Properties

Label 3744.2.a
Level $3744$
Weight $2$
Character orbit 3744.a
Rep. character $\chi_{3744}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $32$
Sturm bound $1344$
Trace bound $29$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 32 \)
Sturm bound: \(1344\)
Trace bound: \(29\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3744))\).

Total New Old
Modular forms 704 60 644
Cusp forms 641 60 581
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(10\)
\(+\)\(-\)\(-\)\(+\)\(7\)
\(-\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(8\)
\(-\)\(-\)\(-\)\(-\)\(11\)
Plus space\(+\)\(27\)
Minus space\(-\)\(33\)

Trace form

\( 60q + O(q^{10}) \) \( 60q - 8q^{17} + 44q^{25} - 16q^{29} + 24q^{41} + 44q^{49} + 56q^{53} + 8q^{61} + 8q^{73} - 40q^{77} - 80q^{85} + 40q^{89} + 72q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3744))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 13
3744.2.a.a \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-2\) \(-2\) \(+\) \(-\) \(+\) \(q-2q^{5}-2q^{7}-2q^{11}-q^{13}-6q^{17}+\cdots\)
3744.2.a.b \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-2\) \(0\) \(-\) \(+\) \(-\) \(q-2q^{5}-2q^{11}+q^{13}+4q^{19}-4q^{23}+\cdots\)
3744.2.a.c \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-2\) \(0\) \(+\) \(+\) \(-\) \(q-2q^{5}+2q^{11}+q^{13}-4q^{19}+4q^{23}+\cdots\)
3744.2.a.d \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-2\) \(2\) \(-\) \(-\) \(+\) \(q-2q^{5}+2q^{7}+2q^{11}-q^{13}-6q^{17}+\cdots\)
3744.2.a.e \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-1\) \(-3\) \(+\) \(-\) \(-\) \(q-q^{5}-3q^{7}+2q^{11}+q^{13}+3q^{17}+\cdots\)
3744.2.a.f \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(-1\) \(3\) \(-\) \(-\) \(-\) \(q-q^{5}+3q^{7}-2q^{11}+q^{13}+3q^{17}+\cdots\)
3744.2.a.g \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(0\) \(-2\) \(+\) \(-\) \(-\) \(q-2q^{7}+q^{13}-2q^{17}+2q^{19}+8q^{23}+\cdots\)
3744.2.a.h \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(0\) \(-2\) \(-\) \(-\) \(-\) \(q-2q^{7}+4q^{11}+q^{13}+6q^{17}-6q^{19}+\cdots\)
3744.2.a.i \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(0\) \(2\) \(-\) \(-\) \(-\) \(q+2q^{7}-4q^{11}+q^{13}+6q^{17}+6q^{19}+\cdots\)
3744.2.a.j \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(0\) \(2\) \(+\) \(-\) \(-\) \(q+2q^{7}+q^{13}-2q^{17}-2q^{19}-8q^{23}+\cdots\)
3744.2.a.k \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(-2\) \(-\) \(-\) \(+\) \(q+2q^{5}-2q^{7}-6q^{11}-q^{13}+2q^{17}+\cdots\)
3744.2.a.l \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(0\) \(+\) \(-\) \(-\) \(q+2q^{5}-4q^{11}+q^{13}+6q^{17}-8q^{19}+\cdots\)
3744.2.a.m \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(0\) \(-\) \(+\) \(-\) \(q+2q^{5}-2q^{11}+q^{13}-4q^{19}-4q^{23}+\cdots\)
3744.2.a.n \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(0\) \(+\) \(+\) \(-\) \(q+2q^{5}+2q^{11}+q^{13}+4q^{19}+4q^{23}+\cdots\)
3744.2.a.o \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(0\) \(-\) \(-\) \(-\) \(q+2q^{5}+4q^{11}+q^{13}+6q^{17}+8q^{19}+\cdots\)
3744.2.a.p \(1\) \(29.896\) \(\Q\) None \(0\) \(0\) \(2\) \(2\) \(+\) \(-\) \(+\) \(q+2q^{5}+2q^{7}+6q^{11}-q^{13}+2q^{17}+\cdots\)
3744.2.a.q \(2\) \(29.896\) \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-6\) \(0\) \(+\) \(-\) \(+\) \(q-3q^{5}-\beta q^{7}-2\beta q^{11}-q^{13}+3q^{17}+\cdots\)
3744.2.a.r \(2\) \(29.896\) \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-2\) \(-2\) \(-\) \(-\) \(+\) \(q+(-1-\beta )q^{5}+(-1-\beta )q^{7}+2q^{11}+\cdots\)
3744.2.a.s \(2\) \(29.896\) \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-2\) \(2\) \(-\) \(-\) \(+\) \(q+(-1-\beta )q^{5}+(1+\beta )q^{7}-2q^{11}+\cdots\)
3744.2.a.t \(2\) \(29.896\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(+\) \(+\) \(+\) \(q+\beta q^{7}-\beta q^{11}-q^{13}+\beta q^{19}-2\beta q^{23}+\cdots\)
3744.2.a.u \(2\) \(29.896\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(-\) \(+\) \(+\) \(q+\beta q^{7}+\beta q^{11}-q^{13}+\beta q^{19}+2\beta q^{23}+\cdots\)
3744.2.a.v \(2\) \(29.896\) \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(-6\) \(+\) \(-\) \(+\) \(q+(1+\beta )q^{5}+(-3+\beta )q^{7}-2\beta q^{11}+\cdots\)
3744.2.a.w \(2\) \(29.896\) \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(6\) \(+\) \(-\) \(+\) \(q+(1+\beta )q^{5}+(3-\beta )q^{7}+2\beta q^{11}-q^{13}+\cdots\)
3744.2.a.x \(2\) \(29.896\) \(\Q(\sqrt{17}) \) None \(0\) \(0\) \(3\) \(-3\) \(-\) \(-\) \(+\) \(q+(1+\beta )q^{5}+(-1-\beta )q^{7}+2q^{11}+\cdots\)
3744.2.a.y \(2\) \(29.896\) \(\Q(\sqrt{17}) \) None \(0\) \(0\) \(3\) \(3\) \(+\) \(-\) \(+\) \(q+(1+\beta )q^{5}+(1+\beta )q^{7}-2q^{11}-q^{13}+\cdots\)
3744.2.a.z \(3\) \(29.896\) 3.3.148.1 None \(0\) \(0\) \(-2\) \(0\) \(+\) \(-\) \(-\) \(q+(-1-\beta _{1})q^{5}-\beta _{2}q^{7}+(-1+\beta _{1}+\cdots)q^{11}+\cdots\)
3744.2.a.ba \(3\) \(29.896\) 3.3.148.1 None \(0\) \(0\) \(-2\) \(0\) \(-\) \(-\) \(-\) \(q+(-1-\beta _{1})q^{5}+\beta _{2}q^{7}+(1-\beta _{1}-\beta _{2})q^{11}+\cdots\)
3744.2.a.bb \(4\) \(29.896\) \(\Q(\zeta_{20})^+\) None \(0\) \(0\) \(-4\) \(0\) \(-\) \(+\) \(-\) \(q+(-1+\beta _{3})q^{5}-\beta _{2}q^{7}+(\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
3744.2.a.bc \(4\) \(29.896\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(+\) \(+\) \(+\) \(q+\beta _{1}q^{5}+\beta _{3}q^{7}+(-2-\beta _{2})q^{11}+\cdots\)
3744.2.a.bd \(4\) \(29.896\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(-\) \(+\) \(+\) \(q+\beta _{1}q^{5}-\beta _{3}q^{7}+(2+\beta _{2})q^{11}-q^{13}+\cdots\)
3744.2.a.be \(4\) \(29.896\) 4.4.13448.1 None \(0\) \(0\) \(2\) \(0\) \(-\) \(-\) \(-\) \(q-\beta _{3}q^{5}+(\beta _{1}-\beta _{2})q^{7}+\beta _{1}q^{11}+q^{13}+\cdots\)
3744.2.a.bf \(4\) \(29.896\) \(\Q(\zeta_{20})^+\) None \(0\) \(0\) \(4\) \(0\) \(+\) \(+\) \(-\) \(q+(1-\beta _{3})q^{5}-\beta _{2}q^{7}+(-\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3744))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3744)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(936))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1248))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1872))\)\(^{\oplus 2}\)