Properties

Label 3744.2.a.q.1.2
Level $3744$
Weight $2$
Character 3744.1
Self dual yes
Analytic conductor $29.896$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 3744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{5} +2.23607 q^{7} +O(q^{10})\) \(q-3.00000 q^{5} +2.23607 q^{7} +4.47214 q^{11} -1.00000 q^{13} +3.00000 q^{17} -4.47214 q^{19} +8.94427 q^{23} +4.00000 q^{25} -10.0000 q^{29} -6.70820 q^{35} +3.00000 q^{37} +6.70820 q^{43} -2.23607 q^{47} -2.00000 q^{49} -4.00000 q^{53} -13.4164 q^{55} +4.47214 q^{59} +3.00000 q^{65} +13.4164 q^{67} -6.70820 q^{71} +14.0000 q^{73} +10.0000 q^{77} -8.94427 q^{79} -17.8885 q^{83} -9.00000 q^{85} +10.0000 q^{89} -2.23607 q^{91} +13.4164 q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{5} - 2 q^{13} + 6 q^{17} + 8 q^{25} - 20 q^{29} + 6 q^{37} - 4 q^{49} - 8 q^{53} + 6 q^{65} + 28 q^{73} + 20 q^{77} - 18 q^{85} + 20 q^{89} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 2.23607 0.845154 0.422577 0.906327i \(-0.361126\pi\)
0.422577 + 0.906327i \(0.361126\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.47214 1.34840 0.674200 0.738549i \(-0.264489\pi\)
0.674200 + 0.738549i \(0.264489\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −4.47214 −1.02598 −0.512989 0.858395i \(-0.671462\pi\)
−0.512989 + 0.858395i \(0.671462\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.94427 1.86501 0.932505 0.361158i \(-0.117618\pi\)
0.932505 + 0.361158i \(0.117618\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.70820 −1.13389
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.23607 −0.326164 −0.163082 0.986613i \(-0.552144\pi\)
−0.163082 + 0.986613i \(0.552144\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −13.4164 −1.80907
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.47214 0.582223 0.291111 0.956689i \(-0.405975\pi\)
0.291111 + 0.956689i \(0.405975\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) 13.4164 1.63908 0.819538 0.573025i \(-0.194230\pi\)
0.819538 + 0.573025i \(0.194230\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.70820 −0.796117 −0.398059 0.917360i \(-0.630316\pi\)
−0.398059 + 0.917360i \(0.630316\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.0000 1.13961
\(78\) 0 0
\(79\) −8.94427 −1.00631 −0.503155 0.864196i \(-0.667827\pi\)
−0.503155 + 0.864196i \(0.667827\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.8885 −1.96352 −0.981761 0.190117i \(-0.939113\pi\)
−0.981761 + 0.190117i \(0.939113\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −2.23607 −0.234404
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13.4164 1.37649
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.8885 1.72935 0.864675 0.502331i \(-0.167524\pi\)
0.864675 + 0.502331i \(0.167524\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) −26.8328 −2.50217
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.70820 0.614940
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.6525 −1.36756 −0.683782 0.729687i \(-0.739666\pi\)
−0.683782 + 0.729687i \(0.739666\pi\)
\(132\) 0 0
\(133\) −10.0000 −0.867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −11.1803 −0.948304 −0.474152 0.880443i \(-0.657245\pi\)
−0.474152 + 0.880443i \(0.657245\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.47214 −0.373979
\(144\) 0 0
\(145\) 30.0000 2.49136
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 6.70820 0.545906 0.272953 0.962027i \(-0.412000\pi\)
0.272953 + 0.962027i \(0.412000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.0000 1.57622
\(162\) 0 0
\(163\) 8.94427 0.700569 0.350285 0.936643i \(-0.386085\pi\)
0.350285 + 0.936643i \(0.386085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.94427 0.692129 0.346064 0.938211i \(-0.387518\pi\)
0.346064 + 0.938211i \(0.387518\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 8.94427 0.676123
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.1803 0.835658 0.417829 0.908526i \(-0.362791\pi\)
0.417829 + 0.908526i \(0.362791\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.00000 −0.661693
\(186\) 0 0
\(187\) 13.4164 0.981105
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.47214 −0.323592 −0.161796 0.986824i \(-0.551729\pi\)
−0.161796 + 0.986824i \(0.551729\pi\)
\(192\) 0 0
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.00000 0.498729 0.249365 0.968410i \(-0.419778\pi\)
0.249365 + 0.968410i \(0.419778\pi\)
\(198\) 0 0
\(199\) 13.4164 0.951064 0.475532 0.879698i \(-0.342256\pi\)
0.475532 + 0.879698i \(0.342256\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −22.3607 −1.56941
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) 15.6525 1.07756 0.538780 0.842446i \(-0.318885\pi\)
0.538780 + 0.842446i \(0.318885\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −20.1246 −1.37249
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) −2.23607 −0.149738 −0.0748691 0.997193i \(-0.523854\pi\)
−0.0748691 + 0.997193i \(0.523854\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.8885 1.18730 0.593652 0.804722i \(-0.297686\pi\)
0.593652 + 0.804722i \(0.297686\pi\)
\(228\) 0 0
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) 0 0
\(235\) 6.70820 0.437595
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6525 1.01247 0.506237 0.862394i \(-0.331036\pi\)
0.506237 + 0.862394i \(0.331036\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 4.47214 0.284555
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.94427 −0.564557 −0.282279 0.959332i \(-0.591090\pi\)
−0.282279 + 0.959332i \(0.591090\pi\)
\(252\) 0 0
\(253\) 40.0000 2.51478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.0000 1.43470 0.717350 0.696713i \(-0.245355\pi\)
0.717350 + 0.696713i \(0.245355\pi\)
\(258\) 0 0
\(259\) 6.70820 0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.94427 −0.551527 −0.275764 0.961225i \(-0.588931\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.0000 0.975537 0.487769 0.872973i \(-0.337811\pi\)
0.487769 + 0.872973i \(0.337811\pi\)
\(270\) 0 0
\(271\) 20.1246 1.22248 0.611242 0.791444i \(-0.290670\pi\)
0.611242 + 0.791444i \(0.290670\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 17.8885 1.07872
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 17.8885 1.06336 0.531682 0.846944i \(-0.321560\pi\)
0.531682 + 0.846944i \(0.321560\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −31.0000 −1.81104 −0.905520 0.424304i \(-0.860519\pi\)
−0.905520 + 0.424304i \(0.860519\pi\)
\(294\) 0 0
\(295\) −13.4164 −0.781133
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.94427 −0.517261
\(300\) 0 0
\(301\) 15.0000 0.864586
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.47214 −0.255238 −0.127619 0.991823i \(-0.540734\pi\)
−0.127619 + 0.991823i \(0.540734\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.47214 −0.253592 −0.126796 0.991929i \(-0.540469\pi\)
−0.126796 + 0.991929i \(0.540469\pi\)
\(312\) 0 0
\(313\) −29.0000 −1.63918 −0.819588 0.572953i \(-0.805798\pi\)
−0.819588 + 0.572953i \(0.805798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −44.7214 −2.50392
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.4164 −0.746509
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.00000 −0.275659
\(330\) 0 0
\(331\) −26.8328 −1.47486 −0.737432 0.675421i \(-0.763962\pi\)
−0.737432 + 0.675421i \(0.763962\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −40.2492 −2.19905
\(336\) 0 0
\(337\) 3.00000 0.163420 0.0817102 0.996656i \(-0.473962\pi\)
0.0817102 + 0.996656i \(0.473962\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.1246 −1.08663
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.1803 0.600192 0.300096 0.953909i \(-0.402981\pi\)
0.300096 + 0.953909i \(0.402981\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) 20.1246 1.06810
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.94427 −0.472061 −0.236030 0.971746i \(-0.575846\pi\)
−0.236030 + 0.971746i \(0.575846\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −42.0000 −2.19838
\(366\) 0 0
\(367\) −4.47214 −0.233444 −0.116722 0.993165i \(-0.537239\pi\)
−0.116722 + 0.993165i \(0.537239\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.94427 −0.464363
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000 0.515026
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.6525 −0.799804 −0.399902 0.916558i \(-0.630956\pi\)
−0.399902 + 0.916558i \(0.630956\pi\)
\(384\) 0 0
\(385\) −30.0000 −1.52894
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 26.8328 1.35699
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.8328 1.35011
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.00000 0.399501 0.199750 0.979847i \(-0.435987\pi\)
0.199750 + 0.979847i \(0.435987\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.4164 0.665027
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 53.6656 2.63434
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.23607 −0.109239 −0.0546195 0.998507i \(-0.517395\pi\)
−0.0546195 + 0.998507i \(0.517395\pi\)
\(420\) 0 0
\(421\) 15.0000 0.731055 0.365528 0.930800i \(-0.380889\pi\)
0.365528 + 0.930800i \(0.380889\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.6525 0.753953 0.376977 0.926223i \(-0.376964\pi\)
0.376977 + 0.926223i \(0.376964\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −40.0000 −1.91346
\(438\) 0 0
\(439\) 4.47214 0.213443 0.106722 0.994289i \(-0.465965\pi\)
0.106722 + 0.994289i \(0.465965\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.6525 0.743672 0.371836 0.928299i \(-0.378728\pi\)
0.371836 + 0.928299i \(0.378728\pi\)
\(444\) 0 0
\(445\) −30.0000 −1.42214
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.70820 0.314485
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 −0.139724 −0.0698620 0.997557i \(-0.522256\pi\)
−0.0698620 + 0.997557i \(0.522256\pi\)
\(462\) 0 0
\(463\) 8.94427 0.415676 0.207838 0.978163i \(-0.433357\pi\)
0.207838 + 0.978163i \(0.433357\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 30.0000 1.38527
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.0000 1.37940
\(474\) 0 0
\(475\) −17.8885 −0.820783
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.1246 −0.919517 −0.459758 0.888044i \(-0.652064\pi\)
−0.459758 + 0.888044i \(0.652064\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) −26.8328 −1.21591 −0.607955 0.793971i \(-0.708010\pi\)
−0.607955 + 0.793971i \(0.708010\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.1803 0.504562 0.252281 0.967654i \(-0.418819\pi\)
0.252281 + 0.967654i \(0.418819\pi\)
\(492\) 0 0
\(493\) −30.0000 −1.35113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.0000 −0.672842
\(498\) 0 0
\(499\) −35.7771 −1.60160 −0.800801 0.598930i \(-0.795593\pi\)
−0.800801 + 0.598930i \(0.795593\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.3050 1.39582 0.697909 0.716186i \(-0.254114\pi\)
0.697909 + 0.716186i \(0.254114\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 31.3050 1.38485
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −10.0000 −0.439799
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) −17.8885 −0.782211 −0.391106 0.920346i \(-0.627907\pi\)
−0.391106 + 0.920346i \(0.627907\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 57.0000 2.47826
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −53.6656 −2.32017
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.94427 −0.385257
\(540\) 0 0
\(541\) 33.0000 1.41878 0.709390 0.704816i \(-0.248970\pi\)
0.709390 + 0.704816i \(0.248970\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −33.0000 −1.41356
\(546\) 0 0
\(547\) 38.0132 1.62533 0.812663 0.582735i \(-0.198017\pi\)
0.812663 + 0.582735i \(0.198017\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 44.7214 1.90519
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.00000 0.296600 0.148300 0.988942i \(-0.452620\pi\)
0.148300 + 0.988942i \(0.452620\pi\)
\(558\) 0 0
\(559\) −6.70820 −0.283727
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.6525 −0.659673 −0.329837 0.944038i \(-0.606994\pi\)
−0.329837 + 0.944038i \(0.606994\pi\)
\(564\) 0 0
\(565\) −42.0000 −1.76695
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 0.377300 0.188650 0.982044i \(-0.439589\pi\)
0.188650 + 0.982044i \(0.439589\pi\)
\(570\) 0 0
\(571\) −24.5967 −1.02934 −0.514671 0.857388i \(-0.672086\pi\)
−0.514671 + 0.857388i \(0.672086\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 35.7771 1.49201
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −40.0000 −1.65948
\(582\) 0 0
\(583\) −17.8885 −0.740868
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −44.7214 −1.84585 −0.922924 0.384982i \(-0.874208\pi\)
−0.922924 + 0.384982i \(0.874208\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −20.1246 −0.825029
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.3050 −1.27909 −0.639543 0.768755i \(-0.720876\pi\)
−0.639543 + 0.768755i \(0.720876\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −27.0000 −1.09771
\(606\) 0 0
\(607\) 13.4164 0.544555 0.272278 0.962219i \(-0.412223\pi\)
0.272278 + 0.962219i \(0.412223\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.23607 0.0904616
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) 26.8328 1.07850 0.539251 0.842145i \(-0.318707\pi\)
0.539251 + 0.842145i \(0.318707\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.3607 0.895862
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) 33.5410 1.33525 0.667623 0.744499i \(-0.267312\pi\)
0.667623 + 0.744499i \(0.267312\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −22.3607 −0.881819 −0.440910 0.897552i \(-0.645344\pi\)
−0.440910 + 0.897552i \(0.645344\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −40.2492 −1.58236 −0.791180 0.611583i \(-0.790533\pi\)
−0.791180 + 0.611583i \(0.790533\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 46.9574 1.83478
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −17.8885 −0.696839 −0.348419 0.937339i \(-0.613281\pi\)
−0.348419 + 0.937339i \(0.613281\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.0000 1.16335
\(666\) 0 0
\(667\) −89.4427 −3.46324
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) −4.47214 −0.171625
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.8328 1.02673 0.513365 0.858171i \(-0.328399\pi\)
0.513365 + 0.858171i \(0.328399\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 17.8885 0.680512 0.340256 0.940333i \(-0.389486\pi\)
0.340256 + 0.940333i \(0.389486\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.5410 1.27228
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) −13.4164 −0.506009
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.8328 1.00915
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 13.4164 0.501745
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −40.2492 −1.50104 −0.750521 0.660846i \(-0.770198\pi\)
−0.750521 + 0.660846i \(0.770198\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −40.0000 −1.48556
\(726\) 0 0
\(727\) −31.3050 −1.16104 −0.580518 0.814247i \(-0.697150\pi\)
−0.580518 + 0.814247i \(0.697150\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.1246 0.744336
\(732\) 0 0
\(733\) 9.00000 0.332423 0.166211 0.986090i \(-0.446847\pi\)
0.166211 + 0.986090i \(0.446847\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.0000 2.21013
\(738\) 0 0
\(739\) 26.8328 0.987061 0.493531 0.869728i \(-0.335706\pi\)
0.493531 + 0.869728i \(0.335706\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.0689 −1.06643 −0.533217 0.845979i \(-0.679017\pi\)
−0.533217 + 0.845979i \(0.679017\pi\)
\(744\) 0 0
\(745\) 42.0000 1.53876
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.1246 −0.732410
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) 24.5967 0.890462
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.47214 −0.161479
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −30.0000 −1.07348
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −66.0000 −2.35564
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 31.3050 1.11308
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −6.70820 −0.237319
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 62.6099 2.20946
\(804\) 0 0
\(805\) −60.0000 −2.11472
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −35.0000 −1.23053 −0.615267 0.788319i \(-0.710952\pi\)
−0.615267 + 0.788319i \(0.710952\pi\)
\(810\) 0 0
\(811\) 8.94427 0.314076 0.157038 0.987593i \(-0.449806\pi\)
0.157038 + 0.987593i \(0.449806\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −26.8328 −0.939913
\(816\) 0 0
\(817\) −30.0000 −1.04957
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.0000 1.57051 0.785255 0.619172i \(-0.212532\pi\)
0.785255 + 0.619172i \(0.212532\pi\)
\(822\) 0 0
\(823\) 31.3050 1.09122 0.545611 0.838039i \(-0.316298\pi\)
0.545611 + 0.838039i \(0.316298\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.3607 0.777557 0.388779 0.921331i \(-0.372897\pi\)
0.388779 + 0.921331i \(0.372897\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −26.8328 −0.928588
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.8328 0.926372 0.463186 0.886261i \(-0.346706\pi\)
0.463186 + 0.886261i \(0.346706\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 20.1246 0.691490
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 26.8328 0.919817
\(852\) 0 0
\(853\) −19.0000 −0.650548 −0.325274 0.945620i \(-0.605456\pi\)
−0.325274 + 0.945620i \(0.605456\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.00000 0.0683187 0.0341593 0.999416i \(-0.489125\pi\)
0.0341593 + 0.999416i \(0.489125\pi\)
\(858\) 0 0
\(859\) −35.7771 −1.22070 −0.610349 0.792132i \(-0.708971\pi\)
−0.610349 + 0.792132i \(0.708971\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −29.0689 −0.989516 −0.494758 0.869031i \(-0.664743\pi\)
−0.494758 + 0.869031i \(0.664743\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) −13.4164 −0.454598
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.70820 0.226779
\(876\) 0 0
\(877\) −3.00000 −0.101303 −0.0506514 0.998716i \(-0.516130\pi\)
−0.0506514 + 0.998716i \(0.516130\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −5.00000 −0.168454 −0.0842271 0.996447i \(-0.526842\pi\)
−0.0842271 + 0.996447i \(0.526842\pi\)
\(882\) 0 0
\(883\) 2.23607 0.0752497 0.0376248 0.999292i \(-0.488021\pi\)
0.0376248 + 0.999292i \(0.488021\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.8885 0.600639 0.300319 0.953839i \(-0.402907\pi\)
0.300319 + 0.953839i \(0.402907\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.0000 0.334637
\(894\) 0 0
\(895\) −33.5410 −1.12115
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.0000 0.797787
\(906\) 0 0
\(907\) 33.5410 1.11371 0.556856 0.830609i \(-0.312008\pi\)
0.556856 + 0.830609i \(0.312008\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.47214 −0.148168 −0.0740842 0.997252i \(-0.523603\pi\)
−0.0740842 + 0.997252i \(0.523603\pi\)
\(912\) 0 0
\(913\) −80.0000 −2.64761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −35.0000 −1.15580
\(918\) 0 0
\(919\) 35.7771 1.18018 0.590089 0.807338i \(-0.299093\pi\)
0.590089 + 0.807338i \(0.299093\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.70820 0.220803
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.00000 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(930\) 0 0
\(931\) 8.94427 0.293137
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40.2492 −1.31629
\(936\) 0 0
\(937\) −58.0000 −1.89478 −0.947389 0.320085i \(-0.896288\pi\)
−0.947389 + 0.320085i \(0.896288\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.00000 0.0977972 0.0488986 0.998804i \(-0.484429\pi\)
0.0488986 + 0.998804i \(0.484429\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.47214 0.145325 0.0726624 0.997357i \(-0.476850\pi\)
0.0726624 + 0.997357i \(0.476850\pi\)
\(948\) 0 0
\(949\) −14.0000 −0.454459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.00000 0.291539 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(954\) 0 0
\(955\) 13.4164 0.434145
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 26.8328 0.866477
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −48.0000 −1.54517
\(966\) 0 0
\(967\) −38.0132 −1.22242 −0.611210 0.791468i \(-0.709317\pi\)
−0.611210 + 0.791468i \(0.709317\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −55.9017 −1.79397 −0.896985 0.442060i \(-0.854248\pi\)
−0.896985 + 0.442060i \(0.854248\pi\)
\(972\) 0 0
\(973\) −25.0000 −0.801463
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −58.0000 −1.85558 −0.927792 0.373097i \(-0.878296\pi\)
−0.927792 + 0.373097i \(0.878296\pi\)
\(978\) 0 0
\(979\) 44.7214 1.42930
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.23607 −0.0713195 −0.0356597 0.999364i \(-0.511353\pi\)
−0.0356597 + 0.999364i \(0.511353\pi\)
\(984\) 0 0
\(985\) −21.0000 −0.669116
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 60.0000 1.90789
\(990\) 0 0
\(991\) −31.3050 −0.994435 −0.497217 0.867626i \(-0.665645\pi\)
−0.497217 + 0.867626i \(0.665645\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −40.2492 −1.27599
\(996\) 0 0
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.a.q.1.2 2
3.2 odd 2 416.2.a.d.1.2 yes 2
4.3 odd 2 inner 3744.2.a.q.1.1 2
8.3 odd 2 7488.2.a.cw.1.1 2
8.5 even 2 7488.2.a.cw.1.2 2
12.11 even 2 416.2.a.d.1.1 2
24.5 odd 2 832.2.a.m.1.1 2
24.11 even 2 832.2.a.m.1.2 2
39.38 odd 2 5408.2.a.q.1.2 2
48.5 odd 4 3328.2.b.x.1665.2 4
48.11 even 4 3328.2.b.x.1665.4 4
48.29 odd 4 3328.2.b.x.1665.3 4
48.35 even 4 3328.2.b.x.1665.1 4
156.155 even 2 5408.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.d.1.1 2 12.11 even 2
416.2.a.d.1.2 yes 2 3.2 odd 2
832.2.a.m.1.1 2 24.5 odd 2
832.2.a.m.1.2 2 24.11 even 2
3328.2.b.x.1665.1 4 48.35 even 4
3328.2.b.x.1665.2 4 48.5 odd 4
3328.2.b.x.1665.3 4 48.29 odd 4
3328.2.b.x.1665.4 4 48.11 even 4
3744.2.a.q.1.1 2 4.3 odd 2 inner
3744.2.a.q.1.2 2 1.1 even 1 trivial
5408.2.a.q.1.1 2 156.155 even 2
5408.2.a.q.1.2 2 39.38 odd 2
7488.2.a.cw.1.1 2 8.3 odd 2
7488.2.a.cw.1.2 2 8.5 even 2