Properties

Label 3744.1.gh
Level $3744$
Weight $1$
Character orbit 3744.gh
Rep. character $\chi_{3744}(1151,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $0$
Newform subspaces $0$
Sturm bound $672$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3744.gh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 0 \)
Sturm bound: \(672\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3744, [\chi])\).

Total New Old
Modular forms 208 0 208
Cusp forms 80 0 80
Eisenstein series 128 0 128

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(3744, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3744, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1872, [\chi])\)\(^{\oplus 2}\)