Properties

Label 3724.1.bc.b
Level $3724$
Weight $1$
Character orbit 3724.bc
Analytic conductor $1.859$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(569,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.569");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3724.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.85851810705\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.76.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{5} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6} q^{5} - \zeta_{6} q^{9} - \zeta_{6}^{2} q^{11} + \zeta_{6}^{2} q^{17} + \zeta_{6} q^{19} - 2 \zeta_{6} q^{23} - q^{43} + \zeta_{6}^{2} q^{45} - \zeta_{6} q^{47} - q^{55} - \zeta_{6} q^{61} + \zeta_{6}^{2} q^{73} + \zeta_{6}^{2} q^{81} - 2 q^{83} + q^{85} - \zeta_{6}^{2} q^{95} - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{5} - q^{9} + q^{11} - q^{17} + q^{19} - 2 q^{23} - 2 q^{43} - q^{45} - q^{47} - 2 q^{55} - q^{61} - q^{73} - q^{81} - 4 q^{83} + 2 q^{85} + q^{95} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times\).

\(n\) \(1863\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
569.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 0.866025i 0
949.1 0 0 0 −0.500000 0.866025i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
7.c even 3 1 inner
133.r odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3724.1.bc.b 2
7.b odd 2 1 3724.1.bc.c 2
7.c even 3 1 3724.1.e.c 1
7.c even 3 1 inner 3724.1.bc.b 2
7.d odd 6 1 76.1.c.a 1
7.d odd 6 1 3724.1.bc.c 2
19.b odd 2 1 CM 3724.1.bc.b 2
21.g even 6 1 684.1.h.a 1
28.f even 6 1 304.1.e.a 1
35.i odd 6 1 1900.1.e.a 1
35.k even 12 2 1900.1.g.a 2
56.j odd 6 1 1216.1.e.a 1
56.m even 6 1 1216.1.e.b 1
84.j odd 6 1 2736.1.o.b 1
133.c even 2 1 3724.1.bc.c 2
133.i even 6 1 1444.1.h.a 2
133.k odd 6 1 1444.1.h.a 2
133.o even 6 1 76.1.c.a 1
133.o even 6 1 3724.1.bc.c 2
133.r odd 6 1 3724.1.e.c 1
133.r odd 6 1 inner 3724.1.bc.b 2
133.s even 6 1 1444.1.h.a 2
133.t odd 6 1 1444.1.h.a 2
133.x odd 18 3 1444.1.j.a 6
133.z odd 18 3 1444.1.j.a 6
133.bb even 18 3 1444.1.j.a 6
133.bf even 18 3 1444.1.j.a 6
399.s odd 6 1 684.1.h.a 1
532.bh odd 6 1 304.1.e.a 1
665.y even 6 1 1900.1.e.a 1
665.ca odd 12 2 1900.1.g.a 2
1064.bi odd 6 1 1216.1.e.b 1
1064.cf even 6 1 1216.1.e.a 1
1596.bl even 6 1 2736.1.o.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.1.c.a 1 7.d odd 6 1
76.1.c.a 1 133.o even 6 1
304.1.e.a 1 28.f even 6 1
304.1.e.a 1 532.bh odd 6 1
684.1.h.a 1 21.g even 6 1
684.1.h.a 1 399.s odd 6 1
1216.1.e.a 1 56.j odd 6 1
1216.1.e.a 1 1064.cf even 6 1
1216.1.e.b 1 56.m even 6 1
1216.1.e.b 1 1064.bi odd 6 1
1444.1.h.a 2 133.i even 6 1
1444.1.h.a 2 133.k odd 6 1
1444.1.h.a 2 133.s even 6 1
1444.1.h.a 2 133.t odd 6 1
1444.1.j.a 6 133.x odd 18 3
1444.1.j.a 6 133.z odd 18 3
1444.1.j.a 6 133.bb even 18 3
1444.1.j.a 6 133.bf even 18 3
1900.1.e.a 1 35.i odd 6 1
1900.1.e.a 1 665.y even 6 1
1900.1.g.a 2 35.k even 12 2
1900.1.g.a 2 665.ca odd 12 2
2736.1.o.b 1 84.j odd 6 1
2736.1.o.b 1 1596.bl even 6 1
3724.1.e.c 1 7.c even 3 1
3724.1.e.c 1 133.r odd 6 1
3724.1.bc.b 2 1.a even 1 1 trivial
3724.1.bc.b 2 7.c even 3 1 inner
3724.1.bc.b 2 19.b odd 2 1 CM
3724.1.bc.b 2 133.r odd 6 1 inner
3724.1.bc.c 2 7.b odd 2 1
3724.1.bc.c 2 7.d odd 6 1
3724.1.bc.c 2 133.c even 2 1
3724.1.bc.c 2 133.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3724, [\chi])\):

\( T_{5}^{2} + T_{5} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less