Properties

Label 3724.1.bv.a
Level $3724$
Weight $1$
Character orbit 3724.bv
Analytic conductor $1.859$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3724.bv (of order \(14\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.85851810705\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{21})\)
Defining polynomial: \(x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( -\zeta_{42} - \zeta_{42}^{5} ) q^{5} -\zeta_{42}^{17} q^{7} + \zeta_{42}^{6} q^{9} +O(q^{10})\) \( q + ( -\zeta_{42} - \zeta_{42}^{5} ) q^{5} -\zeta_{42}^{17} q^{7} + \zeta_{42}^{6} q^{9} + ( \zeta_{42}^{2} - \zeta_{42}^{7} ) q^{11} + ( \zeta_{42}^{10} + \zeta_{42}^{14} ) q^{17} + q^{19} + ( -\zeta_{42}^{3} - \zeta_{42}^{15} ) q^{23} + ( \zeta_{42}^{2} + \zeta_{42}^{6} + \zeta_{42}^{10} ) q^{25} + ( -\zeta_{42} + \zeta_{42}^{18} ) q^{35} + ( \zeta_{42}^{2} - \zeta_{42}^{13} ) q^{43} + ( -\zeta_{42}^{7} - \zeta_{42}^{11} ) q^{45} + ( \zeta_{42}^{4} - \zeta_{42}^{5} ) q^{47} -\zeta_{42}^{13} q^{49} + ( -\zeta_{42}^{3} - \zeta_{42}^{7} + \zeta_{42}^{8} + \zeta_{42}^{12} ) q^{55} + ( -\zeta_{42}^{11} - \zeta_{42}^{13} ) q^{61} + \zeta_{42}^{2} q^{63} -\zeta_{42}^{6} q^{73} + ( -\zeta_{42}^{3} - \zeta_{42}^{19} ) q^{77} + \zeta_{42}^{12} q^{81} + ( -\zeta_{42}^{15} + \zeta_{42}^{18} ) q^{83} + ( -\zeta_{42}^{11} - 2 \zeta_{42}^{15} - \zeta_{42}^{19} ) q^{85} + ( -\zeta_{42} - \zeta_{42}^{5} ) q^{95} + ( \zeta_{42}^{8} - \zeta_{42}^{13} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{5} + q^{7} - 2q^{9} + O(q^{10}) \) \( 12q + 2q^{5} + q^{7} - 2q^{9} - 5q^{11} - 5q^{17} + 12q^{19} - 4q^{23} - q^{35} + 2q^{43} - 5q^{45} + 2q^{47} + q^{49} - 9q^{55} + 2q^{61} + q^{63} + 2q^{73} - q^{77} - 2q^{81} - 4q^{83} - 2q^{85} + 2q^{95} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times\).

\(n\) \(1863\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(\zeta_{42}^{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
−0.733052 0.680173i
0.955573 0.294755i
−0.988831 + 0.149042i
0.365341 0.930874i
−0.988831 0.149042i
0.365341 + 0.930874i
−0.733052 + 0.680173i
0.955573 + 0.294755i
0.826239 0.563320i
0.0747301 + 0.997204i
0.826239 + 0.563320i
0.0747301 0.997204i
0 0 0 0.0931869 0.116853i 0 −0.988831 0.149042i 0 −0.222521 0.974928i 0
113.2 0 0 0 1.03030 1.29196i 0 0.365341 + 0.930874i 0 −0.222521 0.974928i 0
645.1 0 0 0 −1.72188 + 0.829215i 0 0.826239 + 0.563320i 0 0.623490 0.781831i 0
645.2 0 0 0 1.32091 0.636119i 0 0.0747301 0.997204i 0 0.623490 0.781831i 0
1709.1 0 0 0 −1.72188 0.829215i 0 0.826239 0.563320i 0 0.623490 + 0.781831i 0
1709.2 0 0 0 1.32091 + 0.636119i 0 0.0747301 + 0.997204i 0 0.623490 + 0.781831i 0
2241.1 0 0 0 0.0931869 + 0.116853i 0 −0.988831 + 0.149042i 0 −0.222521 + 0.974928i 0
2241.2 0 0 0 1.03030 + 1.29196i 0 0.365341 0.930874i 0 −0.222521 + 0.974928i 0
2773.1 0 0 0 −0.162592 0.712362i 0 −0.733052 + 0.680173i 0 −0.900969 + 0.433884i 0
2773.2 0 0 0 0.440071 + 1.92808i 0 0.955573 + 0.294755i 0 −0.900969 + 0.433884i 0
3305.1 0 0 0 −0.162592 + 0.712362i 0 −0.733052 0.680173i 0 −0.900969 0.433884i 0
3305.2 0 0 0 0.440071 1.92808i 0 0.955573 0.294755i 0 −0.900969 0.433884i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3305.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
49.e even 7 1 inner
931.ba odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3724.1.bv.a 12
19.b odd 2 1 CM 3724.1.bv.a 12
49.e even 7 1 inner 3724.1.bv.a 12
931.ba odd 14 1 inner 3724.1.bv.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3724.1.bv.a 12 1.a even 1 1 trivial
3724.1.bv.a 12 19.b odd 2 1 CM
3724.1.bv.a 12 49.e even 7 1 inner
3724.1.bv.a 12 931.ba odd 14 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3724, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \)
$3$ \( T^{12} \)
$5$ \( 1 - 9 T + 52 T^{2} - 46 T^{3} + 96 T^{4} - 97 T^{5} + 49 T^{6} + T^{7} - 9 T^{8} + 3 T^{9} + 3 T^{10} - 2 T^{11} + T^{12} \)
$7$ \( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} \)
$11$ \( 1 + 12 T + 45 T^{2} + 10 T^{3} + 61 T^{4} + 92 T^{5} + 105 T^{6} + 92 T^{7} + 68 T^{8} + 38 T^{9} + 17 T^{10} + 5 T^{11} + T^{12} \)
$13$ \( T^{12} \)
$17$ \( 1 + 12 T + 45 T^{2} + 10 T^{3} + 61 T^{4} + 92 T^{5} + 105 T^{6} + 92 T^{7} + 68 T^{8} + 38 T^{9} + 17 T^{10} + 5 T^{11} + T^{12} \)
$19$ \( ( -1 + T )^{12} \)
$23$ \( ( 1 - 3 T + 2 T^{2} + T^{3} + 4 T^{4} + 2 T^{5} + T^{6} )^{2} \)
$29$ \( T^{12} \)
$31$ \( T^{12} \)
$37$ \( T^{12} \)
$41$ \( T^{12} \)
$43$ \( 1 - 9 T + 52 T^{2} - 46 T^{3} + 96 T^{4} - 97 T^{5} + 49 T^{6} + T^{7} - 9 T^{8} + 3 T^{9} + 3 T^{10} - 2 T^{11} + T^{12} \)
$47$ \( 1 - 9 T + 52 T^{2} - 46 T^{3} + 96 T^{4} - 97 T^{5} + 49 T^{6} + T^{7} - 9 T^{8} + 3 T^{9} + 3 T^{10} - 2 T^{11} + T^{12} \)
$53$ \( T^{12} \)
$59$ \( T^{12} \)
$61$ \( 1 - 9 T + 52 T^{2} - 46 T^{3} + 96 T^{4} - 97 T^{5} + 49 T^{6} + T^{7} - 9 T^{8} + 3 T^{9} + 3 T^{10} - 2 T^{11} + T^{12} \)
$67$ \( T^{12} \)
$71$ \( T^{12} \)
$73$ \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2} \)
$79$ \( T^{12} \)
$83$ \( ( 1 + 4 T + 9 T^{2} + 8 T^{3} + 4 T^{4} + 2 T^{5} + T^{6} )^{2} \)
$89$ \( T^{12} \)
$97$ \( T^{12} \)
show more
show less