Properties

Label 3744.1.dx
Level $3744$
Weight $1$
Character orbit 3744.dx
Rep. character $\chi_{3744}(1889,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $672$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3744.dx (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(672\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3744, [\chi])\).

Total New Old
Modular forms 96 8 88
Cusp forms 32 8 24
Eisenstein series 64 0 64

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 8 q^{25} + 12 q^{37} - 4 q^{49} + 4 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3744, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3744.1.dx.a 3744.dx 39.h $8$ $1.868$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-1}) \) None 3744.1.dx.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{24}+\zeta_{24}^{11})q^{5}-\zeta_{24}^{2}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3744, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3744, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 4}\)