0379328\pi\) | ||||
−0.992908 | + | 0.118888i | \(0.962067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000 | 0.354169 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 32.0000 | 1.88235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 1.00000i | − 0.0584206i | −0.999573 | − | 0.0292103i | \(-0.990701\pi\) | ||||
0.999573 | − | 0.0292103i | \(-0.00929925\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −42.0000 | −2.44533 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 4.00000i | − 0.231326i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 3.00000i | 0.172917i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −30.0000 | −1.71780 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.00000i | 0.114146i | 0.998370 | + | 0.0570730i | \(0.0181768\pi\) | ||||
−0.998370 | + | 0.0570730i | \(0.981823\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 32.0000 | 1.81455 | 0.907277 | − | 0.420534i | \(-0.138157\pi\) | ||||
0.907277 | + | 0.420534i | \(0.138157\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 29.0000 | 1.63918 | 0.819588 | − | 0.572953i | \(-0.194202\pi\) | ||||
0.819588 | + | 0.572953i | \(0.194202\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 28.0000i | − 1.55796i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 4.00000i | 0.221880i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 21.0000 | 1.15777 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 10.0000i | 0.549650i | 0.961494 | + | 0.274825i | \(0.0886199\pi\) | ||||
−0.961494 | + | 0.274825i | \(0.911380\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −6.00000 | −0.327815 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −17.0000 | −0.926049 | −0.463025 | − | 0.886345i | \(-0.653236\pi\) | ||||
−0.463025 | + | 0.886345i | \(0.653236\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 15.0000 | 0.809924 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 7.00000i | − 0.375780i | −0.982190 | − | 0.187890i | \(-0.939835\pi\) | ||||
0.982190 | − | 0.187890i | \(-0.0601648\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 19.0000i | 1.01705i | 0.861048 | + | 0.508523i | \(0.169808\pi\) | ||||
−0.861048 | + | 0.508523i | \(0.830192\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 6.00000 | 0.319348 | 0.159674 | − | 0.987170i | \(-0.448956\pi\) | ||||
0.159674 | + | 0.987170i | \(0.448956\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | − 9.00000i | − 0.477670i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 3.00000 | 0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 42.0000i | 2.19838i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 22.0000 | 1.14839 | 0.574195 | − | 0.818718i | \(-0.305315\pi\) | ||||
0.574195 | + | 0.818718i | \(0.305315\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 12.0000i | − 0.623009i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 36.0000i | 1.86401i | 0.362446 | + | 0.932005i | \(0.381942\pi\) | ||||
−0.362446 | + | 0.932005i | \(0.618058\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −4.00000 | −0.206010 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 4.00000i | − 0.205466i | −0.994709 | − | 0.102733i | \(-0.967241\pi\) | ||||
0.994709 | − | 0.102733i | \(-0.0327588\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −1.00000 | −0.0510976 | −0.0255488 | − | 0.999674i | \(-0.508133\pi\) | ||||
−0.0255488 | + | 0.999674i | \(0.508133\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 34.0000i | − 1.72387i | −0.507020 | − | 0.861934i | \(-0.669253\pi\) | ||||
0.507020 | − | 0.861934i | \(-0.330747\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 28.0000 | 1.41602 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 30.0000i | 1.50946i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 22.0000i | − 1.10415i | −0.833795 | − | 0.552074i | \(-0.813837\pi\) | ||||
0.833795 | − | 0.552074i | \(-0.186163\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −32.0000 | −1.59800 | −0.799002 | − | 0.601329i | \(-0.794638\pi\) | ||||
−0.799002 | + | 0.601329i | \(0.794638\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 8.00000i | − 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 42.0000i | − 2.06668i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 42.0000 | 2.06170 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 11.0000i | − 0.537385i | −0.963226 | − | 0.268693i | \(-0.913408\pi\) | ||||
0.963226 | − | 0.268693i | \(-0.0865916\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − 15.0000i | − 0.731055i | −0.930800 | − | 0.365528i | \(-0.880889\pi\) | ||||
0.930800 | − | 0.365528i | \(-0.119111\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −28.0000 | −1.35820 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 30.0000i | − 1.45180i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −3.00000 | −0.144505 | −0.0722525 | − | 0.997386i | \(-0.523019\pi\) | ||||
−0.0722525 | + | 0.997386i | \(0.523019\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −1.00000 | −0.0480569 | −0.0240285 | − | 0.999711i | \(-0.507649\pi\) | ||||
−0.0240285 | + | 0.999711i | \(0.507649\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 16.0000i | − 0.765384i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 10.0000 | 0.477274 | 0.238637 | − | 0.971109i | \(-0.423299\pi\) | ||||
0.238637 | + | 0.971109i | \(0.423299\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 9.00000i | − 0.427603i | −0.976877 | − | 0.213801i | \(-0.931415\pi\) | ||||
0.976877 | − | 0.213801i | \(-0.0685846\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 20.0000 | 0.943858 | 0.471929 | − | 0.881636i | \(-0.343558\pi\) | ||||
0.471929 | + | 0.881636i | \(0.343558\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −9.00000 | −0.421927 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −32.0000 | −1.49690 | −0.748448 | − | 0.663193i | \(-0.769201\pi\) | ||||
−0.748448 | + | 0.663193i | \(0.769201\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 5.00000i | 0.232873i | 0.993198 | + | 0.116437i | \(0.0371472\pi\) | ||||
−0.993198 | + | 0.116437i | \(0.962853\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 16.0000 | 0.743583 | 0.371792 | − | 0.928316i | \(-0.378744\pi\) | ||||
0.371792 | + | 0.928316i | \(0.378744\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 12.0000i | − 0.555294i | −0.960683 | − | 0.277647i | \(-0.910445\pi\) | ||||
0.960683 | − | 0.277647i | \(-0.0895545\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | − 6.00000i | − 0.277054i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 16.0000i | 0.734130i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 5.00000 | 0.228456 | 0.114228 | − | 0.993455i | \(-0.463561\pi\) | ||||
0.114228 | + | 0.993455i | \(0.463561\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −7.00000 | −0.319173 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 24.0000i | 1.08978i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −8.00000 | −0.362515 | −0.181257 | − | 0.983436i | \(-0.558017\pi\) | ||||
−0.181257 | + | 0.983436i | \(0.558017\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − 15.0000i | − 0.676941i | −0.940977 | − | 0.338470i | \(-0.890091\pi\) | ||||
0.940977 | − | 0.338470i | \(-0.109909\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 28.0000i | − 1.26106i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 9.00000 | 0.403705 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 6.00000i | 0.268597i | 0.990941 | + | 0.134298i | \(0.0428781\pi\) | ||||
−0.990941 | + | 0.134298i | \(0.957122\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 4.00000 | 0.178351 | 0.0891756 | − | 0.996016i | \(-0.471577\pi\) | ||||
0.0891756 | + | 0.996016i | \(0.471577\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 14.0000i | − 0.620539i | −0.950649 | − | 0.310270i | \(-0.899581\pi\) | ||||
0.950649 | − | 0.310270i | \(-0.100419\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −42.0000 | −1.85797 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 18.0000i | 0.793175i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 3.00000 | 0.131432 | 0.0657162 | − | 0.997838i | \(-0.479067\pi\) | ||||
0.0657162 | + | 0.997838i | \(0.479067\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 44.0000i | 1.92399i | 0.273075 | + | 0.961993i | \(0.411959\pi\) | ||||
−0.273075 | + | 0.961993i | \(0.588041\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 56.0000 | 2.43940 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 2.00000i | 0.0866296i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −24.0000 | −1.03761 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 25.0000i | 1.07483i | 0.843317 | + | 0.537417i | \(0.180600\pi\) | ||||
−0.843317 | + | 0.537417i | \(0.819400\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 3.00000 | 0.128506 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 13.0000i | − 0.555840i | −0.960604 | − | 0.277920i | \(-0.910355\pi\) | ||||
0.960604 | − | 0.277920i | \(-0.0896450\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −16.0000 | −0.681623 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −30.0000 | −1.27573 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 13.0000i | − 0.550828i | −0.961326 | − | 0.275414i | \(-0.911185\pi\) | ||||
0.961326 | − | 0.275414i | \(-0.0888149\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −1.00000 | −0.0422955 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 31.0000i | 1.30649i | 0.757145 | + | 0.653247i | \(0.226594\pi\) | ||||
−0.757145 | + | 0.653247i | \(0.773406\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 18.0000i | 0.757266i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −25.0000 | −1.04805 | −0.524027 | − | 0.851701i | \(-0.675571\pi\) | ||||
−0.524027 | + | 0.851701i | \(0.675571\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 5.00000i | 0.209243i | 0.994512 | + | 0.104622i | \(0.0333632\pi\) | ||||
−0.994512 | + | 0.104622i | \(0.966637\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −16.0000 | −0.667246 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −2.00000 | −0.0832611 | −0.0416305 | − | 0.999133i | \(-0.513255\pi\) | ||||
−0.0416305 | + | 0.999133i | \(0.513255\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 42.0000i | 1.74245i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 28.0000i | 1.15568i | 0.816149 | + | 0.577842i | \(0.196105\pi\) | ||||
−0.816149 | + | 0.577842i | \(0.803895\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | − 32.0000i | − 1.31854i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −24.0000 | −0.985562 | −0.492781 | − | 0.870153i | \(-0.664020\pi\) | ||||
−0.492781 | + | 0.870153i | \(0.664020\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | − 63.0000i | − 2.58275i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 10.0000 | 0.408589 | 0.204294 | − | 0.978909i | \(-0.434510\pi\) | ||||
0.204294 | + | 0.978909i | \(0.434510\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 27.0000 | 1.10135 | 0.550676 | − | 0.834719i | \(-0.314370\pi\) | ||||
0.550676 | + | 0.834719i | \(0.314370\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 33.0000i | 1.34164i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 22.0000 | 0.892952 | 0.446476 | − | 0.894795i | \(-0.352679\pi\) | ||||
0.446476 | + | 0.894795i | \(0.352679\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 7.00000i | 0.283190i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 14.0000i | − 0.565455i | −0.959200 | − | 0.282727i | \(-0.908761\pi\) | ||||
0.959200 | − | 0.282727i | \(-0.0912392\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 12.0000 | 0.483102 | 0.241551 | − | 0.970388i | \(-0.422344\pi\) | ||||
0.241551 | + | 0.970388i | \(0.422344\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 6.00000i | 0.241160i | 0.992704 | + | 0.120580i | \(0.0384755\pi\) | ||||
−0.992704 | + | 0.120580i | \(0.961525\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −29.0000 | −1.16000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 49.0000i | − 1.95376i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 23.0000 | 0.915616 | 0.457808 | − | 0.889051i | \(-0.348635\pi\) | ||||
0.457808 | + | 0.889051i | \(0.348635\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 24.0000i | − 0.952411i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 2.00000i | − 0.0792429i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −2.00000 | −0.0789953 | −0.0394976 | − | 0.999220i | \(-0.512576\pi\) | ||||
−0.0394976 | + | 0.999220i | \(0.512576\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 26.0000i | − 1.02534i | −0.858586 | − | 0.512670i | \(-0.828656\pi\) | ||||
0.858586 | − | 0.512670i | \(-0.171344\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 18.0000 | 0.707653 | 0.353827 | − | 0.935311i | \(-0.384880\pi\) | ||||
0.353827 | + | 0.935311i | \(0.384880\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 44.0000i | 1.72185i | 0.508729 | + | 0.860927i | \(0.330115\pi\) | ||||
−0.508729 | + | 0.860927i | \(0.669885\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −45.0000 | −1.75830 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 4.00000i | 0.155818i | 0.996960 | + | 0.0779089i | \(0.0248243\pi\) | ||||
−0.996960 | + | 0.0779089i | \(0.975176\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 30.0000i | − 1.16686i | −0.812162 | − | 0.583432i | \(-0.801709\pi\) | ||||
0.812162 | − | 0.583432i | \(-0.198291\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −36.0000 | −1.39602 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 16.0000i | − 0.619522i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 29.0000 | 1.11787 | 0.558934 | − | 0.829212i | \(-0.311211\pi\) | ||||
0.558934 | + | 0.829212i | \(0.311211\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 22.0000i | 0.845529i | 0.906240 | + | 0.422764i | \(0.138940\pi\) | ||||
−0.906240 | + | 0.422764i | \(0.861060\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −24.0000 | −0.921035 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 26.0000i | 0.994862i | 0.867503 | + | 0.497431i | \(0.165723\pi\) | ||||
−0.867503 | + | 0.497431i | \(0.834277\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 36.0000i | 1.37549i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 4.00000 | 0.152388 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 20.0000i | − 0.760836i | −0.924815 | − | 0.380418i | \(-0.875780\pi\) | ||||
0.924815 | − | 0.380418i | \(-0.124220\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −33.0000 | −1.25176 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −14.0000 | −0.530288 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −28.0000 | −1.05604 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 6.00000i | − 0.225335i | −0.993633 | − | 0.112667i | \(-0.964061\pi\) | ||||
0.993633 | − | 0.112667i | \(-0.0359394\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 32.0000 | 1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −30.0000 | −1.11881 | −0.559406 | − | 0.828894i | \(-0.688971\pi\) | ||||
−0.559406 | + | 0.828894i | \(0.688971\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −18.0000 | −0.670355 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 16.0000i | 0.594225i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −8.00000 | −0.296704 | −0.148352 | − | 0.988935i | \(-0.547397\pi\) | ||||
−0.148352 | + | 0.988935i | \(0.547397\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 7.00000i | − 0.258904i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 1.00000i | 0.0369358i | 0.999829 | + | 0.0184679i | \(0.00587886\pi\) | ||||
−0.999829 | + | 0.0184679i | \(0.994121\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 34.0000i | − 1.25071i | −0.780340 | − | 0.625355i | \(-0.784954\pi\) | ||||
0.780340 | − | 0.625355i | \(-0.215046\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −21.0000 | −0.770415 | −0.385208 | − | 0.922830i | \(-0.625870\pi\) | ||||
−0.385208 | + | 0.922830i | \(0.625870\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −18.0000 | −0.659469 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 24.0000i | − 0.876941i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −2.00000 | −0.0729810 | −0.0364905 | − | 0.999334i | \(-0.511618\pi\) | ||||
−0.0364905 | + | 0.999334i | \(0.511618\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 51.0000i | − 1.85608i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 32.0000i | − 1.16306i | −0.813525 | − | 0.581530i | \(-0.802454\pi\) | ||||
0.813525 | − | 0.581530i | \(-0.197546\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −22.0000 | −0.797499 | −0.398750 | − | 0.917060i | \(-0.630556\pi\) | ||||
−0.398750 | + | 0.917060i | \(0.630556\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 3.00000i | 0.108607i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 14.0000 | 0.505511 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −20.0000 | −0.721218 | −0.360609 | − | 0.932717i | \(-0.617431\pi\) | ||||
−0.360609 | + | 0.932717i | \(0.617431\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 21.0000i | − 0.755318i | −0.925945 | − | 0.377659i | \(-0.876729\pi\) | ||||
0.925945 | − | 0.377659i | \(-0.123271\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −32.0000 | −1.14947 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 8.00000i | 0.286630i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 6.00000 | 0.214149 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 22.0000i | 0.784215i | 0.919919 | + | 0.392108i | \(0.128254\pi\) | ||||
−0.919919 | + | 0.392108i | \(0.871746\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −18.0000 | −0.640006 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 10.0000 | 0.355110 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000i | 0.425062i | 0.977154 | + | 0.212531i | \(0.0681706\pi\) | ||||
−0.977154 | + | 0.212531i | \(0.931829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −49.0000 | −1.73350 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | − 36.0000i | − 1.26883i | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −25.0000 | −0.878953 | −0.439477 | − | 0.898254i | \(-0.644836\pi\) | ||||
−0.439477 | + | 0.898254i | \(0.644836\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 40.0000i | 1.40459i | 0.711886 | + | 0.702295i | \(0.247841\pi\) | ||||
−0.711886 | + | 0.702295i | \(0.752159\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −72.0000 | −2.52205 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −4.00000 | −0.139942 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 45.0000i | − 1.57051i | −0.619172 | − | 0.785255i | \(-0.712532\pi\) | ||||
0.619172 | − | 0.785255i | \(-0.287468\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 46.0000 | 1.60346 | 0.801730 | − | 0.597687i | \(-0.203913\pi\) | ||||
0.801730 | + | 0.597687i | \(0.203913\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 8.00000i | 0.278187i | 0.990279 | + | 0.139094i | \(0.0444189\pi\) | ||||
−0.990279 | + | 0.139094i | \(0.955581\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 14.0000i | 0.486240i | 0.969996 | + | 0.243120i | \(0.0781709\pi\) | ||||
−0.969996 | + | 0.243120i | \(0.921829\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | − 36.0000i | − 1.24583i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −40.0000 | −1.38095 | −0.690477 | − | 0.723355i | \(-0.742599\pi\) | ||||
−0.690477 | + | 0.723355i | \(0.742599\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 13.0000 | 0.448276 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | − 3.00000i | − 0.103203i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −33.0000 | −1.13389 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 28.0000i | − 0.959828i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 9.00000i | − 0.308154i | −0.988059 | − | 0.154077i | \(-0.950760\pi\) | ||||
0.988059 | − | 0.154077i | \(-0.0492404\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 42.0000 | 1.43469 | 0.717346 | − | 0.696717i | \(-0.245357\pi\) | ||||
0.717346 | + | 0.696717i | \(0.245357\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 36.0000i | 1.22830i | 0.789188 | + | 0.614152i | \(0.210502\pi\) | ||||
−0.789188 | + | 0.614152i | \(0.789498\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −51.0000 | −1.73606 | −0.868030 | − | 0.496512i | \(-0.834614\pi\) | ||||
−0.868030 | + | 0.496512i | \(0.834614\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 18.0000 | 0.612018 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 2.00000 | 0.0677674 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | − 9.00000i | − 0.304256i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 7.00000i | − 0.236373i | −0.992991 | − | 0.118187i | \(-0.962292\pi\) | ||||
0.992991 | − | 0.118187i | \(-0.0377081\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 3.00000 | 0.101073 | 0.0505363 | − | 0.998722i | \(-0.483907\pi\) | ||||
0.0505363 | + | 0.998722i | \(0.483907\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 41.0000i | − 1.37976i | −0.723924 | − | 0.689880i | \(-0.757663\pi\) | ||||
0.723924 | − | 0.689880i | \(-0.242337\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 18.0000 | 0.604381 | 0.302190 | − | 0.953248i | \(-0.402282\pi\) | ||||
0.302190 | + | 0.953248i | \(0.402282\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 24.0000 | 0.804934 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 28.0000i | 0.936984i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 63.0000 | 2.10586 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 32.0000i | − 1.06726i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 28.0000i | 0.932815i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 30.0000 | 0.997234 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 13.0000i | − 0.431658i | −0.976431 | − | 0.215829i | \(-0.930755\pi\) | ||||
0.976431 | − | 0.215829i | \(-0.0692454\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −8.00000 | −0.265052 | −0.132526 | − | 0.991180i | \(-0.542309\pi\) | ||||
−0.132526 | + | 0.991180i | \(0.542309\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 45.0000i | − 1.48603i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −60.0000 | −1.97922 | −0.989609 | − | 0.143787i | \(-0.954072\pi\) | ||||
−0.989609 | + | 0.143787i | \(0.954072\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 3.00000i | 0.0987462i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 28.0000i | 0.920634i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 8.00000i | − 0.262189i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.0000 | −0.718709 | −0.359354 | − | 0.933201i | \(-0.617003\pi\) | ||||
−0.359354 | + | 0.933201i | \(0.617003\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 25.0000i | − 0.814977i | −0.913210 | − | 0.407488i | \(-0.866405\pi\) | ||||
0.913210 | − | 0.407488i | \(-0.133595\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −8.00000 | −0.260516 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 32.0000i | − 1.03986i | −0.854209 | − | 0.519930i | \(-0.825958\pi\) | ||||
0.854209 | − | 0.519930i | \(-0.174042\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | − 14.0000i | − 0.454459i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −9.00000 | −0.291539 | −0.145769 | − | 0.989319i | \(-0.546566\pi\) | ||||
−0.145769 | + | 0.989319i | \(0.546566\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 36.0000i | 1.16493i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −36.0000 | −1.16250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 18.0000i | − 0.579441i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 7.00000 | 0.225105 | 0.112552 | − | 0.993646i | \(-0.464097\pi\) | ||||
0.112552 | + | 0.993646i | \(0.464097\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 15.0000i | 0.481373i | 0.970603 | + | 0.240686i | \(0.0773725\pi\) | ||||
−0.970603 | + | 0.240686i | \(0.922627\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 33.0000i | − 1.05793i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −18.0000 | −0.575871 | −0.287936 | − | 0.957650i | \(-0.592969\pi\) | ||||
−0.287936 | + | 0.957650i | \(0.592969\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 59.0000 | 1.88181 | 0.940904 | − | 0.338674i | \(-0.109978\pi\) | ||||
0.940904 | + | 0.338674i | \(0.109978\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −51.0000 | −1.62500 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 4.00000i | − 0.127193i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 8.00000 | 0.254128 | 0.127064 | − | 0.991894i | \(-0.459445\pi\) | ||||
0.127064 | + | 0.991894i | \(0.459445\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 30.0000i | 0.951064i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 52.0000i | − 1.64686i | −0.567420 | − | 0.823428i | \(-0.692059\pi\) | ||||
0.567420 | − | 0.823428i | \(-0.307941\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3744.2.g.a.1873.2 | 2 | ||
3.2 | odd | 2 | 416.2.b.a.209.1 | 2 | |||
4.3 | odd | 2 | 936.2.g.a.469.2 | 2 | |||
8.3 | odd | 2 | 936.2.g.a.469.1 | 2 | |||
8.5 | even | 2 | inner | 3744.2.g.a.1873.1 | 2 | ||
12.11 | even | 2 | 104.2.b.a.53.1 | ✓ | 2 | ||
24.5 | odd | 2 | 416.2.b.a.209.2 | 2 | |||
24.11 | even | 2 | 104.2.b.a.53.2 | yes | 2 | ||
48.5 | odd | 4 | 3328.2.a.f.1.1 | 1 | |||
48.11 | even | 4 | 3328.2.a.j.1.1 | 1 | |||
48.29 | odd | 4 | 3328.2.a.g.1.1 | 1 | |||
48.35 | even | 4 | 3328.2.a.c.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
104.2.b.a.53.1 | ✓ | 2 | 12.11 | even | 2 | ||
104.2.b.a.53.2 | yes | 2 | 24.11 | even | 2 | ||
416.2.b.a.209.1 | 2 | 3.2 | odd | 2 | |||
416.2.b.a.209.2 | 2 | 24.5 | odd | 2 | |||
936.2.g.a.469.1 | 2 | 8.3 | odd | 2 | |||
936.2.g.a.469.2 | 2 | 4.3 | odd | 2 | |||
3328.2.a.c.1.1 | 1 | 48.35 | even | 4 | |||
3328.2.a.f.1.1 | 1 | 48.5 | odd | 4 | |||
3328.2.a.g.1.1 | 1 | 48.29 | odd | 4 | |||
3328.2.a.j.1.1 | 1 | 48.11 | even | 4 | |||
3744.2.g.a.1873.1 | 2 | 8.5 | even | 2 | inner | ||
3744.2.g.a.1873.2 | 2 | 1.1 | even | 1 | trivial |