Properties

Label 3720.2.a.r.1.4
Level $3720$
Weight $2$
Character 3720.1
Self dual yes
Analytic conductor $29.704$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3720,2,Mod(1,3720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3720.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7043495519\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.78292.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 8x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.68461\) of defining polynomial
Character \(\chi\) \(=\) 3720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +2.68461 q^{7} +1.00000 q^{9} +3.24072 q^{11} -4.97040 q^{13} +1.00000 q^{15} +0.921359 q^{17} +1.24072 q^{19} -2.68461 q^{21} +6.57637 q^{23} +1.00000 q^{25} -1.00000 q^{27} -3.89176 q^{29} +1.00000 q^{31} -3.24072 q^{33} -2.68461 q^{35} +2.97040 q^{37} +4.97040 q^{39} +4.00000 q^{41} +5.65501 q^{43} -1.00000 q^{45} -8.86216 q^{47} +0.207146 q^{49} -0.921359 q^{51} +0.792854 q^{53} -3.24072 q^{55} -1.24072 q^{57} -7.00397 q^{59} +10.8957 q^{61} +2.68461 q^{63} +4.97040 q^{65} -12.3396 q^{67} -6.57637 q^{69} +15.5468 q^{71} +7.09891 q^{73} -1.00000 q^{75} +8.70008 q^{77} -1.04986 q^{79} +1.00000 q^{81} -16.3887 q^{83} -0.921359 q^{85} +3.89176 q^{87} -3.13248 q^{89} -13.3436 q^{91} -1.00000 q^{93} -1.24072 q^{95} -4.57157 q^{97} +3.24072 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{5} + q^{7} + 4 q^{9} + q^{11} - 2 q^{13} + 4 q^{15} + 4 q^{17} - 7 q^{19} - q^{21} - q^{23} + 4 q^{25} - 4 q^{27} + 2 q^{29} + 4 q^{31} - q^{33} - q^{35} - 6 q^{37} + 2 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.68461 1.01469 0.507344 0.861744i \(-0.330627\pi\)
0.507344 + 0.861744i \(0.330627\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.24072 0.977114 0.488557 0.872532i \(-0.337523\pi\)
0.488557 + 0.872532i \(0.337523\pi\)
\(12\) 0 0
\(13\) −4.97040 −1.37854 −0.689270 0.724504i \(-0.742069\pi\)
−0.689270 + 0.724504i \(0.742069\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 0.921359 0.223462 0.111731 0.993738i \(-0.464360\pi\)
0.111731 + 0.993738i \(0.464360\pi\)
\(18\) 0 0
\(19\) 1.24072 0.284641 0.142320 0.989821i \(-0.454544\pi\)
0.142320 + 0.989821i \(0.454544\pi\)
\(20\) 0 0
\(21\) −2.68461 −0.585831
\(22\) 0 0
\(23\) 6.57637 1.37127 0.685634 0.727946i \(-0.259525\pi\)
0.685634 + 0.727946i \(0.259525\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.89176 −0.722682 −0.361341 0.932434i \(-0.617681\pi\)
−0.361341 + 0.932434i \(0.617681\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −3.24072 −0.564137
\(34\) 0 0
\(35\) −2.68461 −0.453782
\(36\) 0 0
\(37\) 2.97040 0.488331 0.244165 0.969734i \(-0.421486\pi\)
0.244165 + 0.969734i \(0.421486\pi\)
\(38\) 0 0
\(39\) 4.97040 0.795901
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 5.65501 0.862381 0.431191 0.902261i \(-0.358094\pi\)
0.431191 + 0.902261i \(0.358094\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.86216 −1.29268 −0.646339 0.763050i \(-0.723701\pi\)
−0.646339 + 0.763050i \(0.723701\pi\)
\(48\) 0 0
\(49\) 0.207146 0.0295923
\(50\) 0 0
\(51\) −0.921359 −0.129016
\(52\) 0 0
\(53\) 0.792854 0.108907 0.0544534 0.998516i \(-0.482658\pi\)
0.0544534 + 0.998516i \(0.482658\pi\)
\(54\) 0 0
\(55\) −3.24072 −0.436979
\(56\) 0 0
\(57\) −1.24072 −0.164337
\(58\) 0 0
\(59\) −7.00397 −0.911840 −0.455920 0.890021i \(-0.650690\pi\)
−0.455920 + 0.890021i \(0.650690\pi\)
\(60\) 0 0
\(61\) 10.8957 1.39506 0.697528 0.716558i \(-0.254283\pi\)
0.697528 + 0.716558i \(0.254283\pi\)
\(62\) 0 0
\(63\) 2.68461 0.338229
\(64\) 0 0
\(65\) 4.97040 0.616502
\(66\) 0 0
\(67\) −12.3396 −1.50753 −0.753763 0.657147i \(-0.771763\pi\)
−0.753763 + 0.657147i \(0.771763\pi\)
\(68\) 0 0
\(69\) −6.57637 −0.791702
\(70\) 0 0
\(71\) 15.5468 1.84506 0.922531 0.385923i \(-0.126117\pi\)
0.922531 + 0.385923i \(0.126117\pi\)
\(72\) 0 0
\(73\) 7.09891 0.830864 0.415432 0.909624i \(-0.363630\pi\)
0.415432 + 0.909624i \(0.363630\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 8.70008 0.991466
\(78\) 0 0
\(79\) −1.04986 −0.118119 −0.0590595 0.998254i \(-0.518810\pi\)
−0.0590595 + 0.998254i \(0.518810\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −16.3887 −1.79889 −0.899445 0.437034i \(-0.856029\pi\)
−0.899445 + 0.437034i \(0.856029\pi\)
\(84\) 0 0
\(85\) −0.921359 −0.0999354
\(86\) 0 0
\(87\) 3.89176 0.417240
\(88\) 0 0
\(89\) −3.13248 −0.332042 −0.166021 0.986122i \(-0.553092\pi\)
−0.166021 + 0.986122i \(0.553092\pi\)
\(90\) 0 0
\(91\) −13.3436 −1.39879
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −1.24072 −0.127295
\(96\) 0 0
\(97\) −4.57157 −0.464173 −0.232087 0.972695i \(-0.574555\pi\)
−0.232087 + 0.972695i \(0.574555\pi\)
\(98\) 0 0
\(99\) 3.24072 0.325705
\(100\) 0 0
\(101\) 17.5649 1.74777 0.873885 0.486132i \(-0.161593\pi\)
0.873885 + 0.486132i \(0.161593\pi\)
\(102\) 0 0
\(103\) 10.7539 1.05962 0.529808 0.848118i \(-0.322264\pi\)
0.529808 + 0.848118i \(0.322264\pi\)
\(104\) 0 0
\(105\) 2.68461 0.261991
\(106\) 0 0
\(107\) 11.4721 1.10905 0.554525 0.832167i \(-0.312900\pi\)
0.554525 + 0.832167i \(0.312900\pi\)
\(108\) 0 0
\(109\) −5.33565 −0.511063 −0.255531 0.966801i \(-0.582250\pi\)
−0.255531 + 0.966801i \(0.582250\pi\)
\(110\) 0 0
\(111\) −2.97040 −0.281938
\(112\) 0 0
\(113\) 7.71421 0.725692 0.362846 0.931849i \(-0.381805\pi\)
0.362846 + 0.931849i \(0.381805\pi\)
\(114\) 0 0
\(115\) −6.57637 −0.613250
\(116\) 0 0
\(117\) −4.97040 −0.459514
\(118\) 0 0
\(119\) 2.47349 0.226745
\(120\) 0 0
\(121\) −0.497731 −0.0452483
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.7694 −1.31057 −0.655286 0.755381i \(-0.727452\pi\)
−0.655286 + 0.755381i \(0.727452\pi\)
\(128\) 0 0
\(129\) −5.65501 −0.497896
\(130\) 0 0
\(131\) 14.7203 1.28612 0.643061 0.765815i \(-0.277664\pi\)
0.643061 + 0.765815i \(0.277664\pi\)
\(132\) 0 0
\(133\) 3.33085 0.288822
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 11.6502 0.995345 0.497673 0.867365i \(-0.334188\pi\)
0.497673 + 0.867365i \(0.334188\pi\)
\(138\) 0 0
\(139\) −9.36923 −0.794687 −0.397344 0.917670i \(-0.630068\pi\)
−0.397344 + 0.917670i \(0.630068\pi\)
\(140\) 0 0
\(141\) 8.86216 0.746328
\(142\) 0 0
\(143\) −16.1077 −1.34699
\(144\) 0 0
\(145\) 3.89176 0.323193
\(146\) 0 0
\(147\) −0.207146 −0.0170851
\(148\) 0 0
\(149\) 13.2407 1.08472 0.542361 0.840146i \(-0.317530\pi\)
0.542361 + 0.840146i \(0.317530\pi\)
\(150\) 0 0
\(151\) 17.8171 1.44993 0.724967 0.688783i \(-0.241855\pi\)
0.724967 + 0.688783i \(0.241855\pi\)
\(152\) 0 0
\(153\) 0.921359 0.0744875
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −7.91202 −0.631448 −0.315724 0.948851i \(-0.602247\pi\)
−0.315724 + 0.948851i \(0.602247\pi\)
\(158\) 0 0
\(159\) −0.792854 −0.0628774
\(160\) 0 0
\(161\) 17.6550 1.39141
\(162\) 0 0
\(163\) −15.3255 −1.20039 −0.600193 0.799855i \(-0.704909\pi\)
−0.600193 + 0.799855i \(0.704909\pi\)
\(164\) 0 0
\(165\) 3.24072 0.252290
\(166\) 0 0
\(167\) 12.1957 0.943728 0.471864 0.881671i \(-0.343581\pi\)
0.471864 + 0.881671i \(0.343581\pi\)
\(168\) 0 0
\(169\) 11.7049 0.900375
\(170\) 0 0
\(171\) 1.24072 0.0948803
\(172\) 0 0
\(173\) 8.95493 0.680831 0.340415 0.940275i \(-0.389432\pi\)
0.340415 + 0.940275i \(0.389432\pi\)
\(174\) 0 0
\(175\) 2.68461 0.202938
\(176\) 0 0
\(177\) 7.00397 0.526451
\(178\) 0 0
\(179\) 6.67130 0.498637 0.249318 0.968422i \(-0.419793\pi\)
0.249318 + 0.968422i \(0.419793\pi\)
\(180\) 0 0
\(181\) −12.9650 −0.963684 −0.481842 0.876258i \(-0.660032\pi\)
−0.481842 + 0.876258i \(0.660032\pi\)
\(182\) 0 0
\(183\) −10.8957 −0.805436
\(184\) 0 0
\(185\) −2.97040 −0.218388
\(186\) 0 0
\(187\) 2.98587 0.218348
\(188\) 0 0
\(189\) −2.68461 −0.195277
\(190\) 0 0
\(191\) 15.5755 1.12701 0.563504 0.826114i \(-0.309453\pi\)
0.563504 + 0.826114i \(0.309453\pi\)
\(192\) 0 0
\(193\) 6.41429 0.461711 0.230855 0.972988i \(-0.425848\pi\)
0.230855 + 0.972988i \(0.425848\pi\)
\(194\) 0 0
\(195\) −4.97040 −0.355938
\(196\) 0 0
\(197\) 8.66435 0.617309 0.308655 0.951174i \(-0.400121\pi\)
0.308655 + 0.951174i \(0.400121\pi\)
\(198\) 0 0
\(199\) −6.16208 −0.436818 −0.218409 0.975857i \(-0.570087\pi\)
−0.218409 + 0.975857i \(0.570087\pi\)
\(200\) 0 0
\(201\) 12.3396 0.870370
\(202\) 0 0
\(203\) −10.4479 −0.733296
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) 6.57637 0.457089
\(208\) 0 0
\(209\) 4.02083 0.278126
\(210\) 0 0
\(211\) −0.767228 −0.0528182 −0.0264091 0.999651i \(-0.508407\pi\)
−0.0264091 + 0.999651i \(0.508407\pi\)
\(212\) 0 0
\(213\) −15.5468 −1.06525
\(214\) 0 0
\(215\) −5.65501 −0.385669
\(216\) 0 0
\(217\) 2.68461 0.182243
\(218\) 0 0
\(219\) −7.09891 −0.479700
\(220\) 0 0
\(221\) −4.57952 −0.308052
\(222\) 0 0
\(223\) 6.09808 0.408358 0.204179 0.978934i \(-0.434548\pi\)
0.204179 + 0.978934i \(0.434548\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −1.93765 −0.128606 −0.0643031 0.997930i \(-0.520482\pi\)
−0.0643031 + 0.997930i \(0.520482\pi\)
\(228\) 0 0
\(229\) 21.1911 1.40035 0.700174 0.713972i \(-0.253106\pi\)
0.700174 + 0.713972i \(0.253106\pi\)
\(230\) 0 0
\(231\) −8.70008 −0.572423
\(232\) 0 0
\(233\) 22.6515 1.48395 0.741974 0.670429i \(-0.233890\pi\)
0.741974 + 0.670429i \(0.233890\pi\)
\(234\) 0 0
\(235\) 8.86216 0.578104
\(236\) 0 0
\(237\) 1.04986 0.0681960
\(238\) 0 0
\(239\) 22.3551 1.44603 0.723015 0.690832i \(-0.242756\pi\)
0.723015 + 0.690832i \(0.242756\pi\)
\(240\) 0 0
\(241\) 6.79765 0.437875 0.218938 0.975739i \(-0.429741\pi\)
0.218938 + 0.975739i \(0.429741\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.207146 −0.0132341
\(246\) 0 0
\(247\) −6.16688 −0.392389
\(248\) 0 0
\(249\) 16.3887 1.03859
\(250\) 0 0
\(251\) 8.06715 0.509194 0.254597 0.967047i \(-0.418057\pi\)
0.254597 + 0.967047i \(0.418057\pi\)
\(252\) 0 0
\(253\) 21.3122 1.33989
\(254\) 0 0
\(255\) 0.921359 0.0576977
\(256\) 0 0
\(257\) 9.04986 0.564515 0.282258 0.959339i \(-0.408917\pi\)
0.282258 + 0.959339i \(0.408917\pi\)
\(258\) 0 0
\(259\) 7.97437 0.495504
\(260\) 0 0
\(261\) −3.89176 −0.240894
\(262\) 0 0
\(263\) 14.9037 0.919000 0.459500 0.888178i \(-0.348029\pi\)
0.459500 + 0.888178i \(0.348029\pi\)
\(264\) 0 0
\(265\) −0.792854 −0.0487046
\(266\) 0 0
\(267\) 3.13248 0.191705
\(268\) 0 0
\(269\) 13.5084 0.823622 0.411811 0.911269i \(-0.364896\pi\)
0.411811 + 0.911269i \(0.364896\pi\)
\(270\) 0 0
\(271\) 5.90408 0.358647 0.179324 0.983790i \(-0.442609\pi\)
0.179324 + 0.983790i \(0.442609\pi\)
\(272\) 0 0
\(273\) 13.3436 0.807591
\(274\) 0 0
\(275\) 3.24072 0.195423
\(276\) 0 0
\(277\) 10.6868 0.642106 0.321053 0.947061i \(-0.395963\pi\)
0.321053 + 0.947061i \(0.395963\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 15.6838 0.935616 0.467808 0.883830i \(-0.345044\pi\)
0.467808 + 0.883830i \(0.345044\pi\)
\(282\) 0 0
\(283\) 4.24949 0.252606 0.126303 0.991992i \(-0.459689\pi\)
0.126303 + 0.991992i \(0.459689\pi\)
\(284\) 0 0
\(285\) 1.24072 0.0734939
\(286\) 0 0
\(287\) 10.7385 0.633871
\(288\) 0 0
\(289\) −16.1511 −0.950065
\(290\) 0 0
\(291\) 4.57157 0.267990
\(292\) 0 0
\(293\) 7.11917 0.415906 0.207953 0.978139i \(-0.433320\pi\)
0.207953 + 0.978139i \(0.433320\pi\)
\(294\) 0 0
\(295\) 7.00397 0.407787
\(296\) 0 0
\(297\) −3.24072 −0.188046
\(298\) 0 0
\(299\) −32.6872 −1.89035
\(300\) 0 0
\(301\) 15.1815 0.875048
\(302\) 0 0
\(303\) −17.5649 −1.00908
\(304\) 0 0
\(305\) −10.8957 −0.623888
\(306\) 0 0
\(307\) 28.8616 1.64722 0.823609 0.567158i \(-0.191957\pi\)
0.823609 + 0.567158i \(0.191957\pi\)
\(308\) 0 0
\(309\) −10.7539 −0.611769
\(310\) 0 0
\(311\) −18.5118 −1.04971 −0.524854 0.851192i \(-0.675880\pi\)
−0.524854 + 0.851192i \(0.675880\pi\)
\(312\) 0 0
\(313\) −4.17275 −0.235858 −0.117929 0.993022i \(-0.537625\pi\)
−0.117929 + 0.993022i \(0.537625\pi\)
\(314\) 0 0
\(315\) −2.68461 −0.151261
\(316\) 0 0
\(317\) −11.8250 −0.664160 −0.332080 0.943251i \(-0.607750\pi\)
−0.332080 + 0.943251i \(0.607750\pi\)
\(318\) 0 0
\(319\) −12.6121 −0.706142
\(320\) 0 0
\(321\) −11.4721 −0.640310
\(322\) 0 0
\(323\) 1.14315 0.0636065
\(324\) 0 0
\(325\) −4.97040 −0.275708
\(326\) 0 0
\(327\) 5.33565 0.295062
\(328\) 0 0
\(329\) −23.7915 −1.31167
\(330\) 0 0
\(331\) 3.80914 0.209369 0.104685 0.994505i \(-0.466617\pi\)
0.104685 + 0.994505i \(0.466617\pi\)
\(332\) 0 0
\(333\) 2.97040 0.162777
\(334\) 0 0
\(335\) 12.3396 0.674186
\(336\) 0 0
\(337\) −17.1682 −0.935212 −0.467606 0.883937i \(-0.654883\pi\)
−0.467606 + 0.883937i \(0.654883\pi\)
\(338\) 0 0
\(339\) −7.71421 −0.418979
\(340\) 0 0
\(341\) 3.24072 0.175495
\(342\) 0 0
\(343\) −18.2362 −0.984661
\(344\) 0 0
\(345\) 6.57637 0.354060
\(346\) 0 0
\(347\) −18.0079 −0.966717 −0.483359 0.875422i \(-0.660583\pi\)
−0.483359 + 0.875422i \(0.660583\pi\)
\(348\) 0 0
\(349\) 27.1271 1.45208 0.726041 0.687652i \(-0.241358\pi\)
0.726041 + 0.687652i \(0.241358\pi\)
\(350\) 0 0
\(351\) 4.97040 0.265300
\(352\) 0 0
\(353\) 15.4028 0.819808 0.409904 0.912129i \(-0.365562\pi\)
0.409904 + 0.912129i \(0.365562\pi\)
\(354\) 0 0
\(355\) −15.5468 −0.825137
\(356\) 0 0
\(357\) −2.47349 −0.130911
\(358\) 0 0
\(359\) 27.8789 1.47139 0.735695 0.677312i \(-0.236855\pi\)
0.735695 + 0.677312i \(0.236855\pi\)
\(360\) 0 0
\(361\) −17.4606 −0.918980
\(362\) 0 0
\(363\) 0.497731 0.0261241
\(364\) 0 0
\(365\) −7.09891 −0.371574
\(366\) 0 0
\(367\) −24.2729 −1.26704 −0.633518 0.773728i \(-0.718390\pi\)
−0.633518 + 0.773728i \(0.718390\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) 2.12851 0.110506
\(372\) 0 0
\(373\) −17.3714 −0.899456 −0.449728 0.893166i \(-0.648479\pi\)
−0.449728 + 0.893166i \(0.648479\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 19.3436 0.996246
\(378\) 0 0
\(379\) 0.236183 0.0121319 0.00606594 0.999982i \(-0.498069\pi\)
0.00606594 + 0.999982i \(0.498069\pi\)
\(380\) 0 0
\(381\) 14.7694 0.756659
\(382\) 0 0
\(383\) −34.8126 −1.77884 −0.889419 0.457092i \(-0.848891\pi\)
−0.889419 + 0.457092i \(0.848891\pi\)
\(384\) 0 0
\(385\) −8.70008 −0.443397
\(386\) 0 0
\(387\) 5.65501 0.287460
\(388\) 0 0
\(389\) 16.7795 0.850757 0.425378 0.905016i \(-0.360141\pi\)
0.425378 + 0.905016i \(0.360141\pi\)
\(390\) 0 0
\(391\) 6.05920 0.306427
\(392\) 0 0
\(393\) −14.7203 −0.742543
\(394\) 0 0
\(395\) 1.04986 0.0528244
\(396\) 0 0
\(397\) −7.56488 −0.379670 −0.189835 0.981816i \(-0.560795\pi\)
−0.189835 + 0.981816i \(0.560795\pi\)
\(398\) 0 0
\(399\) −3.33085 −0.166751
\(400\) 0 0
\(401\) −12.1775 −0.608118 −0.304059 0.952653i \(-0.598342\pi\)
−0.304059 + 0.952653i \(0.598342\pi\)
\(402\) 0 0
\(403\) −4.97040 −0.247593
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 9.62624 0.477155
\(408\) 0 0
\(409\) −8.09973 −0.400506 −0.200253 0.979744i \(-0.564176\pi\)
−0.200253 + 0.979744i \(0.564176\pi\)
\(410\) 0 0
\(411\) −11.6502 −0.574663
\(412\) 0 0
\(413\) −18.8030 −0.925233
\(414\) 0 0
\(415\) 16.3887 0.804488
\(416\) 0 0
\(417\) 9.36923 0.458813
\(418\) 0 0
\(419\) −35.4588 −1.73228 −0.866138 0.499805i \(-0.833405\pi\)
−0.866138 + 0.499805i \(0.833405\pi\)
\(420\) 0 0
\(421\) −8.86216 −0.431915 −0.215958 0.976403i \(-0.569287\pi\)
−0.215958 + 0.976403i \(0.569287\pi\)
\(422\) 0 0
\(423\) −8.86216 −0.430893
\(424\) 0 0
\(425\) 0.921359 0.0446925
\(426\) 0 0
\(427\) 29.2508 1.41555
\(428\) 0 0
\(429\) 16.1077 0.777686
\(430\) 0 0
\(431\) −25.2503 −1.21626 −0.608131 0.793837i \(-0.708081\pi\)
−0.608131 + 0.793837i \(0.708081\pi\)
\(432\) 0 0
\(433\) −13.9867 −0.672157 −0.336079 0.941834i \(-0.609101\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(434\) 0 0
\(435\) −3.89176 −0.186596
\(436\) 0 0
\(437\) 8.15944 0.390319
\(438\) 0 0
\(439\) −7.74299 −0.369553 −0.184776 0.982781i \(-0.559156\pi\)
−0.184776 + 0.982781i \(0.559156\pi\)
\(440\) 0 0
\(441\) 0.207146 0.00986411
\(442\) 0 0
\(443\) −1.09947 −0.0522374 −0.0261187 0.999659i \(-0.508315\pi\)
−0.0261187 + 0.999659i \(0.508315\pi\)
\(444\) 0 0
\(445\) 3.13248 0.148494
\(446\) 0 0
\(447\) −13.2407 −0.626265
\(448\) 0 0
\(449\) −3.58514 −0.169193 −0.0845967 0.996415i \(-0.526960\pi\)
−0.0845967 + 0.996415i \(0.526960\pi\)
\(450\) 0 0
\(451\) 12.9629 0.610398
\(452\) 0 0
\(453\) −17.8171 −0.837120
\(454\) 0 0
\(455\) 13.3436 0.625558
\(456\) 0 0
\(457\) 32.2884 1.51039 0.755193 0.655502i \(-0.227543\pi\)
0.755193 + 0.655502i \(0.227543\pi\)
\(458\) 0 0
\(459\) −0.921359 −0.0430054
\(460\) 0 0
\(461\) −20.3236 −0.946564 −0.473282 0.880911i \(-0.656931\pi\)
−0.473282 + 0.880911i \(0.656931\pi\)
\(462\) 0 0
\(463\) 0.0325804 0.00151414 0.000757069 1.00000i \(-0.499759\pi\)
0.000757069 1.00000i \(0.499759\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −30.0149 −1.38892 −0.694462 0.719529i \(-0.744358\pi\)
−0.694462 + 0.719529i \(0.744358\pi\)
\(468\) 0 0
\(469\) −33.1271 −1.52967
\(470\) 0 0
\(471\) 7.91202 0.364567
\(472\) 0 0
\(473\) 18.3263 0.842645
\(474\) 0 0
\(475\) 1.24072 0.0569282
\(476\) 0 0
\(477\) 0.792854 0.0363023
\(478\) 0 0
\(479\) −1.21466 −0.0554994 −0.0277497 0.999615i \(-0.508834\pi\)
−0.0277497 + 0.999615i \(0.508834\pi\)
\(480\) 0 0
\(481\) −14.7641 −0.673184
\(482\) 0 0
\(483\) −17.6550 −0.803331
\(484\) 0 0
\(485\) 4.57157 0.207585
\(486\) 0 0
\(487\) 32.7464 1.48388 0.741941 0.670466i \(-0.233906\pi\)
0.741941 + 0.670466i \(0.233906\pi\)
\(488\) 0 0
\(489\) 15.3255 0.693043
\(490\) 0 0
\(491\) 23.6859 1.06893 0.534466 0.845190i \(-0.320513\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(492\) 0 0
\(493\) −3.58571 −0.161492
\(494\) 0 0
\(495\) −3.24072 −0.145660
\(496\) 0 0
\(497\) 41.7371 1.87216
\(498\) 0 0
\(499\) 41.2401 1.84616 0.923080 0.384607i \(-0.125663\pi\)
0.923080 + 0.384607i \(0.125663\pi\)
\(500\) 0 0
\(501\) −12.1957 −0.544862
\(502\) 0 0
\(503\) −18.6953 −0.833581 −0.416791 0.909002i \(-0.636845\pi\)
−0.416791 + 0.909002i \(0.636845\pi\)
\(504\) 0 0
\(505\) −17.5649 −0.781627
\(506\) 0 0
\(507\) −11.7049 −0.519832
\(508\) 0 0
\(509\) 24.9544 1.10608 0.553041 0.833154i \(-0.313467\pi\)
0.553041 + 0.833154i \(0.313467\pi\)
\(510\) 0 0
\(511\) 19.0578 0.843068
\(512\) 0 0
\(513\) −1.24072 −0.0547791
\(514\) 0 0
\(515\) −10.7539 −0.473874
\(516\) 0 0
\(517\) −28.7198 −1.26309
\(518\) 0 0
\(519\) −8.95493 −0.393078
\(520\) 0 0
\(521\) −17.2199 −0.754417 −0.377209 0.926128i \(-0.623116\pi\)
−0.377209 + 0.926128i \(0.623116\pi\)
\(522\) 0 0
\(523\) 25.0401 1.09493 0.547464 0.836829i \(-0.315593\pi\)
0.547464 + 0.836829i \(0.315593\pi\)
\(524\) 0 0
\(525\) −2.68461 −0.117166
\(526\) 0 0
\(527\) 0.921359 0.0401350
\(528\) 0 0
\(529\) 20.2487 0.880377
\(530\) 0 0
\(531\) −7.00397 −0.303947
\(532\) 0 0
\(533\) −19.8816 −0.861168
\(534\) 0 0
\(535\) −11.4721 −0.495982
\(536\) 0 0
\(537\) −6.67130 −0.287888
\(538\) 0 0
\(539\) 0.671303 0.0289151
\(540\) 0 0
\(541\) −18.6377 −0.801299 −0.400649 0.916231i \(-0.631215\pi\)
−0.400649 + 0.916231i \(0.631215\pi\)
\(542\) 0 0
\(543\) 12.9650 0.556383
\(544\) 0 0
\(545\) 5.33565 0.228554
\(546\) 0 0
\(547\) −45.7653 −1.95678 −0.978391 0.206763i \(-0.933707\pi\)
−0.978391 + 0.206763i \(0.933707\pi\)
\(548\) 0 0
\(549\) 10.8957 0.465019
\(550\) 0 0
\(551\) −4.82859 −0.205705
\(552\) 0 0
\(553\) −2.81848 −0.119854
\(554\) 0 0
\(555\) 2.97040 0.126086
\(556\) 0 0
\(557\) −25.0967 −1.06338 −0.531691 0.846939i \(-0.678443\pi\)
−0.531691 + 0.846939i \(0.678443\pi\)
\(558\) 0 0
\(559\) −28.1077 −1.18883
\(560\) 0 0
\(561\) −2.98587 −0.126063
\(562\) 0 0
\(563\) −41.1041 −1.73233 −0.866166 0.499756i \(-0.833423\pi\)
−0.866166 + 0.499756i \(0.833423\pi\)
\(564\) 0 0
\(565\) −7.71421 −0.324539
\(566\) 0 0
\(567\) 2.68461 0.112743
\(568\) 0 0
\(569\) 31.1714 1.30677 0.653386 0.757025i \(-0.273348\pi\)
0.653386 + 0.757025i \(0.273348\pi\)
\(570\) 0 0
\(571\) 2.63077 0.110094 0.0550472 0.998484i \(-0.482469\pi\)
0.0550472 + 0.998484i \(0.482469\pi\)
\(572\) 0 0
\(573\) −15.5755 −0.650678
\(574\) 0 0
\(575\) 6.57637 0.274254
\(576\) 0 0
\(577\) −34.7694 −1.44747 −0.723734 0.690079i \(-0.757576\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(578\) 0 0
\(579\) −6.41429 −0.266569
\(580\) 0 0
\(581\) −43.9972 −1.82531
\(582\) 0 0
\(583\) 2.56942 0.106414
\(584\) 0 0
\(585\) 4.97040 0.205501
\(586\) 0 0
\(587\) 1.11222 0.0459060 0.0229530 0.999737i \(-0.492693\pi\)
0.0229530 + 0.999737i \(0.492693\pi\)
\(588\) 0 0
\(589\) 1.24072 0.0511230
\(590\) 0 0
\(591\) −8.66435 −0.356404
\(592\) 0 0
\(593\) 32.6510 1.34082 0.670408 0.741993i \(-0.266119\pi\)
0.670408 + 0.741993i \(0.266119\pi\)
\(594\) 0 0
\(595\) −2.47349 −0.101403
\(596\) 0 0
\(597\) 6.16208 0.252197
\(598\) 0 0
\(599\) −16.6899 −0.681932 −0.340966 0.940076i \(-0.610754\pi\)
−0.340966 + 0.940076i \(0.610754\pi\)
\(600\) 0 0
\(601\) 16.9037 0.689516 0.344758 0.938692i \(-0.387961\pi\)
0.344758 + 0.938692i \(0.387961\pi\)
\(602\) 0 0
\(603\) −12.3396 −0.502508
\(604\) 0 0
\(605\) 0.497731 0.0202356
\(606\) 0 0
\(607\) −12.5353 −0.508791 −0.254396 0.967100i \(-0.581877\pi\)
−0.254396 + 0.967100i \(0.581877\pi\)
\(608\) 0 0
\(609\) 10.4479 0.423369
\(610\) 0 0
\(611\) 44.0485 1.78201
\(612\) 0 0
\(613\) −25.7681 −1.04076 −0.520381 0.853934i \(-0.674210\pi\)
−0.520381 + 0.853934i \(0.674210\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) −1.84488 −0.0742719 −0.0371359 0.999310i \(-0.511823\pi\)
−0.0371359 + 0.999310i \(0.511823\pi\)
\(618\) 0 0
\(619\) −35.4337 −1.42420 −0.712101 0.702077i \(-0.752256\pi\)
−0.712101 + 0.702077i \(0.752256\pi\)
\(620\) 0 0
\(621\) −6.57637 −0.263901
\(622\) 0 0
\(623\) −8.40950 −0.336919
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.02083 −0.160576
\(628\) 0 0
\(629\) 2.73680 0.109124
\(630\) 0 0
\(631\) 38.7176 1.54132 0.770662 0.637244i \(-0.219926\pi\)
0.770662 + 0.637244i \(0.219926\pi\)
\(632\) 0 0
\(633\) 0.767228 0.0304946
\(634\) 0 0
\(635\) 14.7694 0.586105
\(636\) 0 0
\(637\) −1.02960 −0.0407942
\(638\) 0 0
\(639\) 15.5468 0.615021
\(640\) 0 0
\(641\) 26.8201 1.05933 0.529665 0.848207i \(-0.322318\pi\)
0.529665 + 0.848207i \(0.322318\pi\)
\(642\) 0 0
\(643\) −7.11437 −0.280563 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(644\) 0 0
\(645\) 5.65501 0.222666
\(646\) 0 0
\(647\) −1.30787 −0.0514176 −0.0257088 0.999669i \(-0.508184\pi\)
−0.0257088 + 0.999669i \(0.508184\pi\)
\(648\) 0 0
\(649\) −22.6979 −0.890971
\(650\) 0 0
\(651\) −2.68461 −0.105218
\(652\) 0 0
\(653\) 4.44787 0.174058 0.0870292 0.996206i \(-0.472263\pi\)
0.0870292 + 0.996206i \(0.472263\pi\)
\(654\) 0 0
\(655\) −14.7203 −0.575171
\(656\) 0 0
\(657\) 7.09891 0.276955
\(658\) 0 0
\(659\) −0.653196 −0.0254449 −0.0127225 0.999919i \(-0.504050\pi\)
−0.0127225 + 0.999919i \(0.504050\pi\)
\(660\) 0 0
\(661\) 47.3223 1.84062 0.920312 0.391185i \(-0.127935\pi\)
0.920312 + 0.391185i \(0.127935\pi\)
\(662\) 0 0
\(663\) 4.57952 0.177854
\(664\) 0 0
\(665\) −3.33085 −0.129165
\(666\) 0 0
\(667\) −25.5937 −0.990990
\(668\) 0 0
\(669\) −6.09808 −0.235765
\(670\) 0 0
\(671\) 35.3100 1.36313
\(672\) 0 0
\(673\) −7.95627 −0.306692 −0.153346 0.988173i \(-0.549005\pi\)
−0.153346 + 0.988173i \(0.549005\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 4.47829 0.172115 0.0860573 0.996290i \(-0.472573\pi\)
0.0860573 + 0.996290i \(0.472573\pi\)
\(678\) 0 0
\(679\) −12.2729 −0.470991
\(680\) 0 0
\(681\) 1.93765 0.0742509
\(682\) 0 0
\(683\) −50.8493 −1.94569 −0.972847 0.231450i \(-0.925653\pi\)
−0.972847 + 0.231450i \(0.925653\pi\)
\(684\) 0 0
\(685\) −11.6502 −0.445132
\(686\) 0 0
\(687\) −21.1911 −0.808491
\(688\) 0 0
\(689\) −3.94080 −0.150133
\(690\) 0 0
\(691\) 25.3388 0.963933 0.481967 0.876190i \(-0.339923\pi\)
0.481967 + 0.876190i \(0.339923\pi\)
\(692\) 0 0
\(693\) 8.70008 0.330489
\(694\) 0 0
\(695\) 9.36923 0.355395
\(696\) 0 0
\(697\) 3.68544 0.139596
\(698\) 0 0
\(699\) −22.6515 −0.856757
\(700\) 0 0
\(701\) 1.66296 0.0628092 0.0314046 0.999507i \(-0.490002\pi\)
0.0314046 + 0.999507i \(0.490002\pi\)
\(702\) 0 0
\(703\) 3.68544 0.138999
\(704\) 0 0
\(705\) −8.86216 −0.333768
\(706\) 0 0
\(707\) 47.1549 1.77344
\(708\) 0 0
\(709\) 19.6363 0.737458 0.368729 0.929537i \(-0.379793\pi\)
0.368729 + 0.929537i \(0.379793\pi\)
\(710\) 0 0
\(711\) −1.04986 −0.0393730
\(712\) 0 0
\(713\) 6.57637 0.246287
\(714\) 0 0
\(715\) 16.1077 0.602393
\(716\) 0 0
\(717\) −22.3551 −0.834866
\(718\) 0 0
\(719\) 30.7102 1.14530 0.572648 0.819801i \(-0.305916\pi\)
0.572648 + 0.819801i \(0.305916\pi\)
\(720\) 0 0
\(721\) 28.8701 1.07518
\(722\) 0 0
\(723\) −6.79765 −0.252807
\(724\) 0 0
\(725\) −3.89176 −0.144536
\(726\) 0 0
\(727\) 7.26414 0.269412 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.21030 0.192710
\(732\) 0 0
\(733\) −47.8074 −1.76581 −0.882903 0.469556i \(-0.844414\pi\)
−0.882903 + 0.469556i \(0.844414\pi\)
\(734\) 0 0
\(735\) 0.207146 0.00764071
\(736\) 0 0
\(737\) −39.9893 −1.47302
\(738\) 0 0
\(739\) 0.673943 0.0247914 0.0123957 0.999923i \(-0.496054\pi\)
0.0123957 + 0.999923i \(0.496054\pi\)
\(740\) 0 0
\(741\) 6.16688 0.226546
\(742\) 0 0
\(743\) 12.5817 0.461577 0.230789 0.973004i \(-0.425869\pi\)
0.230789 + 0.973004i \(0.425869\pi\)
\(744\) 0 0
\(745\) −13.2407 −0.485102
\(746\) 0 0
\(747\) −16.3887 −0.599630
\(748\) 0 0
\(749\) 30.7982 1.12534
\(750\) 0 0
\(751\) −43.8090 −1.59861 −0.799307 0.600923i \(-0.794800\pi\)
−0.799307 + 0.600923i \(0.794800\pi\)
\(752\) 0 0
\(753\) −8.06715 −0.293983
\(754\) 0 0
\(755\) −17.8171 −0.648430
\(756\) 0 0
\(757\) 3.92533 0.142669 0.0713343 0.997452i \(-0.477274\pi\)
0.0713343 + 0.997452i \(0.477274\pi\)
\(758\) 0 0
\(759\) −21.3122 −0.773583
\(760\) 0 0
\(761\) −36.5406 −1.32460 −0.662298 0.749241i \(-0.730419\pi\)
−0.662298 + 0.749241i \(0.730419\pi\)
\(762\) 0 0
\(763\) −14.3242 −0.518569
\(764\) 0 0
\(765\) −0.921359 −0.0333118
\(766\) 0 0
\(767\) 34.8126 1.25701
\(768\) 0 0
\(769\) 7.47211 0.269451 0.134726 0.990883i \(-0.456985\pi\)
0.134726 + 0.990883i \(0.456985\pi\)
\(770\) 0 0
\(771\) −9.04986 −0.325923
\(772\) 0 0
\(773\) −50.4862 −1.81586 −0.907932 0.419118i \(-0.862339\pi\)
−0.907932 + 0.419118i \(0.862339\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −7.97437 −0.286079
\(778\) 0 0
\(779\) 4.96288 0.177814
\(780\) 0 0
\(781\) 50.3827 1.80284
\(782\) 0 0
\(783\) 3.89176 0.139080
\(784\) 0 0
\(785\) 7.91202 0.282392
\(786\) 0 0
\(787\) 11.9616 0.426386 0.213193 0.977010i \(-0.431614\pi\)
0.213193 + 0.977010i \(0.431614\pi\)
\(788\) 0 0
\(789\) −14.9037 −0.530585
\(790\) 0 0
\(791\) 20.7097 0.736351
\(792\) 0 0
\(793\) −54.1562 −1.92314
\(794\) 0 0
\(795\) 0.792854 0.0281196
\(796\) 0 0
\(797\) −4.53005 −0.160463 −0.0802313 0.996776i \(-0.525566\pi\)
−0.0802313 + 0.996776i \(0.525566\pi\)
\(798\) 0 0
\(799\) −8.16523 −0.288865
\(800\) 0 0
\(801\) −3.13248 −0.110681
\(802\) 0 0
\(803\) 23.0056 0.811849
\(804\) 0 0
\(805\) −17.6550 −0.622257
\(806\) 0 0
\(807\) −13.5084 −0.475518
\(808\) 0 0
\(809\) −39.0450 −1.37275 −0.686375 0.727248i \(-0.740799\pi\)
−0.686375 + 0.727248i \(0.740799\pi\)
\(810\) 0 0
\(811\) −21.5287 −0.755974 −0.377987 0.925811i \(-0.623384\pi\)
−0.377987 + 0.925811i \(0.623384\pi\)
\(812\) 0 0
\(813\) −5.90408 −0.207065
\(814\) 0 0
\(815\) 15.3255 0.536829
\(816\) 0 0
\(817\) 7.01629 0.245469
\(818\) 0 0
\(819\) −13.3436 −0.466263
\(820\) 0 0
\(821\) 53.5824 1.87004 0.935019 0.354598i \(-0.115382\pi\)
0.935019 + 0.354598i \(0.115382\pi\)
\(822\) 0 0
\(823\) 11.7756 0.410471 0.205235 0.978713i \(-0.434204\pi\)
0.205235 + 0.978713i \(0.434204\pi\)
\(824\) 0 0
\(825\) −3.24072 −0.112827
\(826\) 0 0
\(827\) −22.9928 −0.799539 −0.399769 0.916616i \(-0.630910\pi\)
−0.399769 + 0.916616i \(0.630910\pi\)
\(828\) 0 0
\(829\) 18.4686 0.641440 0.320720 0.947174i \(-0.396075\pi\)
0.320720 + 0.947174i \(0.396075\pi\)
\(830\) 0 0
\(831\) −10.6868 −0.370720
\(832\) 0 0
\(833\) 0.190856 0.00661277
\(834\) 0 0
\(835\) −12.1957 −0.422048
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 3.72869 0.128729 0.0643643 0.997926i \(-0.479498\pi\)
0.0643643 + 0.997926i \(0.479498\pi\)
\(840\) 0 0
\(841\) −13.8542 −0.477731
\(842\) 0 0
\(843\) −15.6838 −0.540178
\(844\) 0 0
\(845\) −11.7049 −0.402660
\(846\) 0 0
\(847\) −1.33622 −0.0459129
\(848\) 0 0
\(849\) −4.24949 −0.145842
\(850\) 0 0
\(851\) 19.5345 0.669633
\(852\) 0 0
\(853\) −21.7718 −0.745451 −0.372726 0.927942i \(-0.621577\pi\)
−0.372726 + 0.927942i \(0.621577\pi\)
\(854\) 0 0
\(855\) −1.24072 −0.0424317
\(856\) 0 0
\(857\) 42.3134 1.44540 0.722700 0.691162i \(-0.242901\pi\)
0.722700 + 0.691162i \(0.242901\pi\)
\(858\) 0 0
\(859\) 12.5140 0.426973 0.213486 0.976946i \(-0.431518\pi\)
0.213486 + 0.976946i \(0.431518\pi\)
\(860\) 0 0
\(861\) −10.7385 −0.365965
\(862\) 0 0
\(863\) −28.8078 −0.980627 −0.490314 0.871546i \(-0.663118\pi\)
−0.490314 + 0.871546i \(0.663118\pi\)
\(864\) 0 0
\(865\) −8.95493 −0.304477
\(866\) 0 0
\(867\) 16.1511 0.548520
\(868\) 0 0
\(869\) −3.40232 −0.115416
\(870\) 0 0
\(871\) 61.3329 2.07819
\(872\) 0 0
\(873\) −4.57157 −0.154724
\(874\) 0 0
\(875\) −2.68461 −0.0907565
\(876\) 0 0
\(877\) −43.2418 −1.46017 −0.730085 0.683356i \(-0.760520\pi\)
−0.730085 + 0.683356i \(0.760520\pi\)
\(878\) 0 0
\(879\) −7.11917 −0.240124
\(880\) 0 0
\(881\) −11.2205 −0.378027 −0.189013 0.981975i \(-0.560529\pi\)
−0.189013 + 0.981975i \(0.560529\pi\)
\(882\) 0 0
\(883\) −25.5728 −0.860594 −0.430297 0.902687i \(-0.641591\pi\)
−0.430297 + 0.902687i \(0.641591\pi\)
\(884\) 0 0
\(885\) −7.00397 −0.235436
\(886\) 0 0
\(887\) −12.1007 −0.406302 −0.203151 0.979147i \(-0.565118\pi\)
−0.203151 + 0.979147i \(0.565118\pi\)
\(888\) 0 0
\(889\) −39.6501 −1.32982
\(890\) 0 0
\(891\) 3.24072 0.108568
\(892\) 0 0
\(893\) −10.9955 −0.367949
\(894\) 0 0
\(895\) −6.67130 −0.222997
\(896\) 0 0
\(897\) 32.6872 1.09139
\(898\) 0 0
\(899\) −3.89176 −0.129797
\(900\) 0 0
\(901\) 0.730503 0.0243366
\(902\) 0 0
\(903\) −15.1815 −0.505209
\(904\) 0 0
\(905\) 12.9650 0.430972
\(906\) 0 0
\(907\) 10.1744 0.337835 0.168918 0.985630i \(-0.445973\pi\)
0.168918 + 0.985630i \(0.445973\pi\)
\(908\) 0 0
\(909\) 17.5649 0.582590
\(910\) 0 0
\(911\) 11.5186 0.381627 0.190813 0.981626i \(-0.438887\pi\)
0.190813 + 0.981626i \(0.438887\pi\)
\(912\) 0 0
\(913\) −53.1111 −1.75772
\(914\) 0 0
\(915\) 10.8957 0.360202
\(916\) 0 0
\(917\) 39.5184 1.30501
\(918\) 0 0
\(919\) −3.18101 −0.104932 −0.0524659 0.998623i \(-0.516708\pi\)
−0.0524659 + 0.998623i \(0.516708\pi\)
\(920\) 0 0
\(921\) −28.8616 −0.951022
\(922\) 0 0
\(923\) −77.2737 −2.54349
\(924\) 0 0
\(925\) 2.97040 0.0976662
\(926\) 0 0
\(927\) 10.7539 0.353205
\(928\) 0 0
\(929\) −12.6995 −0.416658 −0.208329 0.978059i \(-0.566802\pi\)
−0.208329 + 0.978059i \(0.566802\pi\)
\(930\) 0 0
\(931\) 0.257011 0.00842318
\(932\) 0 0
\(933\) 18.5118 0.606049
\(934\) 0 0
\(935\) −2.98587 −0.0976483
\(936\) 0 0
\(937\) −12.4330 −0.406167 −0.203084 0.979161i \(-0.565096\pi\)
−0.203084 + 0.979161i \(0.565096\pi\)
\(938\) 0 0
\(939\) 4.17275 0.136173
\(940\) 0 0
\(941\) 46.8952 1.52874 0.764369 0.644779i \(-0.223050\pi\)
0.764369 + 0.644779i \(0.223050\pi\)
\(942\) 0 0
\(943\) 26.3055 0.856625
\(944\) 0 0
\(945\) 2.68461 0.0873305
\(946\) 0 0
\(947\) −21.5255 −0.699485 −0.349743 0.936846i \(-0.613731\pi\)
−0.349743 + 0.936846i \(0.613731\pi\)
\(948\) 0 0
\(949\) −35.2844 −1.14538
\(950\) 0 0
\(951\) 11.8250 0.383453
\(952\) 0 0
\(953\) 15.4604 0.500810 0.250405 0.968141i \(-0.419436\pi\)
0.250405 + 0.968141i \(0.419436\pi\)
\(954\) 0 0
\(955\) −15.5755 −0.504013
\(956\) 0 0
\(957\) 12.6121 0.407691
\(958\) 0 0
\(959\) 31.2763 1.00996
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 11.4721 0.369683
\(964\) 0 0
\(965\) −6.41429 −0.206483
\(966\) 0 0
\(967\) −37.8037 −1.21569 −0.607843 0.794057i \(-0.707965\pi\)
−0.607843 + 0.794057i \(0.707965\pi\)
\(968\) 0 0
\(969\) −1.14315 −0.0367232
\(970\) 0 0
\(971\) 32.0153 1.02742 0.513710 0.857964i \(-0.328271\pi\)
0.513710 + 0.857964i \(0.328271\pi\)
\(972\) 0 0
\(973\) −25.1527 −0.806360
\(974\) 0 0
\(975\) 4.97040 0.159180
\(976\) 0 0
\(977\) 2.31456 0.0740495 0.0370247 0.999314i \(-0.488212\pi\)
0.0370247 + 0.999314i \(0.488212\pi\)
\(978\) 0 0
\(979\) −10.1515 −0.324443
\(980\) 0 0
\(981\) −5.33565 −0.170354
\(982\) 0 0
\(983\) 23.9487 0.763846 0.381923 0.924194i \(-0.375262\pi\)
0.381923 + 0.924194i \(0.375262\pi\)
\(984\) 0 0
\(985\) −8.66435 −0.276069
\(986\) 0 0
\(987\) 23.7915 0.757291
\(988\) 0 0
\(989\) 37.1895 1.18256
\(990\) 0 0
\(991\) −42.0010 −1.33421 −0.667103 0.744965i \(-0.732466\pi\)
−0.667103 + 0.744965i \(0.732466\pi\)
\(992\) 0 0
\(993\) −3.80914 −0.120880
\(994\) 0 0
\(995\) 6.16208 0.195351
\(996\) 0 0
\(997\) 26.8648 0.850817 0.425408 0.905002i \(-0.360130\pi\)
0.425408 + 0.905002i \(0.360130\pi\)
\(998\) 0 0
\(999\) −2.97040 −0.0939793
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3720.2.a.r.1.4 4
4.3 odd 2 7440.2.a.bx.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.r.1.4 4 1.1 even 1 trivial
7440.2.a.bx.1.1 4 4.3 odd 2