Defining parameters
| Level: | \( N \) | \(=\) | \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3724.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(1120\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3724))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 584 | 61 | 523 |
| Cusp forms | 537 | 61 | 476 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(68\) | \(0\) | \(68\) | \(61\) | \(0\) | \(61\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(80\) | \(0\) | \(80\) | \(72\) | \(0\) | \(72\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(77\) | \(0\) | \(77\) | \(69\) | \(0\) | \(69\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(71\) | \(0\) | \(71\) | \(63\) | \(0\) | \(63\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(72\) | \(15\) | \(57\) | \(68\) | \(15\) | \(53\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(72\) | \(13\) | \(59\) | \(68\) | \(13\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(72\) | \(15\) | \(57\) | \(68\) | \(15\) | \(53\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(72\) | \(18\) | \(54\) | \(68\) | \(18\) | \(50\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(283\) | \(28\) | \(255\) | \(260\) | \(28\) | \(232\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(301\) | \(33\) | \(268\) | \(277\) | \(33\) | \(244\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3724))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3724))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3724)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(931))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1862))\)\(^{\oplus 2}\)