Properties

Label 3744.1.dx.a
Level $3744$
Weight $1$
Character orbit 3744.dx
Analytic conductor $1.868$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,1,Mod(1889,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1889");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3744.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{11} - \zeta_{24}) q^{5} - \zeta_{24}^{2} q^{13} + ( - \zeta_{24}^{5} + \zeta_{24}^{3}) q^{17} + ( - \zeta_{24}^{10} + \zeta_{24}^{2} + 1) q^{25} + (\zeta_{24}^{9} - \zeta_{24}^{7}) q^{29} + \cdots + 2 \zeta_{24}^{10} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{25} + 12 q^{37} - 4 q^{49} + 4 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(\zeta_{24}^{4}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0 0 0 −1.93185 0 0 0 0 0
1889.2 0 0 0 −0.517638 0 0 0 0 0
1889.3 0 0 0 0.517638 0 0 0 0 0
1889.4 0 0 0 1.93185 0 0 0 0 0
2753.1 0 0 0 −1.93185 0 0 0 0 0
2753.2 0 0 0 −0.517638 0 0 0 0 0
2753.3 0 0 0 0.517638 0 0 0 0 0
2753.4 0 0 0 1.93185 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1889.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
3.b odd 2 1 inner
12.b even 2 1 inner
13.e even 6 1 inner
39.h odd 6 1 inner
52.i odd 6 1 inner
156.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3744.1.dx.a 8
3.b odd 2 1 inner 3744.1.dx.a 8
4.b odd 2 1 CM 3744.1.dx.a 8
12.b even 2 1 inner 3744.1.dx.a 8
13.e even 6 1 inner 3744.1.dx.a 8
39.h odd 6 1 inner 3744.1.dx.a 8
52.i odd 6 1 inner 3744.1.dx.a 8
156.r even 6 1 inner 3744.1.dx.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3744.1.dx.a 8 1.a even 1 1 trivial
3744.1.dx.a 8 3.b odd 2 1 inner
3744.1.dx.a 8 4.b odd 2 1 CM
3744.1.dx.a 8 12.b even 2 1 inner
3744.1.dx.a 8 13.e even 6 1 inner
3744.1.dx.a 8 39.h odd 6 1 inner
3744.1.dx.a 8 52.i odd 6 1 inner
3744.1.dx.a 8 156.r even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3744, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{2} - 3 T + 3)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
show more
show less