# Properties

 Label 3724.1.e.c Level $3724$ Weight $1$ Character orbit 3724.e Self dual yes Analytic conductor $1.859$ Analytic rank $0$ Dimension $1$ Projective image $D_{3}$ CM discriminant -19 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3724,1,Mod(1177,3724)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3724, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3724.1177");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3724 = 2^{2} \cdot 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3724.e (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.85851810705$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 76) Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.76.1 Artin image: $D_6$ Artin field: Galois closure of 6.0.1981168.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{5} + q^{9}+O(q^{10})$$ q + q^5 + q^9 $$q + q^{5} + q^{9} - q^{11} + q^{17} - q^{19} + 2 q^{23} - q^{43} + q^{45} + q^{47} - q^{55} + q^{61} + q^{73} + q^{81} - 2 q^{83} + q^{85} - q^{95} - q^{99}+O(q^{100})$$ q + q^5 + q^9 - q^11 + q^17 - q^19 + 2 * q^23 - q^43 + q^45 + q^47 - q^55 + q^61 + q^73 + q^81 - 2 * q^83 + q^85 - q^95 - q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times$$.

 $$n$$ $$1863$$ $$3041$$ $$3137$$ $$\chi(n)$$ $$0$$ $$0$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1177.1
 0
0 0 0 1.00000 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by $$\Q(\sqrt{-19})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3724.1.e.c 1
7.b odd 2 1 76.1.c.a 1
7.c even 3 2 3724.1.bc.b 2
7.d odd 6 2 3724.1.bc.c 2
19.b odd 2 1 CM 3724.1.e.c 1
21.c even 2 1 684.1.h.a 1
28.d even 2 1 304.1.e.a 1
35.c odd 2 1 1900.1.e.a 1
35.f even 4 2 1900.1.g.a 2
56.e even 2 1 1216.1.e.b 1
56.h odd 2 1 1216.1.e.a 1
84.h odd 2 1 2736.1.o.b 1
133.c even 2 1 76.1.c.a 1
133.m odd 6 2 1444.1.h.a 2
133.o even 6 2 3724.1.bc.c 2
133.p even 6 2 1444.1.h.a 2
133.r odd 6 2 3724.1.bc.b 2
133.y odd 18 6 1444.1.j.a 6
133.ba even 18 6 1444.1.j.a 6
399.h odd 2 1 684.1.h.a 1
532.b odd 2 1 304.1.e.a 1
665.g even 2 1 1900.1.e.a 1
665.n odd 4 2 1900.1.g.a 2
1064.f even 2 1 1216.1.e.a 1
1064.p odd 2 1 1216.1.e.b 1
1596.p even 2 1 2736.1.o.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.1.c.a 1 7.b odd 2 1
76.1.c.a 1 133.c even 2 1
304.1.e.a 1 28.d even 2 1
304.1.e.a 1 532.b odd 2 1
684.1.h.a 1 21.c even 2 1
684.1.h.a 1 399.h odd 2 1
1216.1.e.a 1 56.h odd 2 1
1216.1.e.a 1 1064.f even 2 1
1216.1.e.b 1 56.e even 2 1
1216.1.e.b 1 1064.p odd 2 1
1444.1.h.a 2 133.m odd 6 2
1444.1.h.a 2 133.p even 6 2
1444.1.j.a 6 133.y odd 18 6
1444.1.j.a 6 133.ba even 18 6
1900.1.e.a 1 35.c odd 2 1
1900.1.e.a 1 665.g even 2 1
1900.1.g.a 2 35.f even 4 2
1900.1.g.a 2 665.n odd 4 2
2736.1.o.b 1 84.h odd 2 1
2736.1.o.b 1 1596.p even 2 1
3724.1.e.c 1 1.a even 1 1 trivial
3724.1.e.c 1 19.b odd 2 1 CM
3724.1.bc.b 2 7.c even 3 2
3724.1.bc.b 2 133.r odd 6 2
3724.1.bc.c 2 7.d odd 6 2
3724.1.bc.c 2 133.o even 6 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{1}^{\mathrm{new}}(3724, [\chi])$$:

 $$T_{5} - 1$$ T5 - 1 $$T_{11} + 1$$ T11 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T + 1$$
$13$ $$T$$
$17$ $$T - 1$$
$19$ $$T + 1$$
$23$ $$T - 2$$
$29$ $$T$$
$31$ $$T$$
$37$ $$T$$
$41$ $$T$$
$43$ $$T + 1$$
$47$ $$T - 1$$
$53$ $$T$$
$59$ $$T$$
$61$ $$T - 1$$
$67$ $$T$$
$71$ $$T$$
$73$ $$T - 1$$
$79$ $$T$$
$83$ $$T + 2$$
$89$ $$T$$
$97$ $$T$$