# Properties

 Label 3744.2.a.h Level $3744$ Weight $2$ Character orbit 3744.a Self dual yes Analytic conductor $29.896$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3744 = 2^{5} \cdot 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3744.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$29.8959905168$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1248) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - 2q^{7} + O(q^{10})$$ $$q - 2q^{7} + 4q^{11} + q^{13} + 6q^{17} - 6q^{19} - 5q^{25} + 2q^{29} + 6q^{31} + 10q^{37} - 8q^{41} - 12q^{43} + 12q^{47} - 3q^{49} + 6q^{53} + 2q^{61} - 2q^{67} - 8q^{71} + 14q^{73} - 8q^{77} - 4q^{79} + 8q^{83} - 4q^{89} - 2q^{91} + 14q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 −2.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3744.2.a.h 1
3.b odd 2 1 1248.2.a.h yes 1
4.b odd 2 1 3744.2.a.i 1
8.b even 2 1 7488.2.a.z 1
8.d odd 2 1 7488.2.a.bg 1
12.b even 2 1 1248.2.a.d 1
24.f even 2 1 2496.2.a.y 1
24.h odd 2 1 2496.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.2.a.d 1 12.b even 2 1
1248.2.a.h yes 1 3.b odd 2 1
2496.2.a.f 1 24.h odd 2 1
2496.2.a.y 1 24.f even 2 1
3744.2.a.h 1 1.a even 1 1 trivial
3744.2.a.i 1 4.b odd 2 1
7488.2.a.z 1 8.b even 2 1
7488.2.a.bg 1 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3744))$$:

 $$T_{5}$$ $$T_{7} + 2$$ $$T_{11} - 4$$ $$T_{29} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$2 + T$$
$11$ $$-4 + T$$
$13$ $$-1 + T$$
$17$ $$-6 + T$$
$19$ $$6 + T$$
$23$ $$T$$
$29$ $$-2 + T$$
$31$ $$-6 + T$$
$37$ $$-10 + T$$
$41$ $$8 + T$$
$43$ $$12 + T$$
$47$ $$-12 + T$$
$53$ $$-6 + T$$
$59$ $$T$$
$61$ $$-2 + T$$
$67$ $$2 + T$$
$71$ $$8 + T$$
$73$ $$-14 + T$$
$79$ $$4 + T$$
$83$ $$-8 + T$$
$89$ $$4 + T$$
$97$ $$-14 + T$$